Shaw Lane, Carlton Ground Investigation Report

Version 1 January 2022

Tetra Tech Quay West at MediaCityUK, Trafford Wharf Road, Trafford Park, Manchester M17 1HH 0161 872 3223

tetratech.com

Ground Investigation Report

B029129 January 2022

PRESENTED TO

Network Space Developments Limited

Centrix House, 26 Crow Ln E, Newton-le-Willows WA12 9UY

PRESENTED BY

Tetra Tech Ltd Quay West at MediaCityUK, Trafford Wharf Road, Trafford Park, Manchester M17 1HH

0161 872 3223 tetratecheurope.com

Prepared by:

Nick Brook Senior Geo-environmental Consultant January 2022

Reviewed by:

& Roenan

Sara Brennan Principal Consultant

Authorized by:

A llove

Andrew Moore Technical Director BSc MSc FGS CGeol MICE CEng SiLC QP

January 2022

January 2022

EXECUTIVE SUMMARY

The Site	The site is located north of Shaw Lane, Carlton, Barnsley S71 3HJ and comprises an agricultural field with a pond located to the centre north onsite.				
Ground Investigation	 The Ground investigation comprised: Five window sample boreholes to a maximum depth of 5.18m bgl; Seven trial pits to a maximum depth of 3.40m bgl Three soakaway pits to a maximum depth of 1.60m bgl testing in accordance with DG BRE365:2016 Three gas monitoring visits 				
Ground Conditions	 Made Ground was encountered across site on average 0.60m thick and comprised reworked topsoil of sandy gravelly clay underlain by reworked natural strata comprising of brown sandy gravelly clay. Evidence of infilled ground was encountered as brown grey sandy gravelly clay to a maximum depth of 1.60m bgl located to the north onsite. Made Ground is underlain by Superficial glacial strata comprising firm to stiff, orange brown sandy gravelly clay and locally grey orange brown gravelly silty sand recorded up to 3.00m bgl. Weathered bedrock was encountered in thirteen of fifteen exploratory holes between 0.40m and 2.50m bgl, observed as shallower toward the south onsite. 				
Geotechnical Assessment	 Based on the proposed residential end-use, encountered strata and testing: Traditional strip foundations are recommended. However, deeper trench fill should be utilised in areas of deep Made Ground. A minimum foundation depth of 1.00m is required due to high volume change potential of cohesive strata. Ground bearing floor slabs may be practicable subject to rigorous preparation of the sub-grade. Soakaway drainage is not considered to be feasible. The design classification for concrete is DS-2 and an ACEC class of AC-2. Contractors should make an allowance for pumping operations to maintain dry working conditions. 				
Contamination Screening	 Environmental laboratory testing indicates that: Elevated Benzo(a)pyrene was identified from two samples in DS04. Trace asbestos (<0.001%) was detected in one of five samples. 				
Hazwaste Assessment	Selected samples indicate soils should be classified as non-hazardous with respect to off-site disposal. Soils may be reclassified as inert subject to additional testing.				
Preliminary Ground Gas Assessment	A preliminary ground gas risk assessment classifies the site as CS2 / Amber 1. However, further gas monitoring is recommended in accordance with NHBC guidance.				
Refined Risk Assessment	The risk posed by on site sources of contamination is considered to be low to locally moderate to future site users. The risk to construction workers is considered to be high due to on site sources of contamination.				
Conclusions & Recommendations	 Recommended further works comprise: Additional ground gas monitoring; Targetted investigation along routes of proposed water supply pipelines; CBR testing to inform pavement design; Further dynamic sampling to inform detailed foundation design; and Geotechnical laboratory testing to determine the volume change potential and assess whether heave precautions are required. 				

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Instruction	1
1.2 Brief & scope of services	1
1.3 Proposed Development	1
1.4 Limitations	2
2.0 SUMMARY OF SITE INFORMATION	3
2.1 Location	3
2.2 Site Description	3
3.0 TETRA TECH 2021 SITE INVESTIGATION	4
4.0 ENCOUNTERED GROUND CONDITIONS	5
4.1 Strata Encountered	5
4.2 Made Ground	5
4.3 Superficial Deposits	5
4.4 Bedrock	5
4.5 Visual and olfactory evidence of contamination	5
4.6 Groundwater	6
4.7 Obstructions	6
5.0 LABORATORY TESTING	7
5.1 Environmental Testing	7
5.2 Geotechnical Testing	7
6.0 GROUND CONTAMINATION ASSESSMENT – HUMAN HEALTH	8
6.1 Introduction	8
6.2 Assessment Criteria	8
6.2.1 Generic Assessment Criteria	8
6.2.2 Proposed End Use	9
6.2.3 Soil Organic Matter	9
6.3 Tier 1 – Soil Screening	9
6.4 Asbestos	9
6.5 Preliminary Water Pipes Assessment	9
7.0 PRELIMINARY WASTE ASSESSMENT	10
7.1 Waste Characterisation	10
7.2 Asbestos	10
7.3 Waste Acceptance Criteria Testing	10
7.4 Materials Management	11

8.0 PRELIMINARY GROUND GAS ASSESSMENT	12
8.1 Introduction	12
8.2 Ground Gas Results	12
8.3 Carbon Monoxide and Hydrogen Sulphide	12
8.4 Atmospheric Pressure Trends	12
8.5 Preliminary Ground Gas Assessment	12
9.0 PRELIMINARY GEOTECHNICAL ASSESSMENT	14
9.1 introduction	14
9.2 Standard Penetration Tests	14
9.3 Material Properties	15
9.4 Foundation and Floor Slab Design	15
9.5 Chemical Attack on Buried Concrete	16
9.6 Drainage	16
9.7 Excavations and Groundwater Control	17
10.0 CONCEPTUAL SITE MODEL AND REFINED GROUND CONTAMINATION RISK ASSESSMEN	NT18
10.1 Overview	18
10.2 Current Site Usage and Proposed Development	18
10.3 Conceptual Site Model	18
10.3.1 Potential Sources of Contamination	18
10.3.2 Potential Contaminant Pathways	19
10.3.3 Potential Receptors at Risk	19
10.4 Ground Conditions Risk Assessment	19
11.0 CONCLUSIONS AND RECOMMENDATIONS	22
11.1 Conclusions	22
11.1.1 Contamination Summary	22
11.1.2 Ground Gas	22
11.1.3 Preliminary Waste Classification	22
11.1.4 Geotechnical	22
11.2 Recommendations	23
DRAWINGS	24
APPENDICES	25

LIST OF TABLES

Table 1-1 – Landuse Table	1
Table 2-1 – Site Address and Size	3
Table 2-2 – Site Surrounds	3
Table 4-1 – Groundwater Levels Post Investigation	6

Table 5-1 - Summary of Environmental Testing	7
Table 10-1 – CIRIA C552 Qualitative Risk Assessment	20

LIST OF DRAWINGS

P3921-SPA-XX-ZZ-00-M2-MP-10-005-Illustrative Masterplan produced by Spawforths dated January 2022 B029129-TTE-00-00-DR-U-0001 (Site Location Plan) B029129-TTE-00-00-DR-U-0002 (Exploratory Hole Location Plan)

APPENDICES

APPENDIX A – REPORT CONDITIONS	26
APPENDIX B – EXPLORATORY HOLE LOGS	28
APPENDIX C – PHOTO PLATES	29
APPENDIX D – GEOTECHNICAL TESTING RESULTS	30
APPENDIX E – ENVIRONMENTAL TESTING RESULTS	31
APPENDIX F – N60 SPT CORRECTION DATA	32
APPENDIX G – TIER 1 SCREENING RESULTS	33
APPENDIX H – SOAKAWAY RESULTS	34
APPENDIX I – HAZWASTE ONLINE DATA	35
APPENDIX J – GAS AND GROUNDWATER MONITORING SHEETS	36
APPENDIX K- CIRIA C552 RISK METHODOLOGY	37

ACRONYMS/ABBREVIATIONS

Acronyms/Abbreviations	Definition
AOD	above Ordnance Datum
bgl	below ground level
BGS	British Geological Survey
BTEX	Benzene, Toluene, Ethylbenzene and Xylenes
C4SL	Category 4 Screening Levels
CIEH	Chartered Institute of Environmental Health
CLEA	Contaminated Land Exposure Assessment
CoC	Constituent of Concern
CSM	Conceptual Site Model
DEFRA	Department of Environment, Food and Rural Affairs
DQRA	Detailed Quantitative Risk Assessment
DTS	Desktop Study
DRO	Diesel Range Organics
DWS	Drinking Water Standard
EA	Environment Agency (England)
EPH	Extractable Petroleum Hydrocarbons
EQS	Environmental Quality Standards
FOC	Fraction Organic Carbon
GPR	Ground Penetrating Radar
LOD	Limit Of Detection
LQM	Land Quality Management
NRW	Natural Resources Wales
OS	Ordnance Survey
PAH	Polycyclic Aromatic Hydrocarbons
PCB	Poly Chlorinated Biphenyl
PPE	Personal Protective Equipment
ppm	parts per million
PRO	Petroleum Range Organics
SGV	Soil Guideline Values
SOM	Soil Organic Matter
SVOC	Semi Volatile Organic Compounds
ТРН	Total Petroleum Hydrocarbons
TSV	Tier 1 Screening Values
VOC	Volatile Organic Compounds
VPH	Volatile Petroleum Hydrocarbons

1.0 INTRODUCTION

1.1 INSTRUCTION

Following completion of a Desk Top Study (DTS) for the site in August 2019 by WYG (now Tetra Tech), Tetra Tech was commissioned by Network Space Developments Limited (the Client) to undertake Ground Investigation works at Shaw Lane, Carlton, S71 3HJ hereafter referred to as "the site".

The location of the site is shown on Drawing: B029129-TTE-00-00-DR-U-0001 – Site Location Plan.

1.2 BRIEF & SCOPE OF SERVICES

The brief was to provide a Phase 2 Ground Investigation Report detailing the encountered ground conditions and provide a geotechnical and contamination risk assessment to support the planning application for a new residential development with private gardens, public open space and areas of hard and soft landscaping.

This report includes the following key elements:

- Full factual records of the site works carried out;
- Summary of the ground conditions encountered;
- In-situ test results;
- Environmental laboratory test results;
- Geotechnical laboratory test results;
- Interpretation of geo-environmental laboratory data, including a qualitative ground contamination risk assessment (compliant with CIRIA 552 (CIRIA, 2001) methodology); and
- An executive summary of the report to allow a rapid, layman's overview.

1.3 PROPOSED DEVELOPMENT

It is understood that the site is to be developed with a residential development with private gardens and areas of public open space as well as areas of soft and hard landscaping in line with the proposed masterplan drawing P3921-SPA-XX-ZZ-00-M2-MP-10-005-Illustrative Masterplan produced by Spawforths dated January 2022 and the landuse table as detailed below provided by the client.

Total	7.57				
Land Use	Area (ha)	Area (Acres)	Homes	Density (DPH)	Area %
Residential (Medium Density)	2.46	6.07	82	33.4	32%
Residential (High Density)	3.28	8.10	133	40.6	43%
POS inc Local Area of Equipped Play	1.14	2.82			15%
SUDS	0.293	0.72			4%
Infrastructure	0.402	0.99			5%
Total	7.57	18.71	215		

Table 1-1 – Landuse Table

1.4 LIMITATIONS

The recommendations and opinions expressed in this report are based on information obtained as part of the Desk Study or provided by others. Information provided from other sources is taken in good faith and Tetra Tech cannot guarantee its accuracy.

The information contained in this report is intended for the use of Network Space Developments Limited and Tetra Tech can take no responsibility for the use of this information by any third party or for uses other than that described in this report or detailed within the terms of our engagement. This report is subject to the conditions presented in Appendix A.

2.0 SUMMARY OF SITE INFORMATION

2.1 LOCATION

Key details for the site are provided in Table 2.1 below and a full summary of the site is provided within the Geo Environmental Desk Top Study dated August 2019 and is described on Drawing B029129-TTE-00-XX-DR-U-0001 (Site Location Plan).

Table 2-1 – Site Address and Size

Item	Detail
Address	Shaw Lane, Barnsley, S71 3HJ
National Grid Reference	SE374102
Area of Proposed Development	Approximately 7.6 Hectares

2.2 SITE DESCRIPTION

The site comprises an agricultural field with a vegetated pond to the centre north. The site is bound to the east by a palisade fence and vegetated railway embankment, to the north, south and west by a vegetated drainage ditch which was noted as being dry during the ground investigation.

Overhead cables were noted to the centre east onsite running from the north to south toward a Yorkshire Water pumping station. To the east onsite is a recorded 4" rising water main, with raised chambers dotted along the field, which runs north to south toward the Yorkshire Water pumping station. Both service providers were contacted prior to works who delineated clearance parameters for plant and the Ground Investigation works. A 6.00m stand off and 6.60m clearance was set for the overhead lines by Northern Powergrid and a 3.00m standoff was delineated by Safe Move of Yorkshire Water for the rising main.

Anecdotal evidence described an 18" diameter land drain running from the pond to the drainage ditch on the southern boundary which was installed by the current tenant farmer. As part of the prestart site walkover this was found on the eastern side of the pond and in the southern drainage ditch with the approximate route shown on Drawing B029129-TTE-00-XX-DR-U-0002 (Exploratory Hole Location Plan).

The surrounding land uses are summarised in Table 2.2 below.

Table 2-2 – Site Surrounds

Item	Detail
North	Agricultural fields
East	A railway line orientated north to south beyond which, there is an industrial yard
South	Shaw Lane, beyond which, open land is located with a small number of residential properties and a Yorkshire Water pumping station.
West	Agricultural land, beyond which, Barnsley Canal is located.

3.0 TETRA TECH 2021 SITE INVESTIGATION

Tetra Tech undertook a Ground Investigation onsite between 13th and 15th September 2021. Following the Ground Investigation works preliminary ground gas monitoring comprising of three visits were undertaken and completed on the 19th October 2021.

3.1 SCOPE

The works were undertaken in general accordance with BS 10175: Code of Practice for Site Investigations of Potentially Contaminative Sites, BS 5930, BS EN1997-2, BS EN ISO 14688/9 and BS 8576.

The scope of the completed Ground Investigation works were as follows

- Five window sample boreholes to a maximum depth of 5.18m bgl with insitu testing;
- Seven trial pits to a maximum depth of 3.40m bgl
- Three soakaway test pits to a maximum depth of 1.60m bgl testing in accordance with DG BRE365:2016
- Installation of five 50mm dia. ground gas and groundwater monitoring wells;
- On-site inspection and logging of recovered samples;
- Representative soil sampling for geotechnical laboratory classification testing;
- Representative soil sampling for chemical laboratory analyses;
- Three return visits to monitor ground gas composition and groundwater levels.

Drawing No. B029129-TTE-00-XX-DR-U-0002 (Exploratory Hole Location Plan) shows the layout of the exploratory holes advanced during the site investigation in relation to the existing known services.

Exploratory borehole logs are presented in Appendix B.

4.0 ENCOUNTERED GROUND CONDITIONS

4.1 STRATA ENCOUNTERED

A summary of each strata is detailed in the subsequent sections. Exploratory hole logs are described in Appendix B with photographic plates available in Appendix C.

4.2 MADE GROUND

Made Ground was encountered across site in all exploratory hole locations during this investigation typically comprising of a reworked topsoil due to the current landuse as an agricultural field. The topsoil typically comprised sandy gravelly clay and was locally a clayey gravelly sand in TP02. The Topsoil was found to be between 0.20m and 0.55m thick. The gravels within the topsoil across the site were found to comprise of sandstone, mudstone, brick, quartzite, coal and ceramic with local cobbles of sandstone and brick. In DS04, clinker was described within the topsoil strata between ground level and 0.20m bgl. Sand is locally described as ash in DS01 and DS02 located along the southern boundary.

The Topsoil was typically underlain by natural strata and locally reworked natural strata comprising of brown sandy gravelly clay to a depth of 0.80m bgl.

Locally evidence of deeper infilled ground was present in the central northern area of the site and as identified by the desk study as a historic marsh. Infill is recorded as underlying the Topsoil and typically described as cohesive strata of brown-grey sandy gravelly clay in TP02 and TP03 to a maximum depth of 1.40m bgl with localized fragments of plastic, timber and metal. In DS04, it is described as silty sand and gravel with cobbles overlying grey sandy gravelly clay with cobbles of brick and gravels of clinker, ceramic, brick, sandstone, mudstone and coal.

The infilled ground is underlain by natural strata in DS04 at 1.30m, reworked natural strata in TP02 described as having an organic odour and in TP02 between 0.70 and 1.00m bgl. The Made Ground is described as overlying a Relic Topsoil in TP03 between 1.40m and 1.60m bgl with the engineer describing decaying cropped vegetation with a similar appearance as to present vegetation.

Typically, the Made Ground was on average 0.60m in thickness.

4.3 SUPERFICIAL DEPOSITS

Superficial glacial strata was encountered in the majority of exploratory holes and comprised of granular and cohesive beds. The cohesive strata was more abundant across site and typically comprised a firm to stiff orange brown sandy gravelly clay with the granular strata comprising grey orange brown gravelly silty sand. The superficial strata was noted as being recorded up to 3.00m bgl in TP03 where the trial pit was terminated due to being unable to progress.

4.4 BEDROCK

Weathered bedrock of the Pennine Middle Coal Measures (PMCM) was encountered across site predominantly as stiff grey-brown sandy gravelly clay and was locally recovered as clayey sandy gravel (TP01, TP05, TP07 and DS03). Weathered bedrock strata was encountered from 0.40m bgl in SA03 with bedrock recorded as being generally shallower toward the south onsite. Bedrock was not encountered within SA01 and TP03 which were located to the north onsite which was consistent with the BGS sheet 87 for Barnsley.

4.5 VISUAL AND OLFACTORY EVIDENCE OF CONTAMINATION

Visual and olfactory evidence of contamination was noted in two boreholes and describes ash material in DS01 between ground level and 0.40m bgl and in DS02 between ground level and 0.40m bgl.

No elevated PID readings were recorded in any of the samples tested.

4.6 GROUNDWATER

Groundwater seepage was observed during the Ground Investigation in TP01 from 1.70m bgl with more significant inflow from 2.05m before rising back to 1.70m bgl. Seepage was also recorded in TP03 from 2.20m bgl with more significant inflow from 3.00m bgl before rising to 2.80m bgl.

Groundwater monitoring has been monitored as part of the gas monitoring works with three visits being undertaken following the completion of the Ground Investigation. The groundwater monitoring data is presented in Appendix J and is summarised in Table 4.1 below.

Location	Base of	Depth to water (m bgl)			
(m bgl)	(m bgl)	Shallowest	Mean	Deepest	
DS01	2.85	1.75	1.89	2.00	
DS02	2.78	1.42	1.49	1.58	
DS03	2.84	DRY	DRY	DRY	
DS04	2.84	1.69	1.75	1.86	
DS05	2.38	1.09	1.15	1.21	

Table 4-1 – Groundwater Levels Post Investigation

4.7 OBSTRUCTIONS

No obstructions were encountered in any of the exploratory holes during the investigation.

5.0 LABORATORY TESTING

5.1 ENVIRONMENTAL TESTING

Environmental chemistry was investigated by specialist chemical analysis of selected soil samples carried out by Element Materials Technology, an approved supplier in accordance with the requirements of Tetra Tech's quality system and UKAS and MCERTS accredited for a range of chemical analyses. The testing was scheduled by Tetra Tech and is summarised in Table 5.1 for soil samples. The test results are included in Appendix E.

Table 5-1 - Summary of Environmental Testing

Soil Samples: 	Test Suite	No.	
Speciated Petroleum Hydrocarbons (TPH CWG); BTEX and MTBE;5Asbestos Screen5Asbestos Quantification Testing1Two Stage Waste Acceptance Criteria testing (S)3	 <u>Soil Samples:</u> Heavy metals including Chromium (Hexavalent), Boron (water soluble), Arsenic, Cadmium, Chromium, Copper, Lead, Mercury, Nickel, Selenium and Zinc; Inorganics – including pH, Water soluble Sulphate as SO₄ (2:1 Extract), Cyanide (free); Speciated Polyaromatic Hydrocarbons (USEPA 16); and, Phenol. 		
Asbestos Screen 5 Asbestos Quantification Testing 1 Two Stage Waste Acceptance Criteria testing (S) 3	Speciated Petroleum Hydrocarbons (TPH CWG); BTEX and MTBE;	5	
Asbestos Quantification Testing 1	Asbestos Screen	5	
Two Stage Waste Acceptance Criteria testing (S)	Asbestos Quantification Testing		
	Two Stage Waste Acceptance Criteria testing (S)		

5.2 GEOTECHNICAL TESTING

A programme of laboratory classification testing was carried out on samples taken from the various strata encountered during the site investigation. Geotechnical testing was scheduled by Tetra Tech and carried out by Professional Soils Laboratory (PSL) and their sub-contractor Chemtech Environmental Ltd, approved suppliers in accordance with the requirements of Tetra Tech's quality system and UKAS accredited for a range of geotechnical tests.

The test procedures used were generally in accordance with the methods described in BS1377:1990. Details of the specific tests used in each case are given in Table 5.2. Laboratory geotechnical test result certificates are presented in Appendix D.

Table 5-2 – Geotechnical Testing

Test	No.	Test Method
Moisture Content	10	BS1377:1990 Part 2:3.2
Atterberg Limits	10	BS1377:1990 Part 2:4.3&5.3
Particle Size Distribution (PSD) – Wet Sieve	9	BS1377:1990 Part 2:9.2
Sedimentation Analysis (Pipette)	9	BS1377:1990 Part 2:9.4
pH and Water-Soluble Sulphate	5	BS1377:1990 Part 3 & BRE CP2/79 (non- accredited test)

6.0 GROUND CONTAMINATION ASSESSMENT – HUMAN HEALTH

6.1 INTRODUCTION

The UK Contaminated Land Regime (CLR) allows for a tiered approach to the assessment of ground contamination which is designed to allow increasingly site-specific assessment. In order to assess the potential risk posed by contaminants contained within the soils at the study area a generic Quantitative Risk Assessment (gQRA) has been undertaken by comparing recorded concentrations of chemical constituents in soil with Generic Assessment Criteria (GAC) to identify whether, at the concentrations recorded, the presence of the constituent has the potential to adversely affect the health of site users (a Tier 1 assessment). GAC are set at levels where potential exposure is deemed to be within acceptable limits.

If the recorded concentrations of a particular constituent are below the GAC then the risk is generally considered to be acceptable and further assessment / or mitigation measures are not required. Where a substance is recorded at concentrations higher than GAC this does not necessarily indicate that a particular risk is present, however, it does typically signify the requirement to undertake further assessment in line with the UK tiered risk assessment framework.

6.2 ASSESSMENT CRITERIA

6.2.1 Generic Assessment Criteria

The following GAC for soils have been utilised for the screening process, in order of preference:

- CL:AIRE published C4SL (DEFRA, 2014);
- CIEH/LQM published S4UL (LQM/CIEH, 2015);
- Tetra Tech internal Tier 1 Screening Criteria (issue 15) derived using the derivation tool CLEA version 1.06, in line with the current UK Contaminated Land Regime.

C4SL are currently available for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead¹. The C4SL were originally developed to support the categorisation of sites in accordance with Part 2A are also, based on DEFRA guidance, considered suitable for use during the assessment of sites as part of the planning process.

Where C4SLs are not available, 'Suitable for Use Levels' (S4UL) developed by CIEH/LQM have been used. The S4UL provide GAC based on minimal or tolerable risk intended to be protective of human health for individual or mixtures of substances. It is considered conservative and appropriate to use these values for contaminants for which C4SL are unavailable. GAC for volatile and semi-volatile organic compounds (VOC and SVOC) not presented in the S4UL document are sourced from CL:AIRE (CL:AIRE, January 2010).

Where no published screening values are available Tetra Tech have derived their own values (easily liberatable cyanide).

The CLEA model states that "For most exposure pathways, the contamination is assumed to be at or within one metre of the surface" (Environment Agency, 2009). It is considered that at depths greater than 1.0m, the probability of human exposure via the direct contact pathways are significantly reduced, leaving inhalation of volatile compounds as the dominant pathway with regard to human health risks. Typically, volatile compounds only significantly affect the indoor inhalation pathway. The same screening concentrations have been used for all depths at this stage, though it is noted that these are highly conservative for depths below 1.00m bgl.

¹ Arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI, lead assuming 6% SOM (1% SOM C4SL also published for benzene).

Assessment of Total Petroleum Hydrocarbons (TPH-CWG) concentrations has been made with reference to the UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils (Science Report P5-080/TR5), Environment Agency, 2005. This calculates the combined toxicological effects of the TPH fractions by calculation of a Hazard Index, which if greater than one may indicate a potential risk to human health.

6.2.2 Proposed End Use

The proposed development on site will consist of residential properties with private gardens and areas of public open space. As such the following screening assessment has been undertaken against a residential with plant uptake end use scenario.

6.2.3 Soil Organic Matter

For organic contaminants, the generic soil screening values have been derived for a range of concentrations of soil organic matter (1%, 2.5%, 6%).

The Total Organic Carbon (TOC) of the samples tested with an average value of 2.28. Soil Organic Matter (SOM) is calculated as SOM (%) = (Average TOC)/0.58

The above equation gives SOM of 3.93%. To this end, a SOM of 2.5% has been applied. If required following the initial screening the SOM will be reviewed in light of applying more site-specific screening criteria.

6.3 TIER 1 – SOIL SCREENING

The Culp Study was utilized for screening of the soil PAH against benzo(a)pyrene which is provided in Appendix G.

Elevated benzo(a)pyrene was reported in DS04 at 0.1m (11.17mg/kg) and 0.5m bgl (5.04mg/kg). As the level of benzo(a)pyrene at 0.5m bgl only marginally exceeds the screening criteria of 5.0 mg/kg, a risk to human health is considered unlikely.

The elevated benzo(a)pyrene concentration at DS04 is likely linked with the presence of clinker within the soil at this location (see exploratory boreholes logs in Appendix B) and may be considered a risk to human health. If soil in this area is not removed from site, it should be placed beneath hardstanding or, if used in soft landscaped areas, it should be placed beneath a 'suitably clean' cover system to break any pathway to contamination.

A summary table of all the data is also presented in Appendix G.

6.4 ASBESTOS

The asbestos screening process undertaken by Tetra Tech EPT identified asbestos in one of the five tested samples of Made Ground strata. Chrysotile asbestos fibre bundle were detected in SA01 ES1 at 0.30m.

Quantification testing found the concentration to be <0.001% of chrysotile of asbestos containing materials in SA01. Soil containing asbestos or asbestos containing materials is not suitable for re-use unless placed beneath hardstanding, or if placed beneath soft standing, it must be placed beneath a 'suitably clean' cover system with geotextile membrane to break any pathways to the receptor. Due to the nature and historic land use of the site, asbestos is not considered to pose a significant risk to development, however, it may likely pose a risk to construction workers where redevelopment is taking place.

6.5 PRELIMINARY WATER PIPES ASSESSMENT

Based on the geo-environmental testing undertaken onsite, it is anticipated that no special precautions are like to be required for water supply pipes. However, targeted testing along the proposed supply routes, in accordance with the water provider's specifications and UKWIR, is recommended.

7.0 PRELIMINARY WASTE ASSESSMENT

Waste classification is a two-stage process, with the first step comprising a hazard assessment of the soil quality data in line with the guidance set out in the Environment Agency waste classification technical guidance WM32 document. Once the hazardous properties of the materials are known, the second step is to assess the potential performance of the materials in a landfill, undertaken by considering the results of waste acceptance criteria (WAC) testing.

7.1 WASTE CHARACTERISATION

Tetra Tech has undertaken a preliminary exercise using the proprietary web-based tool HazWasteOnline[™] to characterise the soils encountered in the investigation. The software follows Environment Agency guidance and European regulations. Assessment sheets are presented in Appendix I.

Based on the HazWasteOnline[™] output, the soils sampled in the Made Ground may be classified as non-hazardous (10 samples). Three samples within the natural ground are classified as non-hazardous. The results of the output are included in Appendix I.

One soil sample (DS04 at 0.50m) showed elevated concentrations of Extractable Petroleum Hydrocarbon (EPH) however, this value is representative of both natural organic and petroleum based material. The TPH values, at DS04, were below the hazardous threshold and therefore not considered to be hazardous.

This assessment is based on non-targeted samples i.e. may not be representative of soils to be disposed of and further testing and waste classification would be required when / if material identified as requiring removal and disposal is confirmed.

7.2 ASBESTOS

A manual review of the laboratory asbestos data was undertaken which indicated asbestos has been identified in one sample SA01 ES1 at 0.30m. Quantification has been undertaken which shows the Total Gravimetric Quantification to be <0.001% which is below the hazardous threshold of 0.1% so therefore non-hazardous.

7.3 WASTE ACCEPTANCE CRITERIA TESTING

As part of the laboratory analysis, three samples were scheduled for Waste Acceptance Criteria (WAC) testing. The WAC analysis results are used by waste facilities to determine whether that facility can accept the material. The results of the WAC testing are included in Appendix E.

WAC testing was undertaken on two samples of Made Ground (DS04 at 0.1m bgl and TP03 at 1.0m bg) and one sample of natural strata (SA02 at 0.6m bgl). These three samples were all classified as non-hazardous during the waste characterisation. The results for samples SA02 and TP03 are compliant with inert landfill criteria. The results for sample DS04 exceeded inert criteria for sum of PAHs and Total Organic Carbon (TOC).

The initial WAC testing indicates that, if suitable segregation of the waste is undertaken, some of the nonhazardous material may be accepted by an inert waste landfill. However, additional testing when soils are to be disposed of off-site should be undertaken and liaison undertaken with the landfill to discuss the results of the testing to ensure soils are designated to their suitable facility.

² Environment Agency 2018. Technical Guidance WM3: Guidance on the classification and assessment of waste (Version 1.1).

7.4 MATERIALS MANAGEMENT

Any material excavated on site may be classified as waste and it is the responsibility of the holder of a material to form their own view on whether or not it is waste. This includes determining when waste that has been treated in some way can cease to be classed as waste for a particular purpose.

If site-won material is to be reused on site, or soils other than primary aggregate or aggregates produced under the WRAP Protocol, imported to site, a Materials Management Plan will be required, signed off by a Qualified Person as defined in the 'Development Industry Code of Practice' (CL:AIRE, 2011).

8.0 PRELIMINARY GROUND GAS ASSESSMENT

8.1 INTRODUCTION

Following the Ground Investigation works preliminary ground gas monitoring comprising of three visits have been undertaken between 21st September and 19th October 2021.

All of the dynamic sampled boreholes were installed with dual purpose ground gas and groundwater monitoring installations, the locations of which are shown on the Drawing B029129-TTE-00-00-DR-U-0002 (Exploratory Hole Location Plan).

8.2 GROUND GAS RESULTS

Table 8.2 below summarises ground gas monitoring to date. Full results are presented in Appendix J along with calibration certificates for the GA5000 gas analyser and Mini Rae 3000 PID used for gas and VOC monitoring respectively.

Location	Max. Methane (peak) (% vol)	Max. Carbon Dioxide (peak) (% vol)	Min. Oxygen (steady) (% vol)	Max. Carbon Monoxide (steady) (ppm)	Max. Hydrogen Sulphide (steady) (ppm)	Max. Borehole flow (Steady) (I/h)
DS01	0.10	7.90	1.20	3.00	1.00	0.20
DS02	0.10	3.10	17.00	1.00	0.00	0.30
DS03	0.10	2.60	19.00	1.00	0.00	0.30
DS04	0.10	3.40	16.80	1.00	0.00	0.30
DS05	0.10	1.30	18.80	1.00	0.00	0.30

Table 8-2 – Summary of Ground Gas Monitoring Data

Note: Results based on steady readings.

No elevated PID recordings were detected.

8.3 CARBON MONOXIDE AND HYDROGEN SULPHIDE

Maximum concentrations of carbon monoxide (3ppm in DS01) and hydrogen sulphide (1ppm in DS01). The recorded concentrations are considered to be suitably low to negate the requirement for additional risk assessment.

8.4 ATMOSPHERIC PRESSURE TRENDS

The gas monitoring undertaken to date have been obtained in varied atmospheric conditions with one result from each rising, falling and steady atmospheric conditions with one visit undertaken in low pressure conditions.

8.5 PRELIMINARY GROUND GAS ASSESSMENT

Ground gas results have been assessed using the CIRIA C665 document Assessing Risks posed by Hazardous Ground Gases to Buildings (2007) and BS:8485(2015) +A1:2019 and NHBC Traffic Light guidance. The assessment methodology is based on both volume percentages and volume flow rate of gases. In accordance with the CIRIA and BS:8485 methodology, a conservative Gas Screening Value (GSV) has been calculated

using a worst-case scenario (i.e. highest peak gas concentration combined with highest steady state flow rate). Where readings are not recorded above the instrument detection limit, the value of the instrument detection limit is used to calculate the GSV. The calculation of the GSV is as follows:

• Gas Screening Value = Gas Concentration in % divided by 100 then multiplied by flow rate in I/h.

Steady State Emission (0.30l/h) Flow Rate

- 7.90% CO₂ x 0.30 l/hr = 0.0237 l/hr CO2
- 0.10% CH₄ x 0.30 l/hr = 0.0003 l/hr CH4

The above GSV for Carbon Dioxide results in a ground gas risk classification of Characteristic Situation 1 (CS1) i.e. no special precautions are required.

However, a peak concentration of CO_2 at 7.9% is recorded as the worst case for the whole site. CIRIA C665 and NHBC guidance indicates that where concentrations exceed 5% for carbon dioxide then it may be appropriate to adopt a conservative approach and increase the CS by one class. This results in the site being classified as Characteristic Situation 2 (CS2) and "Amber 1" which means that the site will require low level protection measures comprising of a membrane and a subfloor void.

The likelihood for this site, based on the lines of evidence available, is that CS1 can be justified but a further three monitoring visits are recommended to ensure a suitable dataset is available to make this judgement.

The ground gas risk classification is Characteristic Situation 2 (CS2) ie gas protection measures are required unless further testing and professional judgement allows for a reduction to CS1.

9.0 PRELIMINARY GEOTECHNICAL ASSESSMENT

9.1 INTRODUCTION

The preliminary geotechnical assessment is based on a proposed residential development with lightly loaded residential properties.

The underlying ground conditions comprise of Made Ground to a depth of 0.60m (average thickness) overlying predominantly cohesive superficial strata to a maximum encountered depth of 3.00m bgl overlying weathered bedrock recovered as predominantly stiff clays encountered to a maximum depth of 5.18m bgl.

9.2 STANDARD PENETRATION TESTS

A graph of the corrected N_{60} SPT data is presented below. The graph shows that in-situ soil density generally increased with depth.

Graph 9.1 - N₆₀ SPT over Depth (m bgl)

The Made Ground was only deep enough in one exploratory hole (DS04) with one SPT N value of 5.

The Superficial strata displayed SPT N_{60} values ranged between 24 and 27 within the granular strata recovered from three locations, sand at 2.00m bgl in DS02 and DS04 and gravel at 2.00m in DS03. The remainder of SPT N values were determined from the dominant cohesive strata with N values of between 4 and 34 typically becoming higher with depth.

The weathered bedrock described corrected N60 SPT N values ranging from 20 to 50.

The corrected SPT data is shown in Appendix F.

9.3 MATERIAL PROPERTIES

Samples retrieved from the ground investigation were submitted to a suite of geotechnical laboratory classification testing, a summary of which is provided below as Tables 9.2 and 9.3. Full geotechnical testing results are presented in Appendix D.

Table 9-2 – Summary of Geotechnical Test Results

	No. of results	Range (min-max)
Natural moisture content (%)	10	12-31
Liquid limit (LL %)	10	32-69
Plastic limit (PL %)	10	18-30
Plasticity index (PI %)	10	14-40
SPT N ₆₀ Values	18	4 - 50 (Refusal)

The clay onsite is indicated to be of varying plasticity, with test result classifications ranging between CL (low) and CH (high). The clay is considered to have a low to high volume change potential in accordance with NHBC Chapter 4.2: Building near trees.

Location	Depth to Top of Sample (mbgl)	Soil Type	Cobbles (%)	Gravel (%)	Sand (%)	Silt (%) (Sedimentation fines >10%)	Clay (%) (Sedimentation fines >10%)
DS03	1.90	Clay	0	27	22	30	21
DS04	2.30	Clay	0	6	18	41	35
DS05	1.70	Clay	0	10	35	32	23
TP01	1.50	Clay	0	15	50	23	12
TP02	0.45	Clay	0	15	26	34	25
TP02	2.50	Clay	0	13	23	39	25
TP04	1.80	Clay	0	47	15	23	15
TP06	2.50	Clay	0	8	2	46	44
TP07	0.45	Clay	0	3	10	47	40

Table 9-3 – Summary of Particle Size Distribution Test Results

9.4 FOUNDATION AND FLOOR SLAB DESIGN

Foundations are not considered suitable in the Made Ground due to the risk of large total or differential settlement in the soils.

It is considered that traditional strip foundations founded on natural firm clay may be suitable where consistent firm clay is found at the proposed founding depth at the proposed properties and subject to the likely loading.

In areas of deep Made Ground or softer strata, deeper trench fill foundations will likely be required founded on the natural firm clays or weathered bedrock due however not both due to possible differential settlement risk.

Alternatively, raft foundations with reinforced concrete and thickened edge beams may be considered appropriate.

Due to localised granular strata across site, it is considered that foundations should not be placed across a cohesive/granular boundary due to potential differential settlement.

Excavations for the potential, strip, trench, raft foundations are to be inspected by a qualified engineer to confirm the expected founding conditions are present at the base.

Should significant planting / vegetation removal be undertaken, future assessment of heave potential may be required given the high plasticity / high volume change potential of the cohesive strata with foundations to be placed at a minimum of 1.00m bgl in accordance with NHBC Chapter 4.2: Building near trees.

Ground bearing floor slabs may be practicable subject to rigorous preparation of the sub-grade. Engineered fill used as floor slab sub-grade material will require inspection and validation testing in accordance with the Engineer's specification. In-situ testing e.g. Plate Load CBR tests are recommended to validate the prepared sub-grade and confirm it is sufficient for the calculated floor slab loadings.

9.5 CHEMICAL ATTACK ON BURIED CONCRETE

Chemical tests undertaken on representative samples from the glacial deposits was assessed in accordance with BRE Special Digest 1:2005 3rd Edition with Amendments (2017) to provide design values for in ground concrete. The assessment is presented on Table 9.4.

Strata	No. of results	рН	Characteristic pH (mean)	Sulphate (mg/l)	Characteristic Sulphate Value (mg/l)
MADE GROUND	8	7.51 – 8.47	7.76	63 - 518	800**
Natural Ground	6	5.00 - 7.98	7.11	12 – 1560	1000**

Table 9-4 – Soil Sulphate Concentration & pH Level Assessment

**mean of the highest two results rounded to the nearest 100mg/l

Based on the groundwater levels identified in the Ground Investigation and in accordance with BRE SD1:2005 Concrete in Aggressive Ground, "mobile" groundwater has been assumed. The above results indicate, that for the Made Ground and natural strata a design classification of DS-2 and an ACEC class of AC-2 should be adopted.

9.6 DRAINAGE

Soakaway testing has been undertaken onsite in three trial pits SA01 – SA03 as shown on the exploratory hole location plan in Drawings. The trial pits were undertaken to target the low points onsite due to no invert level being provided and were undertaken in the natural strata.

The soakaway results showed that an infiltration rate was not able to be generated as the water level did not fall below 75% empty within 24 hours in accordance with DG BRE365:2016. This has been attributed to the cohesive superficial and weathered bedrock strata.

As such, soakaway drainage is not considered suitable for this site and alternative forms of drainage should be utilised. See Appendix H for the soakaway results tables.

9.7 EXCAVATIONS AND GROUNDWATER CONTROL

Based on site observations it is considered that shallow excavations should be generally feasible with normal plant. Where access to the excavations is required, these should be supported in accordance with CIRIA RR97.

Significant de-watering is not anticipated however, during the groundwater monitoring works, groundwater was detected within the exploratory hole installations across site and noted as rising over the monitoring period. However, it was noted within DS03 that the borehole remained dry to a depth of 2.84m as such it is considered that the water levels are perched filling the install and not representative of the underlying water table. However, contractors should make an allowance for pumping operations to maintain dry working conditions.

10.0 CONCEPTUAL SITE MODEL AND REFINED GROUND CONTAMINATION RISK ASSESSMENT

10.1 OVERVIEW

The information presented in the previous sections of this report have been collated and evaluated to establish a refined qualitative risk assessment for the site.

The site has been considered with regard to current UK legislation and guidance, namely Part 2A of the Environmental Protection Act 1990 and the Contaminated Land (England) Regulations 2006, as amended, and in accordance with current UK good practice guidelines (for example BS10175:2011).

In general, ground contamination can occur through several causes, particularly from historical operations and activities. Contamination can result from either on-site sources or from on-site migration from off-site sources, leading to long term liabilities under recent legislation for any site owner.

For a risk of pollution or environmental harm to occur as a result of ground contamination, all of the following elements must be present:

- Source, i.e. a substance that is capable of causing pollution or harm;
- Pathway, i.e. a route by which the contaminant can reach a target; and
- Receptor (target), i.e. something which could be adversely affected by the contaminant.

If one of these elements is absent there can be no significant risk. If all are present then the magnitude of the risk is a function of the magnitude and mobility of the source, the sensitivity of the receptor and the nature of the migration pathway.

10.2 CURRENT SITE USAGE AND PROPOSED DEVELOPMENT

The site currently comprises of an agricultural field and is to be developed with residential properties with private gardens, public open space and areas of soft and hard landscaping described on drawing P3921-SPA-XX-ZZ-00-M2-MP-10-005-Illustrative Masterplan by Spawforths dated January 2022.

10.3 CONCEPTUAL SITE MODEL

The key source, pathways and receptor model is outlined below within the context of potential development of the site. The following risk assessment is undertaken in the context of a residential with plant uptake end use scenario.

10.3.1 Potential Sources of Contamination

The main potential sources of contamination on the site are associated with existing features as well as historical land uses on the site as summarised below.

Onsite Sources

- Asbestos (chrysotile) fibres in soil (single detection at <0.001%).
- Elevated levels of hydrocarbons (DS04).
- Elevated Ground Gas levels in DS01 (CO₂).

Off Site Sources

Off-site sources of contamination including ground gas are likely to be similar to those within the realms of the site and have therefore not been considered further.

10.3.2 Potential Contaminant Pathways

The following contaminant pathways are considered to potentially be active based on the current site use and proposed development:

Human Exposure Pathways

- Direct dermal contact or ingestion of soils,
- Inhalation of dust and/or vapours (i.e. human interaction with surface and sub-surface materials).

Environmental Pathways

- Leaching and horizontal or vertical migration through the unsaturated ground, either through permeable sub-surface materials and/or preferential pathways;
- Lateral and vertical migration of groundwater through permeable sub-surface materials and/ or preferential pathways;
- Vertical migration of ground gases into proposed buildings.

10.3.3 Potential Receptors at Risk

The following potential receptors have been identified:

Human Health

- Future site users (Residential).
- Construction / Maintenance Workers (during and post construction).

Wider Environment

- Secondary A Aquifer within Glaciofluvial Deposits and Secondary Undifferentiated Aquifer in the Glacial Till
- Secondary A Aquifer within Pennine Middle Coal Measures.
- Surface watercourse comprising a drainage ditch on the southern boundary.
- Building Infrastructure and supply pipes.

10.4 GROUND CONDITIONS RISK ASSESSMENT

The source, pathway, receptor linkages identified in the previous section are outlined and a qualitative risk assessment shown in the following tables.

The risk assessment considers the site within an area context and assesses potential risks to identified receptors in relation to the existing site setting and the proposed development. CIRIA C552 has been used to define the risk rating presented in the Qualitative Risk Assessment matrix, the methodology for which is presented in Appendix K.

Table 10-1 – CIRIA C552 Qualitative Risk Assessment

This matrix is based on CIRIA C552 risk evaluation methodology, definitions for risk ratings is presented in Appendix K								
Source	Pathway	Receptor	Consequence of risk being realised	Probability of risk being realised	Risk Classification	Justification & Potential Risk Management (if required)		
Ground Dermal contact, Conditions – ingestion and/or Asbestos within inhalation of or the Made Ground dusts	Dermal contact,	Human Health – Future Visitors and Workers	Severe	Unlikely	Moderate/Low	Soil containing asbestos or asbestos containing materials is not suitable for re-use unless placed beneath hardstanding, or if placed beneath soft standing, it must be placed beneath a 'suitably clean' cover system with geotextile membrane to break any pathways to the receptor.		
	ingestion and/or inhalation of or dusts	Human Health (Construction and Maintenance Workers with PPE)		Likely	High	Asbestos has been identified from the ground investigation as such a remedial strategy is proposed outlining how asbestos is to be dealt with. It is assumed that, in line with good practice, appropriate working procedures (dampening down dry materials, watching brief during excavations etc.) will be adopted during construction works to mitigate this risk. The asbestos risk associated with the site should be noted in the Health & Safety File compiled for future facilities management of the site.		
Raised PAHs within the Made Ground Leaching to groundwater, drainage and lateral / vertical migration.	Dermal contact,	Human Health (Current / Future Site Users)	Medium	Unlikely	Low	Raised benzo(a)pyrene was detected in DS04 which is likely associated with clinker. If soil in this area is not to be removed from site, it should be placed beneath hardstanding or, if used in soft landscaped areas, it should be placed beneath a 'suitably clean' cover system to break any pathway to contamination.		
	Human Health (Construction and Maintenance Workers with PPE)	Medium	Unlikely	Low	Raised benzo(a)pyrene against the limits of detection has been identified in a hotspot onsite (DS04) on the site. The risk rating is based on the use of Personal Protective Equipment (PPE) and appropriate working procedures.			
	Leaching to groundwater, drainage and lateral / vertical migration.	Secondary A Bedrock Aquifer	Medium	Unlikely	Low	Based on the identified underlying ground conditions (cohesive		
		Secondary A Aquifer Superficial Deposits	Medium	Unlikely	Low	strata) and level of groundwater, it is considered that there is unlikely to be a suitable pathway for the elevated PAHs and any impact is likely to be localised.		

Ground Investigation Report

		Secondary Undifferentiated Aquifer Superficial Deposits	Medium	Unlikely	low	
		Surface Waters	Medium	Unlikely	Low	
		Building Infrastructure and supply pipes	Medium	Unlikely	Low	Contamination has been identified as a localised hotspot however, testing of the soil in the locations of proposed service supply lines should be undertaken once known in order to determine the level and nature of contaminants along proposed supply routes and propose mitigation as necessary.
Ground Gas associated with	Generation and	Human Health – Future site users (Residential)	Severe (Explosion & Asphyxiation)	Low Likelihood	Moderate	The ground investigation has identified deep Made Ground with a raised gas levels of CO_2 of 7.9% as such the site is classified as
local infilled marsh and Made Ground.	accumulation of ground gases	Buildings and Services	Severe (Explosion)	Low Likelihood	Moderate	CS2 and Amber 1. Therefore, low level gas protection measures are recommended.

11.0 CONCLUSIONS AND RECOMMENDATIONS

11.1 CONCLUSIONS

11.1.1 Contamination Summary

The risk posed the development by on site sources of contamination is considered to be **low** to **locally moderate** to future site users due to the detection of asbestos in the underlying Made Ground and a localised elevation of hydrocarbons. If soil in this area is not removed from site, it should be placed beneath hardstanding or, if used in soft landscaped areas, it should be placed beneath a 'suitably clean' cover system to break any pathway to contamination. The risk to construction workers is considered to be **high** due to the low-level quantities of asbestos within the underlying Made Ground soils as well as due to the identified hotspot area (DS04) for PAHs. It is assumed that, in line with good practice, appropriate working procedures will be adopted during construction works to mitigate this risk. The asbestos risk associated with the site should be noted in the Health & Safety File compiled for future facilities management of the site.

11.1.2 Ground Gas

There's a **Low to Moderate** risk of ground gas associated with the peak raised levels of CO₂ (7.9%), characterises the site as "Amber 1" and Characteristic Situation 2 (CS2) and therefore low level gas protection measures are required in line with NHBC guidance and CIRIA C665.

11.1.3 Preliminary Waste Classification

The waste assessment has shown that the samples have been classified as non-hazardous using HazWasteOnline and have the potential to be disposed to a facility accepting Inert waste. However, this assessment is based on samples that were not specifically obtained for waste classification of soils identified for disposal so further testing and waste classification would be required when / if material identified as requiring removal and disposal is confirmed.

It is the responsibility of the contractor, as waste producer, to classify the waste and to identify a suitable waste disposal facility based on the chemical composition of the material. Therefore, prior to disposal the characteristics of any excavated soils will need final classification in consultation with the landfill sites and waste disposal contractors. Further testing and analysis, including Waste Acceptance Criteria (WAC) testing, may be required on the actual soil arisings which constitute the waste.

11.1.4 Geotechnical

It is considered that traditional strip foundations found on consistent firm clay beneath the proposed structures is likely to be considered suitable however in areas of soft strata then raft foundations comprising reinforced concrete and thickened edge beams are advised. In areas of deep Made Ground, deeper trench fill foundations will likely be considered necessary founding within the firm clay or weathered bedrock. The minimum founding depth is 1.00m due to the high volume change potential associated with the cohesive strata in line with NHBC Guidance Chapter 4.2.

Future assessment of heave potential may be required given the high plasticity / high volume change potential of the cohesive strata in accordance with NHBC Guidance Chapter 4.2: Building near trees.

Ground bearing floor slabs may be practicable subject to rigorous preparation of the sub-grade. Engineered fill used as floor slab sub-grade material will require inspection and validation testing in accordance with the Engineer's specification.

In accordance with BRE SD1:2005 Concrete in Aggressive Ground; a design classification of DS-2 and an ACEC class of AC-2 has been determined for the site.

Significant de-watering is not anticipated however, groundwater was detected within the exploratory hole installations but is anticipated to be perched and not representative of the underlying water table. Therefore, contractors should make an allowance for pumping operations to maintain dry working conditions

Soakaway drainage is not considered to be feasible and alternative drainage should be utilised.

11.2 RECOMMENDATIONS

It is recommended that the following works be carried out to enable development of the site:

- Additional ground gas monitoring (three visits to comply with published guidance) to further refine the risk assessment provided in this report and to inform the selection (if any) of appropriate ground gas protection measures;
- Targeted investigation along routes of proposed water supply pipelines to determine if upgraded water supply pipelines are required;
- Production of a Remediation Strategy for water supply pipework, ground gas protection measures (if required following further monitoring) and, if applicable, soil cover system;
- Further exploratory holes to inform detailed foundation design;
- Geotechnical laboratory testing to determine the volume change potential and assess whether heave precautions are required; and
- CBR testing to inform pavement design.

DRAWINGS

Illustrative Masterplan

Client Name: Network Space Project No: P3921 Title: Drawn By: DK Checked By: EH

Scale: Discipline: Shaw Lane, Carlton Date: Drg No: Revision:

1:1000 @A2 (approx.) Masterplanning 25 January 2022 P3921-SPa-XX-ZZ-00-M2-10-005 *

Shaw Lane, Carlton Planning

APPENDICES
APPENDIX A – REPORT CONDITIONS

APPENDIX A - REPORT CONDITIONS

GROUND INVESTIGATION

This report is produced solely for the benefit of Network Space Developments Limited and no liability is accepted for any reliance placed on it by any other party unless specifically agreed in writing otherwise.

This report refers, within the limitations stated, to the condition of the site at the time of the inspections. No warranty is given as to the possibility of future changes in the condition of the site.

This report is based on a visual site inspection, reference to accessible referenced historical records, information supplied by those parties referenced in the text and preliminary discussions with local and Statutory Authorities. Some of the opinions are based on unconfirmed data and information and are presented as the best that can be obtained without further extensive research. Where ground contamination is suspected but no physical site test results are available to confirm this, the report must be regarded as initial advice only, and further assessment should be undertaken prior to activities related to the site. Where test results undertaken by others have been made available these can only be regarded as a limited sample. The possibility of the presence of contaminants, perhaps in higher concentrations, elsewhere on the site cannot be discounted.

Whilst confident in the findings detailed within this report because there are no exact UK definitions of these matters, being subject to risk analysis, we are unable to give categoric assurances that they will be accepted by Authorities or Funds etc. without question as such bodies often have unpublished, more stringent objectives. This report is prepared for the proposed uses stated in the report and should not be used in a different context without reference to Tetra Tech. In time improved practices or amended legislation may necessitate a reassessment.

The assessment of ground conditions within this report is based upon the findings of the study undertaken. We have interpreted the ground conditions in between locations on the assumption that conditions do not vary significantly. However, no investigation can inspect each and every part of the site and therefore changes or variances in the physical and chemical site conditions as described in this report cannot be discounted.

The report is limited to those aspects of land contamination specifically reported on and is necessarily restricted and no liability is accepted for any other aspect especially concerning gradual or sudden pollution incidents. The opinions expressed cannot be absolute due to the limitations of time and resources imposed by the agreed brief and the possibility of unrecorded previous use and abuse of the site and adjacent sites. The report concentrates on the site as defined in the report and provides an opinion on surrounding sites. If migrating pollution or contamination (past or present) exists further extensive research will be required before the effects can be better determined.

APPENDIX B – EXPLORATORY HOLE LOGS

Project: Shaw Lane, Carlton			I	ocatio	n De	etails				Status		Borehole N	umber
Location: Shaw Lane, Carlton, Barnsley, S71 3HJ		Easting: Level:	43738 45.34r	1.42 nAOD	Nort Dep	thing: oth:	41016 5.18m	6.14		FINAL		DS0	1
TETRA TECH		Logger:	ТВ		Туре	e:	WLS					200	
					Incli	ination	: 90°					Sheet 1	of 2
Method, Plant and Crew Diar From (m) To (m) Type Plant Used Crew Depth (m)	Diam	Ca: Depth(m)	Diam	Strike C	Casing	Sealed	Gt Rose To	Time	er	Remarks	Scale:	ed Bv:	1:25 NB
0.00 1.20 Inspection Pit Hand Digging Tools RP Drilling 1.20 1.20 5.18 Dynamic Windowless Sampling RP06 RP Drilling 5.18	' (mm) 300 -		(mm)	(m)	(m)	(m)	(m)	(mins)			Appro	ved By:	SB
											Start	Date:	13/09/2021
										Sample	Finish	Date:	13/09/2021
Strata Description		Legend	Depth (m)	Reduced Level (mAOD)	Wa Leve	ater el (m)	Inst / Backfill	Depth (m) Ref		Tests / F	Results	
MADE GROUND: Soft dark brown slightly gravelly sandy clayey TOPSOIL with rootlet	s. Sand								, 				
is fine to medium locally of ash. Gravel is angular to rounded fine to coarse brick and quartzite.	1		2					0.20	D1				
								0.20	ES1				
MADE GROUND: Soft dark grey mottled orange brown slightly sandy silty CLAY. Sand	d is fine		0.40	44.94									
to medium. (Reworked Natural).								0.50 0.50	D2 ES2				-
			2										
Soft locally firm orange brown mottled light grey silty CLAY.			0.80	44.54									
		× ×											
		$\overline{\times}$ $\overline{\times}$	-			•		1.00	ES3				1-
		× ×						1.20 - 1.6	5 D4	SPT(S) 1.20m, 1	N=4 (1,1/1,1,	1,1)	
		<u></u>	_										
		×_×_	1 50	43.84									-
Orange brown slightly gravelly SAND. Sand is fine to coarse. Gravel is sub-angular to rounded fine to medium quartzite.)		1.50	15.01				1.60	D5				
Firm to stiff grey mottled green grey organic silty CLAY.		× <u> </u>	1.70	43.64									
From 1.70-2.30m bgl: Local decaying organic plant matter.		× <u>×</u>	1			•		1.80	D6				
		NG ×	1			•		2.00 - 2.4	5 D7	SPT(S) 2.00m, 1	N=11 (1,2/2,2	2,3,4)	2 -
		<u>×</u>				•							
		2η€ <u>×</u> ×7		12.04		•							
Stiff grey gravelly CLAY. Gravel is angular fine to coarse mudstone and coal. (Weath Bedrock).	nered	· · · ·	2.30	43.04				2.40	D8				
		· · · ·]			•							-
						•							
		· · · ·											· · · · · · · · · · · · · · · · · · ·
		<u></u>	-					2.90	D9				
		<u> </u>	-					3.00 - 3.4	5 D10	SPT(S) 3.00m, 1	N=20 (3,4/5,4	ł,6,5)	3 -
			ł										
		· · · ·											
		<u> </u>	1										
			2.60	41 74									-
Stiff grey slightly sandy slightly gravelly very silty CLAY. Sand is fine to coarse. Grave angular fine to coarse siltstone and mudstone. (Weathered Bedrock).	el is	×	5.00	41.74				3.70	D11				
		× ×											
Stiff grey slightly gravelly CLAY. Gravel is angular fine to coarse mudstone and coal.			3.90	41.44				400.44	5 012	SDT(C) / 00~	-44 (E E /E /	15 15)	
(Weatheren Bedrock).		· · · ·						1.00 1.1		311(3) 1.0011,1		,13,13)	4
			-			X							
		· · · ·	ĺ										
			-					4.60	D13				
			1				XX)						
		· · · ·	1										
		<u> </u>	-					5.00 - 5.1	8 D14	SPT(S) 5.00m, 5	50 (25 for 70r	nm/50 for 115mr	n) 5 -
Observations / Remarks		1		1	1			 	Samplin	g Runs		Hammer 1	nformation
 Borehole terminated at 5.18m due to SPT refusal. Groundwater was not encountered. 						-	From (m)	To (m) 2.00	Diam (mm)	Recovery % 90	Remarks	Serial No. RP06	Energy Ratio %
3. Exploratory hole installed.							2.00 3.00 4.00	3.00 4.00 5.00		90 90 90		-	
												Project	Number
												B02	9129

Project: Shaw Lane, C				Locatio	n Detai	ls			Status		Borehole N	lumber		
	ulton Boundou C	71 201		Easting:	43738	1.42	Northing	g: 41016	6.14				DEO	4
TETRA TECH	aniton, barnsley, 52			Logger:	TB	IIAOD	Type:	WLS	I		FINAL	-	030	T
Client: Network Spac	e Developments Lt	d					Inclinati	on: 90°					Sheet 2	of 2
Method, Plant and Crew	Crow	Diar	neter Diam	Ca	sing Diam	Strike	Casing Sea	Iled Rose To	Time	iter	Romarka	Scal	e:	1:25
Profit (III) 10 (III) Type Plait Osed 0.00 1.20 Inspection Pit Hand Digging To 1.20 5.18 Dunamic Windowless Sampling PDP6	ols RP Drilling RP Drilling	1.20 5.18	(mm) 300 -	Depth(m)	(mm)	(m)	(m) (n	n) (m)	(mins)		Reliidiks	App	roved By:	SB
												Star	t Date:	13/09/2021
								_				Finis	sh Date:	13/09/2021
Strata Descrip	tion			Legend	Depth (m)	Reduced Level	Water Level (m)	Inst / Backfill			Si	amples and Tes	iting	
Stiff grev slightly gravelly CLAY, Gravel is angular fir	e to coarse mudstone a	nd coal.		÷		(mAOD)			Depth (m	n) Ref		Tests	/ Results	
(Weathered Bedrock).					E 10	40.16								
EOH at 5.18m - Borehole Termi	nated due to refusal.				5.10	40.10								
														6 -
														_
														/-
														8 -
														9 -
														10
Observations / Desta la											- P		11	10 -
1. Borehole terminated at 5.18m due to SPT refusal.								From (m)	To (m)	Samplin	g KUNS Recovery %	Remarks	Serial No.	Energy Ratio %
 Groundwater was not encountered. Exploratory hole installed. 													RP06	69
·····								1					Project	Number
								1						0120
													B02	9179

	Project: Shaw Lane, Carlton								Locatio	n De	etails				Status		Borehol	e Number
ſ	TŁ	Location:	Shaw Lane Car	iton Barnsley S7	1 381		Easting:	43748 43 35i	7.79 mAOD	Norl	thing:	41019 4 34m	0.67		FTNIΔI		D	502
TETR		H Clientu	Notwork Space	Developmente Li	- 5115		Logger:	тв		Тур	e:	WLS						<i>J</i> 02
		Client:	метwork Space	Developments Lt						Incl	lination	: 90°					Shee	t 1 of 1
From (m)	To (m)	Metho Type	d, Plant and Crew	Crew	Dian Depth (m)	Diam	Cas Depth(m)	Diam	Strike (Casing	Sealed	G Rose To	roundwat	er	Remarks		Scale: Checked Bv:	1:25 NB
0.00 1.20	1.20 4.34	Inspection Pit Dynamic Windowless Sa	Hand Digging Tools ampling RP06	RP Drilling RP Drilling	1.20 4.34	(mm) 300 -		(mm)	(m)	(m)	(m)	(m)	(mins)				Approved By:	SB
																:	Start Date:	13/09/2021
															S	mples and	Finish Date:	13/09/2021
			Strata Description	on			Legend	Depth (m)	Reduced Level (mAOD)	Wa Leve	ater el (m)	Inst / Backfill	Denth (m)	Ref		Ti	ests / Results	
MADE	GROUNI	D: Soft dark brow	n slightly gravelly sand	ly clayey TOPSOIL wit	h occasio	nal		8										
rootlets brick q	s. Sand uartzite	is fine to medium and ceramics.	locally of ash. Gravel	is angular to rounded	fine to co	arse		2 2					0.20	FS1				
Stiff or	angish t	prown mottled gre	y gravelly silty CLAY.	Gravel is angular to ro	unded fir	ne to		0.40	42.95									
coarse	mudsto	ne.					× <u>···</u>						0.50 0.50	D1 ES2				-
							×	1										
							×											
							×											
							× ×	1			•]					1-
							×				*				SPT(S) 1.	20m, N=15 (3,2/3,3,4,5)	
											•							
													1,50	D2				
					× <u>×</u>													
					×				•									
					× <u>»</u>	1			•									
Medium	The second se							2.00	41.35		•		2.00 - 2.45	5 D3	SPT(S) 2.	00m, N=23 (3,2/4,4,6,9)	2 -
rounde	d fine to	coarse mudston	e and siltstone.	Sand is fine. Graver is	sangulai	10	××.				•	8						
							$\mathbf{x}^{\mathbf{x}}$				•							
Fre	nm 2 40-	2 50m bal: Band of s	oft clav				\mathbf{x}				•							
Very st	iff dark	grey slightly sand	y very silty CLAY. San	d is fine to coarse. (W	eathered		×. ×. > ×	2.50	40.85		•							-
Bedroc	k).						×	-										
							×											
Fro	om 2.90-3	3.0m bgl: Band of gr	avel. Gravel is angular find	e to coarse mudstone.			×				•							
							×						3.00 - 3.45	5 D4	SPT(S) 3.	00m, N=37 (5,7/7,9,10,11)	3 -
							×											
							× ×											
							×											
							×											
							×	-										
							×						4.00	D5	SPT(S) 4.	00m, 50 (9,1	1/50 for 190mm)	4 -
							×											
							×											
		EOH at 4.34r	n - Borehole Termina	ted due to refusal.				4.34	39.01				1					
																		-
								-										5 -
Observa	itions / I	Remarks									-			Samplin	g Runs		Hamm	er Information
1. Boreh	nole terr	ninated at 4.34m	due to SPT refusal.								+	From (m)	To (m)	Diam (mm)	Recovery %	Remark	s Serial N	o. Energy Ratio %
2. Grour 3. Explo	ratory h	was not encounte ole installed.	erea.									1.20 2.00 3.00	2.00 3.00 4.00		90 90 90		RP06	69
																	Pro	ect Number
																	В)29129
																		-

	Project: Shaw Lane, Carlton								Locatio	n D	etails	;			Status		Borehole	Number
ĺ	TŁ	Location:	Shaw Lane, Carl	ton. Barnslev. S	71 3HJ		Easting: Level:	43746 46.87i	5.93 nAOD	Nor Der	rthing: oth:	41045 3.37m	54.02 1		FINAI		DSC	13
TETE		H Client:	Network Space	Developments I t			Logger:	ТВ		Тур	be:	WLS				·		
		Client.	Network Space		.u				1	Inc	linatior	n: 90°					Sheet 1	l of 1
From (m)	To (m)	Metho Type	d, Plant and Crew Plant Used	Crew	Diam Depth (m)	Diam	Ca: Depth(m)	Diam	Strike (Casing	Sealed	d Rose To	roundwa	ter	Remarks		Scale: Checked Bv:	1:25 NB
0.00 1.20	1.20 3.37	Inspection Pit Dynamic Windowless S	Hand Digging Tools ampling RP06	RP Drilling RP Drilling	1.20 3.37	(mm) 300 -		(mm)	(m)	(m)	(m)	(m)	(mins)			A	Approved By:	SB
																5	Start Date:	13/09/2021
										1					c-	F	Finish Date:	13/09/2021
			Strata Descriptio	n			Legend	Depth (m)	Reduced Level (mAOD)	W Lev	/ater rel (m)	Inst / Backfill	Denth (n) Ref	30	Te	ests / Results	
MADE	GROUNE	D: Soft dark brow	n slightly sandy slightly	gravelly silty clayey	TOPSOIL	with		8						.,				
occasic brick q	onal root uartzite	lets. Sand is fine and mudstone.	to medium. Gravel is a	ngular to rounded fin	e to coars	se		0.20	46.67				0.10	ES1				
MADE (with lo	GROUNE w cobble	D: Stiff light brow e content. Sand is	n mottled dark grey slig fine to medium. Grave	ghtly sandy slightly gi el is angular to round	ravelly CL ed fine to	AY		0.20	10.07									
coarse (Rewor	quartzit rked Nat	e mudstone and ural).	sandstone. Cobbles are	angular to subangula	ar sandsto	one.							0.40	ES2				-
Stiff da	ark grey	mottled orange b	rown slightly gravelly (LAY with low cobble	content.	Gravel	<u> </u>	0.50	46.37									-
is aligu					Sanustone	-		1										
								1					0.80	D1				
							· · · · ·	1										
]					1-
							· · · ·	1							SPT(S) 1.	20m, N=8 (2,	2/2,2,2,2)	
Firm to	irm to stiff brown mottled grey slightly gravelly very sandy CLAY. Sand is fine. Grave ngular fine to medium mudstone and siltstone. (Weathered Bedrock).							1.30	45.57				1.30 - 1.9	90 B2				
angula	Firm to stiff brown mottled grey slightly gravelly very sandy CLAY. Sand is fine. Grav angular fine to medium mudstone and siltstone. (Weathered Bedrock).										4							
Medium	n dense Neather	black sandy GRA	VEL. Sand is fine to coa	arse. Gravel is angula	r fine to c	coarse		1.90	44.97		4		1.90 - 2.4	HO B3	SPT(S) 2.	00m. N=21 (4	1.4/5.5.5.6)	- -
coui. (1	weather	cu beurocky.									4				51 1(5) 2.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2
											•							
											•							
Very st angula	iff light of the second se	grey slightly sand coarse siltstone.	y gravelly very silty CL (Weathered Bedrock).	AY. Sand is fine to co	arse. Grav	vel is	×	2.40	44.47		4		2.50	D4				-
- gene			(×											
							× ****											
							× ×											
							×					Ë	3.00 - 3.3	7 D5	SPT(S) 3.	00m, 50 (6,9/	'50 for 220mm)	3 -
							×				4							
							×											
		EOH at 3.37	n - Borehole Terminat	ed due to refusal.			<u></u>	3.37	43.50				-					
																		-
																		4 -
															-			
												[
L																		-
																		5-
Observa 1. Boreh	ntions / F nole term	kemarks ninated at 3.37m	due to SPT refusal.								-	From (m)	To (m)	Samplir Diam (mm	g Runs	Remarks	s Serial No.	Information Energy Ratio %
2. Grour 3. Explo	ndwater ratorv h	was not encount ole installed.	ered.								ŀ	1.20 2.00	2.00 3.00		90 90		RP06	69
	. , .																Projec	 t Number
																	BO2	29129

	Project: Shaw Lane, Carlton								Locatio	n D	Details	5			Status	;	Boreho	le Num	ber
ſ	TŁ	Location:	Shaw Lane Carlt	on Barnsley S7	1 381		Easting:	43740 45 95r	0.26 nAOD	No De	orthing:	41039 3 30m	2.78		FTNA		п	504	
TETR		H Cliente	Network Cross F	on, barnsley, 57	1 5115 J		Logger:	тв	INOD	Ту	pe:	WLS				-		507	
		Client:	Network Space L	vevelopments Lt	a 1					Inc	clinatior	n: 90°					Shee	et 1 of :	1
From (m)	To (m)	Method	, Plant and Crew	Crew	Diam Denth (m)	neter Diam	Ca:	sing Diam	Strike	Casing	g Seale	Gi d Rose To	Time	ter	Remarks		Scale:		1:25 NB
0.00	1.20 3.30	Inspection Pit Dynamic Windowless Sar	Hand Digging Tools RP06	RP Drillin RP Drilling	1.20 3.30	(mm) 300 -	2.00	(mm) 152	(m)	(m)	(m)	(m)	(mins)		Remarko		Approved By:		SB
		,															Start Date:	13/	09/2021
										-	<u> </u>						Finish Date:	13/	09/2021
			Strata Descriptior	ı			Legend	Depth (m)	Reduced Level	l v Lev	Vater vel (m)	Inst / Backfill	Donth (n	N Dof	3	ampies an	a resting		
MADE (GROUNE	D: Soft dark brown	slightly gravelly sandy	clayey TOPSOIL wit	h occasio	nal			(IIIAOD)				Depth (h	1) Ker			Tests / Results		
rootlets	s. Sand i cs coal c	is fine to medium. clinker and sandsto	Gravel is angular to ro	unded fine to coarse	brick cor	ncrete			45.75				0.10	ES1					
MADE Coarse.	GROUNE Gravel	D: Brown silty SAN is angular to round	D and GRAVEL with lov ded fine to coarse brick	v cobble content. Sa concrete ceramics o	nd is fine :oal clinke	to er and		0.20	45.75										
sandsto	one. Col	obles are angular b	rick.																
													0.50	ES2					-
								>											
MADE O	TADE GROUND: Soft dark grey slightly gravelly sandy CLAY with low cobble content. S fine to coarse. Gravel is angular to rounded fine to coarse brick concrete ceramics co 'inker and sandstone. Cobbles are angular brick.							1.00	44.95				1.10	502					1-
clinker	Sinker and sandstone. Cobbles are angular brick.												1.10	E33	SPT(S) 1	20m, N=5 (1,1/1,1,1,2)		
Soft to	Soft to firm grey slightly gravelly very sandy very silty CLAY. Sand is fine to coarse. G							1.30	44.65										
is angu	Soft to firm grey slightly gravelly very sandy very silty CLAY. Sand is fine to coarse. Is angular fine to coarse mudstone and siltstone.												1.40	D1					
					×												-		
					×														
Medium	n dense	orange brown and	silty SAN	ID.	XX	1.80	44.15				1.80 - 2.3	30 B2							
Sand is	fine to	coarse. Gravel is a	one.		××××														
							×××								SPT(S) 2	2.00m, N=23	(2,2/3,4,4,12)		2 -
							×××												
Very sti	iff brow	n slightly gravelly	andy CLAY. Sand is fir	ne to coarse. Gravel i	s angular	fine	<u>^X</u>	2.30	43.65				2.30 - 2.	30 B3					
to coars	se sand	stone. (Weathered																	
											ľ								
Very sti	iff grey	slightly sandy grav	elly very silty CLAY. Sa	ind is fine to coarse.	Gravel is			2.80	43.15										
angular	nne to	coarse muustone.	(weathered Bedrock).				× ×					ŀ	3.00	D4	SPT(S) 3	.00m, 50 (25	5 for 125mm/50 for	180mm)	3 -
							×												
							×												
		EOH at 3.30m	- Borehole Terminate	ed due to refusal.				3.30	42.65										
																			-
																			4 -
																	-		
								1					1						5 -
Observat	tions / F	Remarks	lue to SPT refusal									From (m)	To (m)	Sampli		Parro	rks Sarial	ner Info	rmation
2. Groun	idwater	was not encounte	red.									1.20 2.00	2.00 3.00		90 90	Kend	RPO	6	69
5. Exploi	acory fi	ole motunedi															Pro	ject Nu	mber
														B	0291	29			

	Project: Shaw Lane, Carlton									Locatio	on D	Details	5			Status		Borehole N	umber
ſ	TŁ	Location:	Sh	aw Lane, Carl	ton, Barnsley, S7	71 3H1		Easting:	43719 46.46i	6.28 nAOD	No De	orthing:	41039 2.54m	2.28		FTNIΔI		050	5
TETR		H Cliont:	N	twork Space I	Dovelonmente I t			Logger:	тв		Ту	pe:	WLS					230	5
		Client:	INE		Developments Lt	a					Inc	clinatior	n: 90°					Sheet 1	of 1
From (m)	To (m)	Meth	od, Pla	Plant Used	Crew	Dian Depth (m)	Diam	Ca: Depth(m)	Diam	Strike	Casing	g Seale	d Rose To	Time	iter	Remarks	Scale:	ed Bv:	1:25 NB
0.00 1.20	1.20 2.54	Inspection Pit Dynamic Windowless	Sampling	Hand Digging Tools RP06	RP Drilling RP Drilling	1.20 2.54	(mm) 300 -		(mm)	(m)	(m)	(m)	(m)	(mins)			Appro	ved By:	SB
																	Start I	Date:	13/09/2021
																Sample	Finish s and Testi	Date:	13/09/2021
			S	Strata Descriptio	n			Legend	Depth (m)	Level (mAOD)	1 V Lev	Vater vel (m)	Inst / Backfill	Depth (n	n) Ref		Tests / F	tesults	
MADE	GROUNE	D: Soft dark grey	and	dark brown slightly	/ sandy slightly grave	lly silty cl	ауеу				+								I
TOPSO	IL with	occasional rootle	ts. Sa	nd is fine. Gravel i	is angular medium bri	ICK.								0.20	ES1				
Soft or	angish b	prown mottled gr	ey slid	ahtly silty sandy Cl	LAY. Sand is fine to m	nedium.			0.30	46.16									
	5	5	, .					×	-					0.40	ES2				
								×	- - -					0.50	DI				-
								× ×	-										
								×											
								×	-										1 -
									-										
	Loose to medium dense grey mottled orange brown locally slightly clayey slightly gr								1 30	45 16				1.20 - 1.0	55 D2	SPT(S) 1.20m, N	N=9 (1,1/2,2,2	2,3)	
Loose t silty SA	to mediu ND. Sar	um dense grey m nd is fine to med	ghtly grav ne and	velly	××	1.50	15.10				1.50 1.								
sandsto	one.				× ×											-			
					× × -	1 70	44 76				1 70 - 2	30 B4							
Stiff bro	own slig se muds	htly gravelly ver stone and sands	l is angul	ar fine		1					1.00 2.								
														2.00 - 2.4	45 D5	SPT(S) 2.00m, N	N=34 (5,5/7,7	,9,11)	2 -
Very st	iff brow	n mottled grey s	lightly	gravelly very sand	dy CLAY. Sand is fine	to coarse	Э.		2.30	44.16				2.30 - 2.	50 D6				
(Weath	iered Be	edrock).														SPT(S) 2.50m, 5	50 (25 for 30n	nm/50 for 10mm) -
		EOH at 2.54	-m - B	orehole Terminat	ted due to refusal.				2.54	43.92									
																			3 -
																			-
																			4 -
																			-
																			-
C ¹																		11	5 -
Observa 1. Boreh	tions / F iole tern	kemarks ninated at 2.54m	due t	to SPT refusal.									From (m)	To (m)	Samplir	IG KUNS	Remarks	Hammer I Serial No.	Information
2. Grour 3. Explo	ndwater ratory h	was not encoun ole installed.	tered.										1.20 2.00	2.00 2.50		90 90		RP06	69
	,																	Project	l Number
																		פחס	0170
																		DU2	7123

			Loc	cation Deta	ails		S	tatus		Pit Nu	mber				
	i i oject.	Shaw La	ine, caricon		Easting:	437181.8	85 North	ing: 410	327.11			.			
	Location:	Shaw La	ne, Carlton,	, Barnsley, S71 3HJ	Level:	47.24mA	OD Depth	n: 2.10	Dm	+1	NA	L	TPO	01	
	Client:	Network	Space Dev	elopments Ltd	Logger:	IB	Type:	IP					Sheet	1 of 1	
			Hole Inform	nation			(Groundv	vater				Scale:	1:25	
	Pit Dim	nensions	Orientation:	200°	Strike (m)	Rose To (m)	Afte	er (mins)	R	emarks		Checked By:	NB	
			Shoring:	None	1.70 2.05		1.70 1.70		20 20				Approved By:	SB	
		0.50m	Stability:	Stable									Start Date:	15/09/20)21
	2.60m	1	Plant:	TEREX HML 32									Finish Date:	15/09/20)21
		Strata D	Description		Legend	Depth (m)	Reduced Level	Water	Backfill			Sample	s and Testing		T
		Stata B	rescription				(mAOD)	Level (m)		Depth (m)	Ref		Tests / Results		
MADE GROUND:	Firm dark b	orown grey s	slightly sandy	v slightly gravelly silty clayey											
medium. Gravel i	is angular to	o rounded fi	ine to coarse	mudstone quartzite brick						0.20	ES1				
and coal. Cobble	es are angula	ar brick.													-
Firm light grev m	nottled orang	ae brown sl	liahtly aravell	v sandv siltv CLAY. Sand is		0.40	46.84			0 45 - 0 60	B1				
fine to medium.	Gravel is sul	b-angular to	o rounded fin	e to coarse sandstone and	××					0.50	ES2	HV 0.50m,	(p)=46,48,39 kPa (r)=	= kPa	-
quartzite.					×										-
					×					0.70	D2				-
					×										-
															- - 1
From 1.00-1.35m	n bgl: Sand is fir	ne to coarse.										HV 1.10m	(p)=42,49,47 kPa (r):	= kPa	
								1.20	D3	,			-		
					××										
Stiff brown mottl	led grey slig	htly gravelly	y very sandy	very silty CLAY. Sand is fine	××	1.35	45.89			1.40	D4				
to coarse. Gravel	l is angular t	to sub-angu	ular fine to co	arse sandstone.	××					1.50 - 1.80	B5				-
					××			_							-
From 1.70-1.90m	n bgl: Recovered	d damp.			×										
					××										-
Light brown sligh	ntly clayey si	ilty sandy G	RAVEL with h	high cobble content. Sand is	- x	1.90	45.34			1.90 - 2.10	B6				-
is fine to coarse.	Gravel is an	ngular fine t	to coarse san	dstone. Cobbles are angular		2.10	45.14								2 -
sandstone. (wea	EOH a	at 2.10m - Be	edrock Encou	ntered.	1	2.10	45.14			1					-
															-
															-
															-
															-
															-
															-
															-
															3 -
															-
															-
															-
															_
															-
															-
															-
															4 -
															-
															-
															_
															-
															-
															-
															5 -
Observations / Re	emarks				.1	I		I		I	L	Quay W	/est,		
1. Trial pit terminate	ed at 2.10m du	ue to bedrock	k encountered.									Media C Manche	.ity, ster		
2. Groundwater seep 3. Exploratory hole b	page encounte backfilled with	ered at 1.70n 1 arisings.	n bgl. Upon cor	npletion of pit groundwater seepir	ng at 2.05m	bgl and	rising to 1.7	70m bgl a	after 20 mi	nutes.		M17 1H 0161 872	H 3223		
													Project Num		
								B02912	9						

	Project: Shaw Lai	ne, Carlton		Lo	cation Deta	ils		S	tatus	Pit Number	
TE	Location: Shaw La	, na Carlton Barnsley 671 341	Easting:	437252.	.82 Northi	ng: 41029	7.32	ET	ΝΛΙ	TD02	
TETRA TECH	Client: Network	Space Developments Ltd	Logger:	тв	Туре:	TP		11			
	Client: Network	Space Developments Ltd	<u> </u>							Sheet 1 of 1	
	Pit Dimensions	Hole Information	Strike	(m)	G		ter	R	emarks	Scale: 1:25	
		Shoring: None		,	1000 10 (11)	7				Approved By: SB	
	0.60m	Stability: Stable								Start Date: 15/09/20	121
	2.70m	Plant: TEREX HML 32								Finish Date: 15/09/20	21
	Strata D	escription	Legend	Depth (m	Reduced Level	Water Level (m)	Backfill	Denth (m)	Pof	Samples and Testing	Γ
MADE GROUND: occasional rootle coarse brick cond MADE GROUND: Sand is fine to cc quartzite sandsto MADE GROUND: gravelly CLAY. Sa coarse brick quar <i>From 0.70-1.00n</i> Stiff grey mottled Stiff grey mottled coarse coal. (We <i>From 1.50-2.60n</i> Stiff dark grey sli angular fine to co	Strata D Dark brown grey slightl ts. Sand is fine to coars crete mudstone coal and Stiff dark brown mottle barse. Gravel is angular one timber metal and pla Firm to stiff brown grey and is fine to medium. Or trizite and coal. (Rework trizite and coal. (Rework trizite and coal.) (Rework triz	escription y clayey gravelly sandy TOPSOIL with e. Gravel is angular to rounded fine to d ceramics. d grey slight gravelly very sandy CLAY. to round fine to coarse brick concrete astic. / locally dark grey slightly sandy slightly Gravel is angular to rounded fine to ed Natural). ilty CLAY. Avelly CLAY. Gravel is angular fine to thered coal. dy CLAY. Sand is fine to coarse. Gravel is e. (Weathered Bedrock). ult Digging Conditions.		Depth (m 0.30 0.70 1.00 1.60 2.50 3.00	 Reduced Level (mAOD) 47.32 46.92 46.62 46.02 45.12 44.62 	Water Level (m)	Backfill	Depth (m) 0.15 0.45 - 0.60 0.85 1.20 2.00 2.50 - 2.90 3.00	Ref ES1 ES3 ES3 D2 D2 D3 B4 B4	Tests / Results HV 1.10m, (p)=84,81,85 kPa (r)= kPa HV 1.50m, (p)=78,81,77 kPa (r)= kPa HV 2.00m, (p)=90,81,82 kPa (r)= kPa	2
Observations / Re 1. Trial pit terminate 2. Groundwater not 3. Exploratory hole b	emarks ed at 3.00m due to difficult encountered. packfilled with arisings.	digging conditions.								Quay West, Media City, Manchester M17 1HH 0161 872 3223 Project Number	4
										B029129	

	Project: Shaw La			Loc	ation Deta	ails		S	tatus	Pit Nur	mber	
TŁ	Leastion: Charry Lea	, Caultan D	C71 2117	Easting:	437348.8	34 North	ing: 410	407.05	ст		тр	02
TETRA TECH	Location: Snaw La	ne, Cariton, B	arnsley, S/1 3HJ	Level: Loaaer:	46.15MA TB	Type:	1: 3.00 TP	JM		INAL	. 190	12
	Client: Network	Space Develo	opments Ltd			71-					Sheet 1	1 of 1
		Hole Informat	ion			(Groundv	vater	1		Scale:	1:25
	Pit Dimensions	Orientation: 2	55°	Strike (2.20	m)	Rose To (m) 0.00	Afte	er (mins)	Re	emarks	Checked By:	NB
	0.65m	Stability: S	table	3.00		2.80		20			Start Date:	56 15/09/2021
	2.60m	Plant: T	EREX HML 32								Finish Date:	15/09/2021
	Churche D					Reduced	Water				Samples and Testing	
	Strata D	escription		Legend	Deptn (m)	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Tests / Results	
MADE GROUND: TOPSOIL with or rounded fine to c	Soft dark brown grey s ccasional rootlets. Sand coarse sandstone quartz	lightly gravelly is fine to coarse zite brick and co	sandy silty clayey e. Gravel is angular to pal.									
									0.30	ES1		-
MADE GROUND:	Stiff grey mottled brow	n slightly grave	lly sandy silty CLAY with		0.40	45.75			0.45 - 0.60	B1		
coarse quartzite	brick sand is fine to coars	se. Gravel is and al. Cobbles are	gular to rounded fine to angular to sub-angular									-
sandstone.												-
												-
									1.00	ECO		
									1.00	2.52		1
												-
												-
MADE GROUND:	Soft dark grey and blac	ck peaty organic	CLAY. (Relic Topsoil).		1.40	44.75			1 50	562		-
From 1.40-1.60n	n bgi: Abundant decaying organ	nic material.			1.60	44.55			1.50	ES3	HV 1.60m, (p)=57,65,59 kPa (r)=	= kPa
Soft to firm grey Cobbles are suba	sandy silty CLAY with a angular sandstone.	low cobble cor	tent. Sand is fine.	×_ ×	1.00							-
	5			×_ ×					1.80	D2		-
				×								-
Soft to firm slight	tly gravelly slightly sand	dy silty CLAY wi	th low cobble content.	×	2.00	44.15			2.10	D3		2 -
siltstone. Cobbles	s are sub-angular to sub-rol	b-rounded sand	stone.	X								-
				××								-
				××								-
				××							HV 2.50m, (p)=58,38,47 kPa (r)=	= kPa -
				××								-
				× – ×								-
				×								
	EOH at 3.00m - Diffic	cult Digging Cond	ditions.		3.00	43.15			3.00	D4		3 -
												-
												-
												-
												-
												-
												-
												-
												4 -
												-
												-
												-
												-
												-
												5 -
Observations / Re	emarks										Quay West, Media City,	
 Trial pit terminate Groundwater seep 	ed at 3.00m due to difficult page encountered at 2.20m	digging condition bgl. Upon compl	s. etion of pit groundwater seepir	ig at base a	and rising	to 2.80m b	gl after 2	20 minutes			Manchester M17 1HH	
3. Exploratory hole b	backfilled with arisings.				5						0161 872 3223	
											Project Numb	ber
											B02912	9

	Project: Shaw Lane, Carlto	n		Lo	cation Deta	ails		S	Status		Pit Num	nber	
TŁ	Lesstion Chan Land Carlt		Easting:	437389.	.81 North	ing: 410	465.33				тро	А	
TETRA TECH	Location: Snaw Lane, Carito	on, Barnsley, S/1 3HJ	Lever: Logger:	47.56m/ TB	AOD Depth Type:	1: 2.80 : TP	Jm		INAL	-	IPU	4	
	Client: Network Space D	evelopments Ltd	55		,,						Sheet 1	of 1	
	Hole Info	ormation			0	Groundw	vater	1		Sc	ale:	1:25	
	Pit Dimensions Orientatio	n: 230°	Strike (m)	Rose To (m)	Afte	er (mins)	R	emarks	Ch	ecked By:	NB	
	0.60m Stability:	Stable								St	art Date:	зь 14/09/20)21
	3.00m Plant:	TEREX HML 32								Fir	ish Date:	14/09/20)21
	Churche Description		Lanual	Darath (m	Reduced	Water	De el éll			Samples a	nd Testing		_
	Strata Description		Legend	Deptn (m	(mAOD)	Level (m)	Backfill	Depth (m)	Ref		Tests / Results		
MADE GROUND: silty clayey TOPS angular to round Stiff orange brow low cobble conte coarse quartzite. Black slightly clay angular fine to co Stiff grey mottlec From 1.30-1.80m	Stiff dark brown and dark grey sl OIL with occasional rootlets. San ed fine to coarse quartzite, mudsi m mottled grey slightly sandy slig nt. Sand is fine. Gravel is sub-ang Cobbles are rounded sandstone. yey silty gravelly SAND. Sand is fi parse coal. d orange brown slightly sandy ver bgl: Occasional root traces. ly sandy very gravelly CLAY with Gravel is angular fine to coarse sa Jar mudstone. (Weathered Bedro EOH at 2.80m - Difficult Digging	ightly sandy slightly gravelly d is fine to medium. Gravel is cone, coal and brick. htly gravelly silty CLAY with a gular to sub-rounded fine to ne to medium. Gravel is y silty CLAY. Sand is fine. a high cobble content. Sand is andstone and mudstone. ck).		0.40 0.90 1.30 1.80	47.16 46.66 46.26 45.76 44.76			0.20 0.45 - 0.60 0.70 0.90 - 1.30	ES1 B1 D2 B3 D4	HV 0.50m, (p HV 0.80m, (p HV 1.50m, (p	=76,92,89 kPa (r)= =92,88,90 kPa (r)= =76,92,83 kPa (r)=	kPa kPa	2
Observations / Re 1. Trial pit terminate 2. Groundwater not 3. Exploratory hole b	marks d at 2.80m due to difficult digging cor encountered. vackfilled with arisings.	nditions.								Quay Wes Media City Mancheste M17 11H 0161 872 32	t, ', 223 Proiect Numb		4
											B029129)	

	Project: Shaw La	ne, Carlton		Loo	cation Deta	ils		S	tatus	Pit Nu	mber
TŁ	Location: Shaw La	ne. Carlton, Barnsley, S71 3HJ	Easting: Level:	437407.	32 Northi AOD Depth	ng: 410324.0 : 3.00m	08	FT	ΝΔΙ	TP	05
TETRA TECH	Client: Network	Snace Developments I td	Logger:	ТВ	Type:	TP					
		Hole Information				roundwata	-			Sheet 2	L of 1
	Pit Dimensions	Orientation: °	Strike	(m)	Rose To (m)	After (mi	ins)	R	emarks	Checked By:	NB
		Shoring: None								Approved By:	SB
	0.70m	Stability: Stable								Start Date:	15/09/2021
	2.90m	Plant: TEREX HML 32							S	Finish Date:	15/09/2021
	Strata D	escription	Legend	Depth (m)	Level (mAOD)	Water Level (m) Ba	ickfill	Depth (m)	Ref	Tests / Results	
MADE GROUND: occasional rootle coarse brick muc Firm orange brow Sand is fine to co quartzite and silt siltstone. Firm to stiff grey cobble content. S sandstone quartz and siltstone. Grey sandy silty is angular fine to mudstone (up to	Strata D Soft locally firm slightl ts. Sand is fine to coars Istone and quartzite. wn slightly gravelly sanc parse. Gravel is sub-ang stone. Cobbles are sub- mottled orange brown Sand is fine to medium. and is fine to medium. and is fine to medium. and is fine to medium. and siltstone. Cobble GRAVEL with low cobble ocarse mudstone and s 40mm in thickness). (V		0.30 0.80 1.90	45.76 45.26 45.26 44.16			Depth (m) 0.15 0.40 - 0.60 0.50 1.20 2.00 2.20 - 2.80 3.00	Ref ES1 B1 ES2 D2 D3 D3 D3 B5 D6	Tests / Results	2-	
Observations / Re 1. Trial pit terminate 2. Groundwater not 3. Encountered soils 3. Exploratory hole b	emarks ed at 3.00m due to difficult encountered. unsuitable for hand vein to packfilled with arisings.	digging conditions.		-					Q M M M 01	uay West, edia City, anchester 17 1HH 6i 872 3223	4-
										B02912	9

	Project: Shaw La			Lo	cation Deta	nils		S	tatus		Pit Nu	mber		
TŁ	Location: Shaw La	ne Carlton	Barnsley S71 3H1	Easting:	437481. 45 70m	.42 Northi AOD Denth	ing: 410. • 340	352.82 Im	FI	ΝΔ	I	ТР	06	
TETRA TECH	Cliente Notreele	Crease Devi		Logger:	тв	Туре:	TP		''		L		50	
	Client: Network	Space Dev	elopments Ltd									Sheet	1 of 1	
	Pit Dimensions	Hole Inform	150°	Strike ((m)	Rose To (m)	Groundw	vater	R	emarks		Scale:	1:25 NB	
		Shoring:	None		,	1000 10 (11)	7400					Approved By:	SB	
	0.65m	Stability:	Stable									Start Date:	14/09/2021	
	3.30m	Plant:	TEREX HML 32								Contral	Finish Date:	14/09/2021	
	Strata D	escription		Legend	Depth (m) Reduced) Level	Water Level (m)	Backfill	Dopth (m)	Pof	Sample	Torte / Posulte		
MADE GROUND:	Stiff dark brown grev s	liahtly sandy	slightly gravelly silty clavey		8	(11400)			Depth (iii)	Kei				
TOPSOIL with or	ccasional rootlets. Sand	is fine to me	dium. Gravel is angular to											
									0.30	ES1				-
Firm to stiff oran	ige brown slightly sandy	slightly grav	elly silty CLAY. Sand is fine.	×	0.35	45.35			0.45 0.60	D1				-
Gravel is angular 0.35m bgl: Redu	r fine to coarse sandstor Indant brick drain encountered.	ne and muds Pit extended app	cone. roximately 1.0m south.	××					0.45 - 0.60	DI				-
				×										-
				××										-
				×	- 00/									-
				××					1.00	D2	HV 1.00m	i, (p)=70,80,59 kPa (r)=	= kPa 1	
				×	- 0//									-
				××										
				××										-
Stiff grey slightly	gravelly very silty CLAY	7. Gravel is a	ngular fine to coarse	××	1.50	44.20								-
mudstone and si	Itstone. (Weathered Bed	drock).		× × ×										-
				××					1.80	D3				
														-
					9						HV 2.00m	i, (p)=90,111,103 kPa ((r)= kPa 2	<u>!</u> -
Stiff brown mott	led grey slightly gravelly	slightly sand	dy CLAY. Sand is fine to		2.10	43.60								-
Bedrock).	is angular fine to coarse	e mudstone a	na sitstone. (weathered		-									
														-
									2.50 - 3.00	B4				-
					9									
					•									
					•									-
					9								3	; -
					•									-
					•									-
	EOH at 3.40m - Diffic	ult Digging Co	onditions.		3.40	42.30			3.40	D5				
														-
													4	,
														-
														-
					4				-				5	- 5
Observations / Pe	emarks										Quay \	West,		
1. Trial pit terminate	ed at 3.40m due to difficult	digging condit	ions.								Media Manch	City, ester		
 Groundwater not Redundant brick I 	encountered. land drain encountered at 0).35m bgl.									M17 11 0161 87	1H 2 3223		
4. Exploratory hole b	backfilled with arisings.											Project Numl	ber	
												B02912	.9	

	Project: Shaw Lane, Carlton	tatus	Pit Number						
æ	Location: Shaw Lane, Carlton, Barnsley, S71 3HJ	Easting: Level:	437495 44.41m	.76 Northi AOD Depth	ng: 41027 : 3.10m	/6.39 n	FI	NAL	ТР07
TETRA TECH	Client: Network Space Developments Ltd	Logger:	ТВ	Type:	ТР				
	Hole Information			G	Groundwa	ater			Sheet 1 of 1 Scale: 1:25
	Pit Dimensions Orientation: 270°	Strike (m)	Rose To (m)	After	(mins)	Re	emarks	Checked By: NB
	Shoring: None								Approved By: SB
	2.90m Plant: TEREX HML 32								Start Date: 14/09/2021 Finish Date: 14/09/2021
				Reduced	Water			:	Samples and Testing
	Strata Description	Legend	Depth (m	n) Level (mAOD)	Level (m)	Backfill	Depth (m)	Ref	Tests / Results
MADE GROUND: gravelly silty clay angular to round Firm to stiff oran Sand is fine. Grav	Firm locally stiff dark brown and dark grey slightly sandy slightly ey TOPSOIL with rootlets. Sand is fine to medium. Gravel is ed fine to coarse quartzite mudstone ceramics and brick. ge brown mottled grey slightly sandy slightly gravelly silty CLAY. vel is angular fine to medium mudstone and siltstone.		0.30	44.11			0.20 0.45 - 0.60	ES1 B1	V 0.60m, (p)=78,74,80 kPa (r)= kPa
Stiff grey mottled is angular fine to	d orange brown slightly sandy gravelly SILT. Sand is fine. Gravel coarse mudstone and siltstone. (Weathered Bedrock).		1.20	43.21			1.00	D2	1-
			2.10	42.21			1.50	D3	2-
Grey and brown fine. Gravel is an mudstone (up to	slightly sandy silty GRAVEL with high cobble content. Sand is gular fine to coarse mudstone. Cobbles are tabular angular 50mm in thickness). (Weathered Bedrock).		2.10	42.31			2.20	D4	
		ו••× ×							3-
	EOH at 3.10m - Difficult Digging Conditions.		5.10	1.01					4-
									-
									-
									-
									-
Observations / Re 1. Trial pit terminate 2. Groundwater not 3. Exploratory hole b	marks ed at 3.10m due to difficult digging conditions. encountered. packfilled with arisings.								Quay West, Media City, Manchester M17 1HH U161 872 3223
									Project Number
									DUTAITA

	Project: Shaw Lane, Carlton	Location Details Status							Pit Number		
TŁ	Location: Shaw Lane Carlton Barneley S71 341	Easting:	437216.	22 Northi	ng: 410349	.39		ΝΛΙ		SA	01
TETRA TECH		Logger:	TB	чов верин Туре:	TP		1 1 1	INAL	-	JA	,1
	Client: Network Space Developments Ltd									Sheet 1	1 of 1
	Hole Information	Strike (m)	Pose To (m)	iroundwate	er	P	omarke		Scale:	1:25
	Shoring: None	Sunce	,	Kose to (iii)						Approved By:	SB
	0.60m Stability: Stable									Start Date:	14/09/2021
	2.70m Plant: TEREX HML 32									Finish Date:	15/09/2021
	Strata Description	Legend	Depth (m)	Reduced) Level	Water Level (m) B	ackfill			Sample	s and Testing	
MADE GROUND: TOPSOIL with ro to coarse brick q	Strata Description Soft dark brown grey slightly sandy gravelly silty clayey otlets. Sand is fine to medium. Gravel is angular to rounded fine uartzite mudstone ceramics and coal. ge brown mottled grey slightly sandy silty CLAY. Sand is fine. d orange brown sandy silty CLAY. Sand is fine. EOH at 1.60m - Target Depth Achieved.		Depth (m)	45.03 44.83	Water Level (m)		Depth (m) 0.30 0.60 0.80	Ref ES1 D1 D2	HV 0.80m,	Tests / Results (p)=50,50,57 kPa (r)= (p)=78,80,77 kPa (r)=	= kPa 1 - = kPa 2 - 3 -
Observations / Re 1. Trial pit terminate 2. Groundwater not 3. Exploratory hole b	marks d at 1.60m due to reaching required depth. encountered. vackfilled with arisings following soakaway testing.								Quay W Media (Manche M17 1F 0161 872	Vest, Zity, ster IH 2223	4 - 5 -
										Project Num)er
										B02912	9

	Project: Shaw La	ne. Carlton		Location Details Status					Pit Number			
TE				Easting:	437409.	98 Northi	ing: 410	239.06			6402	
TETRA TECH	Location: Snaw La	ine, Cariton, E	Sarnsley, S/1 3HJ	Levei: Loaaer:	44.92m/ TB	AOD Deptn Type:	: 1.5: TP	om		INAL	SAUZ	
	Client: Networl	k Space Devel	opments Ltd			.,,,					Sheet 1 of 1	
		Hole Informa	ition			G	Groundv	vater			Scale: 1:2	5
	Pit Dimensions	Orientation: 8	80°	Strike (m)	Rose To (m)	Afte	er (mins)	R	emarks	Checked By: NB	1
	0.50m	Shoring: r	None Stable								Approved By: SB Start Date: 14/09/2	2021
	2.60m	Plant: 1	TEREX HML 32								Finish Date: 15/09/2	2021
	Churchen I					Reduced	Water				Samples and Testing	
	Strata	Jescription		Legend	Deptn (m	(mAOD)	Level (m)	Backfill	Depth (m)	Ref	Tests / Results	
MADE GROUND: TOPSOIL with ro to coarse brick g	Soft dark brown grey otlets. Sand is fine to r	slightly sandy g nedium. Gravel	ravelly silty clayey is angular to rounded fine						0.20	EC1		
									0.20	231		
Stiff grey mottled	d orange brown slightly	v sandy very silt	ty CLAY. Sand is fine.		0.40	44.52						-
				××					0.00	560		-
				XX					0.70	D1		
				×						ŀ	IV 0.80m, (p)=133,127,115 kPa (r)= kPa	
				××								
Firm grey mottle	d brown slightly gravel	ly slightly sandy	y very silty CLAY. Sand is	×	1.00	43.92						1 -
Bedrock).	igular fine to coarse m	udstone and slit	stone. (weathered	××						ŀ	IV 1.20m, (p)=58,47,61 kPa (r)= kPa	
				××					1.30	D2	Naterial shearing before test	
	EOH at 1.55m - Ta	arget Depth Achie	eved.		1.55	43.38						-
		0										
												2-
												-
												-
												-
												3-
												-
												4 -
												-
												5 -
Observations / Pe	marks										Quay West,	
1. Trial pit terminate	ed at 1.55m due to reaching	ng required depth.									Media City, Manchester	
2. Groundwater not 3. Exploratory hole I	encountered. backfilled with arisings foll	owing soakaway t	testing.								M17 1HH 0161 872 3223	
	-										Project Number	
											B029129	
L												

	Project: Shaw Lane, Carlton						Location Details						Pit Nur	nber
TE		Chan 1 -		Demoleur OTA DUD	Easting:	437537.	11 Northi	ng: 410	198.99			5003		
TETRA TECH	Location:	Snaw La	ne, Cariton,	, Barnsley, S/1 3HJ	Levei: Loaaer:	42.63m/	Type:	: 1.50 TP	Jm		INAL	-	SAU	15
	Client:	Network	Space Dev	elopments Ltd			71						Sheet 1	of 1
			Hole Inform	nation			G	Groundv	vater	1		5	Scale:	1:25
	Pit Dim	nensions	Orientation:	160°	Strike (m)	Rose To (m)	Afte	er (mins)	R	emarks		Checked By:	NB
		0.55m	Shoring: Stability:	Stable									Approved By: Start Date:	5B 14/09/2021
	2.80m	1	Plant:	TEREX HML 32								1	Finish Date:	15/09/2021
		Ctrata D	accription		Logond	Donth (m)	Reduced	Water	Packfill			Samples	and Testing	
		Strata D	escription		Legenu	Depth (III	(mAOD)	Level (m)	DdCKIIII	Depth (m)	Ref		Tests / Results	
MADE GROUND: TOPSOIL with oc rounded fine to c	Soft to firm ccasional roc coarse brick	dark browr otlets. Sand quartzite ar	n grey slightly is fine to me nd mudstone	y sandy gravelly silty clayey dium. Gravel is angular to						0.20	ES1			
Stiff orange brow fine. Gravel is an Bedrock).	vn mottled <u>c</u> Igular fine to	grey slightly o coarse mu	sandy slightl Idstone and s	y gravelly silty CLAY. Sand is iltstone. (Weathered		0.40	42.23			0.50 0.60	ES2 D1	HV 0.60m,	(p)=108,99,119 kPa (r	r)= kPa
					××									
Stiff grey mottled Gravel is angular	d orange bro fine to coai	own slightly rse mudstor	sandy grave ne and siltsto	lly silty CLAY. Sand is fine. ne. (Weathered Bedrock).	××	1.00	41.63			1.20	D2			1
												HV 1.40m,	(p)=127,130,142 kPa	(r)= kPa
	EOH a	at 1.50m - Ta	rget Depth Ac	hieved.		1.50	41.13		~///& //</td <td></td> <td></td> <td></td> <td></td> <td></td>					
														2
														3
														5
														4
														F
Observation (7											$\square \downarrow$	0	ect	5
1. Trial pit terminate 2. Groundwater not	ed at 1.50m d encountered.	ue to reaching	g required dep	th.								Media Ci Manches M17 1H	ity, ster H 3223	
J. LXPIOI atory NOIE E	Jackinied With	i ansings tollo	wing soakawa	y tesuny.							╞	0101 0/2	Project Numh	er
													B029129	 J
														-

APPENDIX C – PHOTO PLATES

APPENDIX D – GEOTECHNICAL TESTING RESULTS

LABORATORY REPORT

4043

Contract Number: PSL21/7518

- Report Date: 22 October 2021
- Client's Reference: B029129
- Client Name: Tetra Tech Quay West at Media City UK Trafford Wharf Road Trafford Park Manchester M17 1HH

For the attention of: Nick Brooke

Contract Title: Shaw Lane, Carlton Barnsley

21/9/2021
21/9/2021
22/10/2021

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins (Director) R Berriman (Quality Manager) S Royle (Laboratory Manager)

M Fennell (Senior Technician)

L Knight (Assistant Laboratory Manager) S Eyre (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
DS01			3.70		Dark grey slightly sandy very silty CLAY.
DS02			4.00		Dark grey slightly sandy very silty CLAY
DS03			1.90	2.40	Brown mottled grey very gravelly very sandy CLAY.
DS03			2.50		Grey mottled brown sandy very silty CLAY.
DS04			1.40		Greyish brown slightly gravelly very sandy very silty CLAY.
DS04			2.30	2.80	Brown slightly gravelly sandy CLAY.
DS05			1.70	2.30	Brown gravelly very sandy CLAY.
TP01			0.70		Grey mottled brown sandy very silty CLAY
TP01			1.50	1.80	Brown mottled grey gravelly very sandy very silty CLAY.
TP02			0.45	0.60	Brown mottled grey gravelly very sandy CLAY.
TP02			2.00		Dark grey slightly sandy CLAY.
TP02			2.50	2.90	Grey gravelly very sandy CLAY.
TP04			7.00		Brown slightly sandy very silty CLAY.
TP04			1.80	2.30	Brown very gravelly sandy CLAY.
TP06			1.80		Brown mottled grey sandy very silty CLAY
TP06			2.50	3.00	Brown mottled grey slightly gravelly slightly sandy CLAY.
TP07			0.45	0.60	Brown mottled grey slightly gravelly sandy CLAY.
SA01			1.50		Brown sandy very silty CLAY.
SA02			1.50		Grey mottled brown slightly gravelly slightly sandy very silty CLAY.

- 3			Contract No:
(≱≮)-		Shaw Lana Carlton Barnslov	PSL21/7518
UKAS	Professional Calls Laboratory	Shaw Lane, Carnon Darnstey	Client Ref:
4043	Professional Solis Laboratory		B029129

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
DS01			3.70		12			51	25	26	100	High Plasticity CH
DS02			4.00		12			51	26	25	100	High Plasticity CH
DS03			2.50		12			45	22	23	100	Intermediate Plasticity CI
DS04			1.40		18			32	18	14	94	Low Plasticity CL
TP01			0.70		22			38	20	18	100	Intermediate Plasticity CI
TP02			2.00		28			69	29	40	100	High Plasticity CH
TP04			7.00		31			65	30	35	100	High Plasticity CH
TP06			1.80		22			47	26	21	100	Intermediate Plasticity CI
SA01			1.50		21			37	19	18	100	Intermediate Plasticity CI
SA02			1.50		22			55	28	27	94	High Plasticity CH

SYMBOLS : NP : Non Plastic

*: Liquid Limit and Plastic Limit Wet Sieved.

PARTICLE SIZE DISTRIBUTION TEST

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

Professional Soils Laboratory

4043

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

B029129

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

B029129

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

B029129

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

B029129

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

B029129

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

B029129

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

B029129

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve & Pipette Analysis, Clause 9.2 & 9.4

B029129

Professional Soils Laboratory

ANALYTICAL TEST REPORT

Contract no:	101230
Contract name:	Shaw Lane, Carlton, Barnsley
Client reference:	PSL21/7518
Clients name:	Professional Soils Laboratory
Clients address:	5/7 Hexthorpe Road
	Doncaster
	DN4 0AR

Samples received:	06	October 2021
Analysis started:	06	October 2021
Analysis completed:	13	October 2021
Report issued:	13	October 2021

Notes:

Opinions and interpretations expressed herein are outside the UKAS accreditation scope. Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling. All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing. Methods, procedures and performance data are available on request. Results reported herein relate only to the material supplied to the laboratory. This report shall not be reproduced except in full, without prior written approval. Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key:

U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing

Approved by:

K Campbell

Karan Campbell Director

Chemtech Environmental Limited

SOILS

Lab number			101230-1	101230-2	101230-3	101230-4	101230-5
Sample id			DS01	DS02	DS03	DS05	TP02
Depth (m)			4.00-4.45	1.50	3.00-3.45	1.20-1.65	1.20
Date sampled			13/09/2021	13/09/2021	13/09/2021	13/09/2021	15/09/2021
Test	Method	Units					
рН	CE004 ^U	units	5.0	7.6	7.6	7.3	7.2
Sulphate (2:1 water soluble)	CE061	mg/l SO ₄	1560	365	113	29	121

CE709 Test Report Issue 14 June 2019

Chemtech Environmental Limited

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE004	pН	Based on BS 1377, pH Meter	As received	U	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry		10	mg/l SO ₄

CE709 Test Report Issue 14 June 2019

Chemtech Environmental Limited

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
101230-1	DS01	4.00-4.45	Ν	
101230-2	DS02	1.50	Ν	
101230-3	DS03	3.00-3.45	Ν	
101230-4	DS05	1.20-1.65	Ν	
101230-5	TP02	1.20	Ν	

CE709 Test Report Issue 14 June 2019

APPENDIX E – ENVIRONMENTAL TESTING RESULTS

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Tetra Tech Quay West at MediaCityUK Trafford Wharf Road Trafford Park, Manchester M17 1HH Attention : Nicholas Brook Date : 1st November, 2021 Your reference : 784-B029129 Our reference : Test Report 21/14494 Shaw Lane Carlton Location : Date samples received : 16th & 18th September, 2021 Status : Final report 1 Issue :

Thirty two samples were received for analysis on 16th & 18th September, 2021 of which ten were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Tetra Tech 784-B029129 Shaw Lane Carlton Nicholas Brook 21/14494

Report : Solid

EMT Sample No.	5-8	21-24	25-28	37-40	49-52	61-64	68-70	71-74	79-82	92-94			
Sample ID	DS01 ES2	DS04 ES1	DS04 ES2	DS03 ES2	SA01 ES1	SA02 ES2	SA03 ES2	TP07 ES1	TP04 ES1	TP02 ES2			
Depth	0.50	0.10	0.50	0.40	0.30	0.60	0.50	0.20	0.20	0.50	Please se abbrevi	otes for all cronyms	
COC No / misc													,
Containers	VJT												
Sample Date	13/09/2021	13/09/2021	13/09/2021	13/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	15/09/2021			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			Method
Date of Receipt	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	LOD/LOR	Units	No.
Arsenic [#]	19.5	-	7.0	17.1	-	-	6.8	14.2	13.1	21.8	<0.5	mg/kg	TM30/PM15
Cadmium [#]	0.5	-	0.5	0.6	-	-	0.2	0.5	0.4	0.4	<0.1	mg/kg	TM30/PM15
Chromium #	41.1	-	81.4	44.1	-	-	42.7	41.3	44.2	36.8	<0.5	mg/kg	TM30/PM15
Copper [#]	89	-	43	72	-	-	26	77	54	54	<1	mg/kg	TM30/PM15
Lead [#]	72	-	46	47	-	-	18	51	48	47	<5	mg/kg	TM30/PM15
Mercury [#]	0.2	-	<0.1	<0.1	-	-	<0.1	<0.1	0.1	<0.1	<0.1	mg/kg	TM30/PM15
Nickel [#]	32.8	-	16.5	27.8	-	-	49.2	26.1	25.4	50.8	<0.7	mg/kg	TM30/PM15
Selenium [#]	2	-	<1	1	-	-	1	2	<1	2	<1	mg/kg	TM30/PM15
Water Soluble Boron #	3.5	-	1.2	2.5	-	-	0.6	2.7	1.8	1.7	<0.1	mg/kg	TM74/PM32
Zinc [#]	115	-	110	133	-	-	87	121	104	104	<5	mg/kg	TM30/PM15
Arsenic	-	-	-	-	12.0	-	-	-	-	-	<0.5	mg/kg	TM30/PM62
Cadmium	-	-	-	-	0.6	-	-	-	-	-	<0.1	mg/kg	TM30/PM62
Contomium	-	-	-	-	39.2	-	-	-	-	-	<0.5	mg/kg	TM30/PM62
Copper	-	-	-	-	07	-	-	-	-	-	<1	mg/kg	TM30/PM62
Mercury	-	-	_	_	<0.1	_	_	-	-	-	<0.1	mg/kg	TM30/PM62
Nickel	-	-	-	-	23.4	-	-	-	-	-	<0.7	ma/ka	TM30/PM62
Selenium	-	-	-	-	<1	-	-	-	-	-	<1	ma/ka	TM30/PM62
Water Soluble Boron	-	-	-	-	2.0	-	-	-	-	-	<0.1	mg/kg	TM74/PM61
Zinc	-	-	-	-	153	-	-	-	-	-	<5	mg/kg	TM30/PM62
PAH MS													
Naphthalene #	0.40	0.43	0.88	0.05	0.13	<0.04	<0.04	0.09	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.08	0.69	0.37	<0.03	0.15	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	0.09	0.99	0.68	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	0.08	0.89	0.65	<0.04	0.08	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene #	1.60	9.42	5.76	0.10	1.06	<0.03	<0.03	0.13	0.05	0.11	<0.03	mg/kg	TM4/PM8
Anthracene #	0.40	4.21	1.76	<0.04	0.50	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene"	3.23	20.67	9.39	0.12	3.53	<0.03	<0.03	0.19	0.09	0.19	<0.03	mg/kg	
Pyrene	2.52	10.19	0.30	0.11	2.72	<0.05	<0.05	0.10	<0.06	0.10	<0.05	mg/kg	
Chrysene [#]	1.41	10.13	4.00	0.09	2.72	0.04	<0.00	0.13	0.05	0.13	<0.00	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	2.59	19.56	8.46	0.15	4 77	<0.07	<0.02	0.20	0.09	0.10	<0.02	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	1.42	11.17	5.04	0.09	2.43	< 0.04	< 0.04	0.10	< 0.04	0.12	< 0.04	ma/ka	TM4/PM8
Indeno(123cd)pyrene [#]	0.83	7.07	2.98	0.05	1.37	<0.04	<0.04	0.06	< 0.04	0.08	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	0.19	1.35	0.70	<0.04	0.26	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.76	6.72	2.94	0.05	1.31	<0.04	<0.04	0.06	<0.04	0.10	<0.04	mg/kg	TM4/PM8
Coronene	-	1.23	-	-	-	<0.04	-	-	-	-	<0.04	mg/kg	TM4/PM8
PAH 16 Total	17.1	-	57.5	0.9	24.4	-	<0.6	1.2	<0.6	1.3	<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	124.84	-	-	-	<0.64	-	-	-	-	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	1.86	14.08	6.09	0.11	3.43	<0.05	<0.05	0.14	0.06	0.18	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.73	5.48	2.37	0.04	1.34	<0.02	<0.02	0.06	0.03	0.07	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	94	94	92	92	94	88	85	92	93	95	<0	%	TM4/PM8

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Tetra Tech 784-B029129 Shaw Lane Carlton Nicholas Brook 21/14494

Report : Solid

											-		
EMT Sample No.	5-8	21-24	25-28	37-40	49-52	61-64	68-70	71-74	79-82	92-94	ĺ		
Sample ID	DS01 ES2	DS04 ES1	DS04 ES2	DS03 ES2	SA01 ES1	SA02 ES2	SA03 ES2	TP07 ES1	TP04 ES1	TP02 ES2			
Depth	0.50	0.10	0.50	0.40	0.30	0.60	0.50	0.20	0.20	0.50	Please se	otes for all	
COC No / misc											abbrevi	cronyms	
Containers	VJT	VJT	VJT	1									
Sample Date	12/00/2021	12/00/2021	12/00/2021	12/00/2021	14/00/2021	14/00/2021	14/00/2021	14/00/2021	14/00/2021	15/00/2021			
Sample Date	13/09/2021	13/09/2021	13/09/2021	13/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	15/09/2021			
Sample Type	Soil	Soil	Soil										
Batch Number	1	1	1	1	1	1	1	1	1	1		Units	Method
Date of Receipt	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	LODIEON	Onito	No.
EPH >C8-C10 (EH_1D_Total)#	<5	-	<5	<5	<5	-	<5	<5	<5	<5	<5	mg/kg	TM5/PM8
EPH >C10-C12 (EH_1D_Total) #	<10	-	<10	<10	<10	-	<10	<10	<10	<10	<10	mg/kg	TM5/PM8
EPH >C12-C16 (EH_1D_Total) #	18	-	<10	<10	<10	-	<10	<10	<10	<10	<10	mg/kg	TM5/PM8
EPH >C16-C21 (EH_1D_Total) #	70	-	88	15	25	-	<10	<10	<10	<10	<10	mg/kg	TM5/PM8
EPH >C21-C40 (EH_1D_Total)	171	-	1028	174	470	-	<10	58	60	94	<10	mg/kg	TM5/PM8
EPH >C8-C40 (EH_1D_Total)	259	-	1116	189	495	-	<30	58	60	94	<30	mg/kg	TM5/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	-	84	-	-	-	<30	-	-	-	-	<30	mg/kg	TM5/PM8/PM16
Alinhatics													
>C5-C6 (HS 1D AL)#	_	_	<0.1	<0.1	-	_	-	, sv	-	<01	<0.1	ma/ka	TM36/PM12
>C6-C8 (HS_1D_AL)#	_	_	<0.1	<0.1	-	_	-	<0.1	-	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	-	-	<0.1	<0.1	-	-	-	<0.1 <0.1 ^{SV}	-	<0.1	<0.1	ma/ka	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	-	-	<0.2	<0.2	-	-	-	<0.2	-	3.1	<0.2	ma/ka	TM5/PM8/PM16
>C12-C16 (EH CU 1D AL)*	-	-	<4	<4	-	-	-	<4	-	15	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH CU 1D AL)*	-	-	<7	<7	-	-	-	<7	-	55	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH CU 1D AL)*	-	-	80	<7	-	-	-	<7	-	389	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	-	-	80	<19	-	-	-	<19	-	462	<19	mg/kg	TM5/TM38/PM8/PM12/PM1
Aromatics													
>C5-EC7 (HS_1D_AR) #	-	-	<0.1	<0.1	-	-	-	<0.1 ^{SV}	-	<0.1	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) *	-	-	<0.1	<0.1	-	-	-	<0.1 ^{SV}	-	<0.1	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) #	-	-	<0.1	<0.1	-	-	-	<0.1 ^{SV}	-	<0.1	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR) #	-	-	<0.2	<0.2	-	-	-	<0.2	-	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR) #	-	-	8	<4	-	-	-	<4	-	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	-	-	55	<7	-	-	-	<7	-	35	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR) #	-	-	307	<7	-	-	-	<7	-	489	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR)*	-	-	370	<19	-	-	-	<19	-	524	<19	mg/kg	TM5/TM36/PM8/PM12/PM10
Total aliphatics and aromatics(C5-35) (EH+HS_CU_1D_Total)	-	-	450	<38	-	-	-	<38	-	986	<38	mg/kg	TM5/TM36/PM8/PM12/PM1
MTBE [#]	-	<5	<5	<5	-	<5	-	<5 ^{SV}	-	<5	<5	ug/kg	TM36/PM12
Benzene [#]	-	<5	<5	<5	-	<5	-	<5 ^{\$V}	-	<5	<5	ug/kg	TM36/PM12
Toluene [#]	-	<5	<5	<5	-	<5	-	<5 ^{SV}	-	<5	<5	ug/kg	TM36/PM12
Ethylbenzene #	-	8	6	<5	-	<5	-	<5 ^{SV}	-	<5	<5	ug/kg	TM36/PM12
m/p-Xylene #	-	32	21	9	-	<5	-	15 ^{SV}	-	<5	<5	ug/kg	TM36/PM12
o-Xylene [#]	-	18	12	<5	-	<5	-	8 ^{sv}	-	<5	<5	ug/kg	TM36/PM12
PCB 28 #	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 52*	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 101 *	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 118*	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 138 *	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 153 "	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 180"	-	<5	-	-	-	<5	-	-	-	-	<5	ug/kg	TM17/PM8
Total 7 PCBs "	- 1	<35	- 1	- 1	- 1	<35	- 1	- 1	- 1	- 1	<35	ug/kg	TM17/PM8

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Tetra Tech 784-B029129 Shaw Lane Carlton Nicholas Brook 21/14494

Report : Solid

											_		
EMT Sample No.	5-8	21-24	25-28	37-40	49-52	61-64	68-70	71-74	79-82	92-94			
Sample ID	DS01 ES2	DS04 ES1	DS04 ES2	DS03 ES2	SA01 ES1	SA02 ES2	SA03 ES2	TP07 ES1	TP04 ES1	TP02 ES2			
Depth	0.50	0.10	0.50	0.40	0.30	0.60	0.50	0.20	0.20	0.50	Please se	otes for all	
COC No / misc											abbrevi	cronyms	
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	VJT	1		
Sample Date	13/09/2021	13/09/2021	13/09/2021	13/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	15/09/2021	1		
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	1		
Batch Number	1	1	1	1	1	1	1	1	1	1			
Date of Receipt	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	16/09/2021	LOD/LOR	Units	Nethod No.
Total Phenois HPI C	<0.15	-	<0.15	<0.15	<0.15	-	<0.15	<0.15	<0.15	<0.15	<0.15	ma/ka	TM26/PM21B
	40.110		10110	10110	10110		40.110	40.110	10.110	40.110	40.110		
Natural Moisture Content	18.2	15.4	11.7	24.3	18.9	17.6	21.6	25.2	24.0	19.2	<0.1	%	PM4/PM0
Hexavalent Chromium #	<0.3	-	<0.3	<0.3	<0.3	-	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	0.0832	-	0.1616	0.0174	-	-	0.0365	0.0208	0.0247	0.2650	<0.0015	g/l	TM38/PM20
Sulphate as SO4 (2:1 Ext)	-	-	-	-	0.0298	-	-	-	-	-	<0.0015	g/l	TM38/PM60
Free Cyanide	<0.5	-	<0.5	<0.5	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	TM89/PM45
Total Organic Carbon #	-	4.21	-	-	-	0.40	-	-	-	-	<0.02	%	TM21/PM24
ANC at pH4	-	0.26	-	-	-	0.08	-	-	-	-	<0.03	mol/kg	TM77/PM0
ANC at pH7	-	<0.03	-	-	-	NDP	-	-	-	-	<0.03	mol/kg	TM77/PM0
	7 85	7.4 8.42	- 8.47	- 7.44	8.21	5.4 8.20	7.98	- 7.51	-	7 55	<1.0	%	TMZ2/PMU
рп	7.00	0.42	0.47	7.44	0.21	0.20	7.90	7.51	0.94	7.55	<0.01	pri units	11017 3/1 10111
													1

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Tetra Tech 784-B029129 Shaw Lane Carlton Nicholas Brook 21/14494

Report : Solid

							i i		
EMT Sample No.	102-105	106-109	114-117						
Sample ID	TP03 ES2	TP03 ES3	TP05 ES2						
Dent	10	4.5	0.50						
Depth	1.0	1.5	0.50				Please se	e attached n	otes for all
COC No / misc							abbrevi	alions and a	cionyms
Containers	VJT	VJT	VJT						
Sample Date	15/09/2021	15/09/2021	15/09/2021						
Sample Type	Soil	Soil	Soil						
Batch Number	2	2	2						Method
Date of Receipt	18/09/2021	18/09/2021	18/09/2021				LOD/LOR	Units	No.
Arsenic [#]	-	14.3	18.6				<0.5	ma/ka	TM30/PM15
Cadmium [#]	-	0.8	0.1				<0.1	ma/ka	TM30/PM15
Chromium #	-	51.2	39.2				<0.5	mg/kg	TM30/PM15
Copper [#]	-	43	24				<1	mg/kg	TM30/PM15
Lead [#]	-	68	26				<5	mg/kg	TM30/PM15
Mercury [#]	-	<0.1	<0.1				<0.1	mg/kg	TM30/PM15
Nickel [#]	-	37.9	44.5				<0.7	mg/kg	TM30/PM15
Selenium [#]	-	2	2				<1	mg/kg	TM30/PM15
Water Soluble Boron #	-	3.8	0.2				<0.1	mg/kg	TM74/PM32
Zinc [#]	-	129	115				<5	mg/kg	TM30/PM15
Arsenic	-	-	-				<0.5	mg/kg	TM30/PM62
Cadmium	-	-	-				<0.1	mg/kg	TM30/PM62
Chromium	-	-	-				<0.5	mg/kg	TM30/PM62
Copper	-	-	-				<1	mg/kg	TM30/PM62
Lead	-	-	-				<5	mg/kg	TM30/PM62
Mercury	-	-	-				<0.1	mg/kg	TM30/PM62
Nickel	-	-	-				<0.7	mg/kg	TM30/PM62
Selenium	-	-	-				<1	mg/kg	TM30/PM62
Water Soluble Boron	-	-	-				<0.1	mg/kg	TM74/PM61
Zinc	-	-	-				<5	mg/kg	TM30/PM62
PAH MS									
Naphthalene #	0.06	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	<0.05				<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Phenanthrene #	0.20	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Anthracene #	0.07	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Fluoranthene #	0.66	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Pyrene [#]	0.65	<0.03	<0.03				<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene *	0.45	<0.06	<0.06				<0.06	mg/kg	TM4/PM8
Chrysene *	0.42	<0.02	<0.02				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene *	1.09	<0.07	<0.07				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene *	0.66	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene"	0.37	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene "	0.11	<0.04	<0.04				<0.04	mg/kg	TM4/PM8
Benzo(gni)perylene "	0.39	<0.04	<0.04				<0.04	ing/kg	TM4/PM8
DAH 16 Total	0.07	-	-				<0.04	mg/kg	
	-	<0.6	<0.6				<0.64	mg/kg	
Benzo(h)fluoranthono	0.79	-0.05	-0.05				<0.04	mg/kg	
Benzo(k)fluoranthene	0.70	<0.05	<0.05				<0.03	mg/kg	
PAH Surrogate % Recovery	102	100	88				<0.02	%	
Ganogato // Recovery	192	100	50				~~	70	

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Tetra Tech 784-B029129 Shaw Lane Carlton Nicholas Brook 21/14494

Report : Solid

											-		
EMT Sample No.	102-105	106-109	114-117										
Sample ID	TP03 ES2	TP03 ES3	TP05 ES2										
Depth	1.0	1.5	0.50								Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	V.IT	V.I.T	V.IT										
Comula Data	45/00/0004	45/00/0004	45/00/0004										
Sample Date	15/09/2021	15/09/2021	15/09/2021										
Sample Type	Soil	Soil	Soil									1	
Batch Number	2	2	2									Lipite	Method
Date of Receipt	18/09/2021	18/09/2021	18/09/2021								LOD/LOK	Onits	No.
EPH >C8-C10 (EH_1D_Total) #	-	<5	<5								<5	mg/kg	TM5/PM8
EPH >C10-C12 (EH_1D_Total) #	-	<10	<10								<10	mg/kg	TM5/PM8
EPH >C12-C16 (EH_1D_Total) #	-	<10	<10								<10	mg/kg	TM5/PM8
EPH >C16-C21 (EH_1D_Total) #	-	<10	<10								<10	mg/kg	TM5/PM8
EPH >C21-C40 (EH_1D_Total)	-	84	<10								<10	mg/kg	TM5/PM8
EPH >C8-C40 (EH_1D_Total)	-	84	<30								<30	mg/kg	TM5/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	-	-								<30	mg/kg	TM5/PM8/PM16
TPH CWG													
Alinhatics													
	_	sv	_								<0.1	ma/ka	TM36/PM12
>C6-C8 (HS_1D_AL)*	_	<0.1	_								<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	-	<0.1 <0.1	-								<0.1	ma/ka	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	-	<0.2	-								<0.2	ma/ka	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)*	-	<4	-								<4	ma/ka	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)*	-	<7	-								<7	ma/ka	TM5/PM8/PM16
>C21-C35 (EH CU 1D AL)*	-	27	-								<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	-	27	-								<19	mg/kg	TM5/TM36/PM8/PM12/PM1
Aromatics													
>C5-EC7 (HS_1D_AR) #	-	<0.1 ^{SV}	-								<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) #	-	<0.1 ^{sv}	-								<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) #	-	<0.1 ^{SV}	-								<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR) *	-	<0.2	-								<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR) #	-	<4	-								<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	-	22	-								<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR) #	-	84	-								<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR) *	-	106	-								<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35) (EH+HS_CU_1D_Total)	-	133	-								<38	mg/kg	TM5/TM36/PM8/PM12/PM1
MTBE [#]	<5	<5 ^{\$V}	-								<5	ug/kg	TM36/PM12
Benzene [#]	<5	<5 ^{\$V}	-								<5	ug/kg	TM36/PM12
Toluene [#]	<5	<5 ^{SV}	-								<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5 ^{SV}	-								<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	<5 ^{SV}	-								<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	<5 ^{SV}	-								<5	ug/kg	TM36/PM12
PCB 28 #	<5	-	-								<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	-	-								<5	ug/kg	TM17/PM8
PCB 101 *	<5	-	-								<5	ug/kg	TM17/PM8
PCB 118 *	<5	-	-								<5	ug/kg	TM17/PM8
PCB 138"	<5	-	-								<5	ug/kg	TM17/PM8
PCB 153"	<5	-	-								<5	ug/kg	TM17/PM8
	<0	-	-								<0	ug/kg	TM17/DM9
IUIAL / FUDS	<00		1 -	1	1	1	1	1	1	1	<00	uy/ky	11111/1/1110

Client Name:
Reference:
Location:
Contact:
EMT Job No:

784-B029129 Shaw Lane Carlton Nicholas Brook 21/14494

Tetra Tech

Report : Solid

							l		
EMT Sample No.	102-105	106-109	114-117						
Sample ID	TP03 ES2	TP03 ES3	TP05 ES2						
Depth	1.0	1.5	0.50				Please se	e attached n	otes for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT						
Sample Date	15/09/2021	15/09/2021	15/09/2021						
Sample Type	Soil	Soil	Soil						
Botch Number	001	2	2						
Batch Number	2	2	2				LOD/LOR	Units	Method No.
Date of Receipt	18/09/2021	18/09/2021	18/09/2021				-0.45		TMOC/DMO4D
Total Phenois HPLC	-	<0.15	<0.15				<0.15	mg/kg	110/20/PM21B
Natural Moisture Content	18.6	59.0	15.4				<0.1	%	PM4/PM0
Hexavalent Chromium #	-	<0.3	<0.3				<0.3	mg/kg	TM38/PM20
Sulphate as SO4 (2:1 Ext) #	-	0.0930	0.0397				<0.0015	g/l	TM38/PM20
Sulphate as SO4 (2:1 Ext)	-	-	-				<0.0015	g/l	TM38/PM60
Free Cvanide	-	<0.5	<0.5				<0.5	ma/ka	TM89/PM45
		40.0	40.0				1010	gg	11100,111110
Total Organic Carbon #	2.22	-	-				<0.02	%	TM21/PM24
ANC at pH4	0.10	-	-				<0.03	mol/kg	TM77/PM0
ANC at pH7	NDP	-	-				<0.03	mol/kg	TM77/PM0
Loss on Ignition "	7.0	-	-				<1.0	%	TM22/PM0
pH ⁻	8.12	6.97	7.37				<0.01	pH units	TM73/PM11

CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg)	-
Mass of dry sample (kg) =	0
Particle Size <4mm =	>

0.09 >95% Moisture Content Ratio (%) = Dry Matter Content Ratio (%) = 18.2 84.6

EMT Job No	21/14494			Landfill Waste Acceptance			
Sample No			23	Criteria Limits			
Client Sample No			DS04 ES1		Stable		
Depth/Other			0.10	Inert	Non-reactive	Hazardous	
Sample Date			13/09/2021	Waste	Hazardous Waste in Non-	Waste	
Batch No			1	Landfill	Hazardous	Landfill	
Solid Waste Analysis					Landfill		
Total Organic Carbon (%)	4.21			3	5	6	
Loss on Ignition (%)	7.4			-	-	10	
Sum of BTEX (mg/kg)	0.058			6	-	-	
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-	
Mineral Oil (mg/kg) (EH_CU_1D_AL)	84			500	-	-	
PAH Sum of 17(mg/kg)	124.84			100	-	-	
pH (pH Units)	8.42			-	>6	-	
ANC to pH 7 (mol/kg)	<0.03			-	to be evaluated	to be evaluated	
ANC to pH 4 (mol/kg)	0.26			-	to be evaluated	to be evaluated	
Eluate Analysis	lead	ched		le BS EN	aching test 12457-2 at	using L/S 10 l/kg	
	mq/l	M ₁₀ mg/kg			mg/kg		
Arsenic	0.0035	0.035		0.5	2	25	
Barium	0.024	0.24		20	100	300	
Cadmium	< 0.0005	<0.005		0.04	1	5	
Chromium	<0.0015	<0.015		0.5	10	70	
Copper	0.017	0.17		2	50	100	
Mercury	<0.001	<0.01		0.01	0.2	2	
Molybdenum	0.003	0.03		0.5	10	30	
Nickel	<0.002	<0.02		0.4	10	40	
Lead	<0.005	<0.05		0.5	10	50	
Antimony	0.008	0.08		0.06	0.7	5	
Selenium	< 0.003	<0.03		0.1	0.5	7	
Zinc	0.003	0.03		4	50	200	
Chloride	1.9	19		800	15000	25000	
Fluoride	0.8	8		10	150	500	
Sulphate as SO4	1.9	19		1000	20000	50000	
Total Dissolved Solids	83	830		4000	60000	100000	
Phenol	<0.01	<0.1		1	-	-	
Dissolved Organic Carbon	<2	<20		500	800	1000	

CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg) -Mass of dry sample (kg) = Particle Size <4mm =

0.09 >95% Moisture Content Ratio (%) = Dry Matter Content Ratio (%) = 19.2 83.9

EMT Job No			21/14494	Landf	ill Waste Ac	ceptance
Sample No			63		Criteria Lin	nits
Client Sample No			SA02 ES2		Stable	
Depth/Other			0.60	Inert	Non-reactive	Hazardous
Sample Date			14/09/2021	Waste	Hazardous Waste in Non-	Waste
Batch No			1	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	0.40			3	5	6
Loss on Ignition (%)	5.4			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_AL)	<30			500	-	-
PAH Sum of 17(mg/kg)	<0.64			100	-	-
pH (pH Units)	8.20			-	>6	-
ANC to pH 7 (mol/kg)	NDP			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.08			-	to be evaluated	to be evaluated
Eluate Analysis	10:1 lead	conc" ched		Limit v le BS EN	alues for co aching test 12457-2 at l	ompliance using L/S 10 l/kg
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	0.007	0.07		20	100	300
Cadmium	< 0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	<0.002	<0.02		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	<0.003	<0.03		0.1	0.5	7
Zinc	0.005	0.05		4	50	200
Chloride	0.8	8		800	15000	25000
Fluoride	0.9	9		10	150	500
Sulphate as SO4	2.3	23		1000	20000	50000
Total Dissolved Solids	37	370		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	<2	<20		500	800	1000

CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg)	-
Mass of dry sample (kg) =	C
Particle Size <4mm =	>

= 0.09 >95% Moisture Content Ratio (%) = Dry Matter Content Ratio (%) = 14.3 87.5

EMT Job No			21/14494	Land	ill Waste Ac	ceptance
Sample No			104		Criteria Lim	nits
Client Sample No			TP03 ES2			
Depth/Other			1.0	Inert	Stable Non-reactive	Hazardous
Sample Date			15/09/2021	Waste	Hazardous Waste in Non-	Waste
Batch No			2	Landfill	Hazardous	Landfill
Solid Waste Analysis					Landfill	
Total Organic Carbon (%)	2.22			3	5	6
Loss on Ignition (%)	7.0			-	-	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_AL)	<30			500	-	-
PAH Sum of 17(mg/kg)	5.20			100	-	-
pH (pH Units)	8.12			-	>6	-
ANC to pH 7 (mol/kg)	NDP			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.10			-	to be evaluated	to be evaluated
Eluate Analysis	10:1 lead C ₁₀	conc ⁿ ched A ₁₀		Limit le BS EN	values for co aching test 12457-2 at	ompliance using L/S 10 l/kg
	mg/l	mg/kg			mg/kg	
Arsenic	<0.0025	<0.025		0.5	2	25
Barium	0.007	0.07		20	100	300
Cadmium	< 0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	<0.002	<0.02		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	<0.003	<0.03		0.1	0.5	7
Zinc	0.004	0.04		4	50	200
Chlorido	1.6	16		800	15000	25000
Chionde				40	450	500
Fluoride	0.6	6		10	150	500
Fluoride Sulphate as SO4	0.6	6 100		1000	20000	50000
Fluoride Sulphate as SO4 Total Dissolved Solids	0.6 10.0 65	6 100 650		10 1000 4000	20000 60000	50000 100000
Fluoride Fluoride Sulphate as SO4 Total Dissolved Solids Phenol	0.6 10.0 65 <0.01	6 100 650 <0.1		10 1000 4000 1	20000 60000 -	50000 100000 -

Client Name:	Tetra Tech
Reference:	784-B029129
Location:	Shaw Lane Carlton
Contact:	Nicholas Brook

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Samples are retained for not less than 6 months from the date of analysis unless specifically requested.

Opinions, including ACM type and Asbestos level less than 0.1%, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Date Of Analysis	Analysis	Result
21/14494	1	DS04 ES2	0.50	27	22/09/2021	General Description (Bulk Analysis)	soil
					22/09/2021	Asbestos Fibres	NAD
					22/09/2021	Asbestos ACM	NAD
					22/09/2021	Asbestos Type	NAD
					22/09/2021	Asbestos Level Screen	NAD
21/14494	1	DS03 ES2	0.40	39	22/09/2021	General Description (Bulk Analysis)	soil/stones
					22/09/2021	Asbestos Fibres	NAD
					22/09/2021	Asbestos ACM	NAD
					22/09/2021	Asbestos Type	NAD
					22/09/2021	Asbestos Level Screen	NAD
21/14494	1	SA01 ES1	0.30	51	22/09/2021	General Description (Bulk Analysis)	soil/stones
					22/09/2021	Asbestos Fibres	Fibre Bundles
					22/09/2021	Asbestos ACM	NAD
					22/09/2021	Asbestos Type	Chrysotile
					22/09/2021	Asbestos Level Screen	less than 0.1%
					28/09/2021	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					28/09/2021	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					28/09/2021	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					29/09/2021	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					29/09/2021	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
21/14494	1	TP04 ES1	0.20	81	22/09/2021	General Description (Bulk Analysis)	soil
					22/09/2021	Asbestos Fibres	NAD
					22/09/2021	Asbestos ACM	NAD
					22/09/2021	Asbestos Type	NAD
					22/09/2021	Asbestos Level Screen	NAD
21/14494	1	TP02 ES2	0.50	94	22/09/2021	General Description (Bulk Analysis)	soil
					22/09/2021	Asbestos Fibres	NAD
					22/09/2021	Asbestos ACM	NAD
					22/09/2021	Asbestos Type	NAD
					22/09/2021	Asbestos Level Screen	NAD

NDP	Reason	Report
-----	--------	--------

Matrix : Solid

Tetra Tech
784-B029129
Shaw Lane Carlton
Nicholas Brook

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Method No.	NDP Reason
21/14494	1	SA02 ES2	0.60	61-64	TM77/PM0	Sample received is below pH7
21/14494	2	TP03 ES2	1.0	102-105	TM77/PM0	Sample received is below pH7

Client Name:	Tetra Tech
Reference:	784-B029129
Location:	Shaw Lane Carlton
Contact:	Nicholas Brook

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 21/14494									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 21/14494

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

EMT Job No.: 21/14494

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.			AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.			AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
ТМЗО	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM62	Acid digestion of as received solid samples using Aqua Regia refluxed at 112.5 $^{\circ}\text{C}.$			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM60	As received solid samples are extracted with deionised water in a 2:1 ratio of water to solid.			AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 First edition (2006)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM61	As received solid samples are extracted with hot water in a 20:1 ratio of water to soil ready for analysis by ICP.			AR	Yes
TM77	Modified DDCEN/TS method 15364:2006. Determination of Acid Neutralization Capacity by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.			AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description 1 (U A		MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM131	Quantification of Asbestos Fibres and ACM based on HSG248 First edition:2006, HSG 264 Second edition:2012, HSE Contract Research Report No.83/1996, MDHS 87:1998, WM3 1st Edition v1.1:2018	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	Yes
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified			AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

APPENDIX F – N60 SPT CORRECTION DATA

Tetra Tech							æ		
Project	Number:	B029129	Shaw Lane	Carlton			TETRA TECH		
Client:	Network Sp Developme	ace nts Ltd	28/10/2021	L					
Hole ID	SPT Depth	Uncorrected SPT "N" Value	Energy Ratio	Corrected SPT "N" Value	Rod Correction SPT Value	Strata Type	Stratum Top	Stratum Bottom	
	m bgl		%	N60			m bgl	m bgl	
DS01	1.20	4	69	5		CLAY	0.80	1.70	
DS01	2.00	11	69	13		CLAY	1.70	2.30	
DS01	3.00	20	69	23	17	BEDROCK	2.30	3.60	
DS01	4.00	44	69	51	43	BEDROCK	3.90	5.00	
DS01	5.00	50	69	58	49	BEDROCK	3.90	5.00	
DS02	1.20	15	69	17		CLAY	0.40	2.00	
DS02	2.00	23	69	27		SAND	2.00	2.50	
DS02	3.00	37	69	43	32	BEDROCK	2.90	4.00	
DS02	4.00	50	69	58	49	BEDROCK	2.90	4.00	
DS03	1.20	8	69	9		CLAY	0.50	1.30	
DS03	2.00	21	69	24		GRAVEL	1.90	2.40	
DS03	3.00	50	69	58	43	BEDROCK	2.40	3.00	
DS04	1.20	5	69	6		MADE GROUND	1.00	1.30	
DS04	2.00	23	69	27		SAND	1.80	2.30	
DS04	3.00	50	69	58	43	BEDROCK	2.80	3.00	
DS05	1.20	9	69	10		CLAY	0.30	1.30	
DS05	2.00	34	69	39		CLAY	1.70	2.30	
DS05	2.50	50	69	58		BEDROCK	2.30	2.50	

APPENDIX G – TIER 1 SCREENING RESULTS
Sample Identity	England	and Wales (mg/kg) where	DS01 ES2	DS04 ES1	DS04 ES2	DS03 ES2	SA01 ES1	SA02 ES2	SA03 ES2	TP07 ES1	TP04 ES1	TP02 ES2	TP03 ES2	TP03 ES3	TP05 ES2
Depth (m bgl)	Soil (Organic Matter is 2.5%	0.50	0.10	0.50	0.40	0.30	0.60	0.50 68-70	0.20	0.20 70-82	0.50	1.0 102-105	1.5	0.50
Reference		Screen value	0-6	21-24	20-20	37-40	49-52	01-04	00-70	/1-/4	79-02	92-94	102-105	106-109	114-117
Sample Date	Units	Residential	13/09/2021	13/09/2021	13/09/2021	13/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	14/09/2021	15/09/2021	15/09/2021	15/09/2021	15/09/2021
pH		<5, >9	7.85	8.42	8.47	7.44	8.21	8.2	7.98	7.51	6.94	7.55	8.12	6.97	7.37
Asbestos	%	Presence	-	-	None	None	Presence	-	-	-	None	None	-	-	-
			_												
	ma/ka	37.00	19.5		7	171	12		6.8	14.2	13.1	21.8		14 3	18.6
Cadmium	mg/kg ma/ka	22.00	0.5	-	0.5	0.6	0.6	-	0.2	0.5	0.4	0.4	-	0.8	0.1
Chromium (III)	mg/kg	910.00	41.1	-	81.4	44.1	39.2	-	42.7	41.3	44.2	36.8	-	51.2	39.2
Chromium (VI)	mg/kg	21.00	<0.3	-	<0.3	<0.3	<0.3	-	<0.3	<0.3	<0.3	<0.3	-	<0.3	<0.3
Copper	mg/kg	2400.00	89	-	43	72	67	-	26	77	54	54	-	43	24
Lead	mg/kg	200.00	/2	-	46	4/	83	-	18	51	48	4/	-	68	26
Nickel	mg/kg	130.00	32.8	-	16.5	27.8	23.4	-	49.2	26.1	25.4	50.8	-	37.9	44.5
Selenium	mg/kg	250.00	2	-	<1	1	<1	-	1	2	<1	2	-	2	2
Boron	mg/kg	290.00	3.5	-	1.2	2.5	2	-	0.6	2.7	1.8	1.7	-	3.8	0.2
Zinc	mg/kg	3700.00	115	-	110	133	153	-	87	121	104	104	-	129	115
GENERAL INORGANICS															
Easily Liberatable Cvanide (free)	ma/ka	24	<0.5	_	<0.5	<0.5	<0.5	NA	<0.5	<0.5	<0.5	<0.5	NA	<0.5	<0.5
US EPA PRIORITY PAHs															
Naphthalene	mg/kg		0.4	0.43	0.88	0.05	0.13	<0.04	<0.04	0.09	<0.04	<0.04	0.06	<0.04	<0.04
Acenaphthylene	mg/kg		0.08	0.69	0.37	<0.03	0.15	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03
Acenaphinene	mg/kg mg/kg		0.09	0.99	0.65	<0.05	0.08	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Phenanthrene	mg/kg mg/kg		1.6	9.42	5.76	0.1	1.06	<0.03	<0.03	0.13	0.05	0.11	0.2	<0.03	<0.03
Anthracene	mg/kg		0.4	4.21	1.76	<0.04	0.5	<0.04	<0.04	<0.04	<0.04	<0.04	0.07	<0.04	<0.04
Fluoranthene	mg/kg		3.23	20.67	9.39	0.12	3.53	<0.03	<0.03	0.19	0.09	0.19	0.66	<0.03	<0.03
Pyrene	mg/kg		2.52	18.19	8.36	0.11	3.31	< 0.03	< 0.03	0.16	0.07	0.18	0.65	< 0.03	< 0.03
Benzo(a)anthracene	mg/kg mg/kg		1.41	12.12	4.88	0.09	2.72	<0.06	<0.06	0.13	<0.06	0.13	0.45	<0.06	<0.06
Benzo(b)fluoranthene	ma/ka		1.86	14.08	6.09	0.11	3.43	<0.04	<0.02	0.14	0.06	0.18	0.78	<0.02	<0.02
Benzo(k)fluoranthene	mg/kg		0.73	5.48	2.37	0.04	1.34	<0.02	<0.02	0.06	0.03	0.07	0.31	<0.02	<0.02
Benzo(g,h,i)perylene	mg/kg		0.76	6.72	2.94	0.05	1.31	<0.04	<0.04	0.06	<0.04	0.1	0.39	<0.04	<0.04
Benzo(a)pyrene	mg/kg	5.00	1.42	11.17	5.04	0.09	2.43	< 0.04	< 0.04	0.1	< 0.04	0.12	0.66	<0.04	< 0.04
Di-benzo(a,h)anthracene	mg/kg		0.19	1.35	0.7	<0.04	0.26	<0.04	<0.04	<0.04	<0.04	<0.04	0.11	<0.04	<0.04
	iiig/kg		0.00	7.07	2.50	0.00	1.07	<0.04	CO.04	0.00	<0.04	0.00	0.07	\U.U	<0.04
Mineral Oil (C10-C40) (EH_CU_1D_AL)	mg/kg		-	84	-	-	-	<30	-	-	-	-	<30	-	-
					ſ	1	1	r			ſ	ſ			T
		70			0.1	0.1				.0.1		.0.1		.0.1	
TPH Aliphatic $>C6-8$	mg/kg mg/kg	/8	-	-	<0.1	<0.1	-	-	-	<0.1	-	<0.1	-	<0.1	-
TPH Aliphatic >C8-10	mg/kg mg/kg	65	-	-	<0.1	<0.1	-	-	-	<0.1	-	<0.1	-	<0.1	-
TPH Aliphatic >C10-12	mg/kg	330	-	-	<0.2	<0.2	-	-	-	<0.2	-	3.1	-	<0.2	-
TPH Aliphatic >C12-16	mg/kg	2,400		-	<4	<4	-	-	-	<4	-	15	-	<4	-
TPH Aliphatic >C16-35	mg/kg	92,000	-	-	<87	<26	-	-	-	<26	-	444	-	34	-
TPH Aromatic >EC3-7 (Benzene)	mg/Kg	290	-	-	<0.1	<0.1	-	-	-	<0.1	-	<0.1	-	<0.1	-
TPH Aromatic >EC8-10	mg/kg	83	-	-	<0.1	<0.1	-	-	-	<0.1	-	<0.1	-	<0.1	-
TPH Aromatic >EC10-12	mg/kg	180	-	-	<0.2	<0.2	-	-	-	<0.2	-	<0.2	-	<0.2	-
TPH Aromatic >EC12-16	mg/kg	330	-	-	8	<4	-	-	-	<4	-	<4	-	<4	-
TPH Aromatic >EC16-21	mg/kg	540	-	-	55 307	</td <td>-</td> <td>-</td> <td>-</td> <td><!--</td--><td>-</td><td>35</td><td>-</td><td>22</td><td>-</td></td>	-	-	-	</td <td>-</td> <td>35</td> <td>-</td> <td>22</td> <td>-</td>	-	35	-	22	-
TPH Aromalic >EC21-35	mg/kg	1,500	-	-	307	</td <td>-</td> <td>-</td> <td>-</td> <td><1</td> <td>-</td> <td>409</td> <td>-</td> <td>04</td> <td>-</td>	-	-	-	<1	-	409	-	04	-
BTEX															
Benzene	mg/kg	0.41	-	<5	<5	<5	-	<5	-	<5	-	<5	<5	<5	-
Toluene	mg/kg	290		<5	<5	<5	-	<5	-	<5	-	<5	<5	<5	-
Ethylbenzene	mg/kg	110	-	8	6	<5	-	<5	-	<5	-	<5	<5	<5	-
n/p-Xylene	mg/kg	140	-	32 18	12	9 ~5	-	<5 <5	-	15 8	-	<5 <5	<5 <5	<5 <5	-
	mg/kg	140		10	16					0				~~	
ANIONS															
Water Soluble Sulphate as SO4 2:1 Extract	g/l		0.0832	-	0.1616	0.0174	0.0298	-	0.0365	0.0208	0.0247	0.265	-	0.093	0.0397
PHENOLS		000	.0.15		-0.45	-0.4E	-0.4E		-0.1E	-0 1E	-0 1E	-0 4 E		-0.45	-0.4E
	тд/кд	200	<0.15	-	<0.15	<0.15	<0.15	-	<0.15	<0.15	<0.15	<0.15	-	<0.15	<0.15
loisture Content Ratio (% of as received sample	%		18.2	15.4	11.7	24.3	18.9	17.6	21.6	25.2	24	19.2	18.6	59	15.4

Sample Identity	DS01 ES2	DS04 ES1	DS04 ES2	DS03 ES2	SA01 ES1	SA02 ES2	SA03 ES2	TP07 ES1	TP04 ES1	TP02 ES2	TP03 ES2	TP03 ES3	TP05 ES2
Depth (m bgl)	0.50	0.10	0.50	0.40	0.30	0.60	0.50	0.20	0.20	0.50	1.0	1.5	0.50
Benzo(a)anthracene	1.41	12.12	4.88	0.09	2.72	0.06	0.06	0.13	0.06	0.13	0.45	0.06	0.06
Benzo(b)fluoranthene	1.86	14.08	6.09	0.11	3.43	0.05	0.05	0.14	0.06	0.18	0.78	0.05	0.05
Benzo(k)fluoranthene	0.73	5.48	2.37	0.04	1.34	0.02	0.02	0.06	0.03	0.07	0.31	0.02	0.02
Benzo(g,h,i)perylene	0.76	6.72	2.94	0.05	1.31	0.04	0.04	0.06	0.04	0.1	0.39	0.04	0.04
Benzo(a)pyrene	1.42	11.17	5.04	0.09	2.43	0.04	0.04	0.1	0.04	0.12	0.66	0.04	0.04
Chrysene	1.47	10.13	4.68	0.1	2.68	0.04	0.02	0.11	0.05	0.13	0.42	0.02	0.02
Di-benzo(a,h)anthracene	0.19	1.35	0.7	0.04	0.26	0.04	0.04	0.04	0.04	0.04	0.11	0.04	0.04
Indeno(1,2,3-cd)pyrene	0.83	7.07	2.98	0.05	1.37	0.04	0.04	0.06	0.04	0.08	0.37	0.04	0.04

Ratio to BaP														Min	Max	CULP Stu	dy Limits
Benzo(a)anthracene	0.992957746	1.085049239	0.96825397	1	1.11934156	1.5	1.5	1.3	1.5	1.083333	0.681818	1.5	1.5	0.6818	1.5000	0.12	12.43
Chrysene	1.0352	0.9069	0.9286	1.1111	1.1029	1.0000	0.5000	1.1000	1.2500	1.0833	0.6364	0.5000	0.5000	0.5000	1.2500	0.12	11.61
Benzo(b)fluoranthene	1.3099	1.2605	1.2083	1.2222	1.4115	1.2500	1.2500	1.4000	1.5000	1.5000	1.1818	1.2500	1.2500	1.1818	1.5000	0.11	10.85
Benzo(k)fluoranthene	0.5141	0.4906	0.4702	0.4444	0.5514	0.5000	0.5000	0.6000	0.7500	0.5833	0.4697	0.5000	0.5000	0.4444	0.7500	0.04	3.72
Dibenzo(ah)anthracene	0.1338	0.1209	0.1389	0.4444	0.1070	1.0000	1.0000	0.4000	1.0000	0.3333	0.1667	1.0000	1.0000	0.1070	1.0000	0.01	1.38
Indeno(123cd)pyrene	0.5845	0.6329	0.5913	0.5556	0.5638	1.0000	1.0000	0.6000	1.0000	0.6667	0.5606	1.0000	1.0000	0.5556	1.0000	0.07	7.27
Benzo(ghi)perylene	0.5352	0.6016	0.5833	0.5556	0.5391	1.0000	1.0000	0.6000	1.0000	0.8333	0.5909	1.0000	1.0000	0.5352	1.0000	0.08	8.22

TETRA TECH

Sample Identity	England (mg/k	and Wales g) where	DS01 ES2	DS04 ES2	DS03 ES2	SA01 ES1	SA03 ES2	TP07 ES1	TP04 ES1	TP02 ES2	TP03 ES3	DS01	DS02	DS03	DS05	TP02
Depth (m bgl)	Soil Org 2	anic Matter	0.50	0.50	0.40	0.30	0.50	0.20	0.20	0.50	1.5	4.00 - 4.45	1.50	3.00 - 3.45	1.20 - 1.65	1.20
		Screen														
		Value														
Sample Date	Units	Residential														
рН		<5, >9	7.85	8.47	7.44	8.21	7.98	7.51	6.94	7.55	8.12	5	7.6	7.6	7.3	7.2
Water Soluble																
Sulphate as SO4	g/l		0.383	0.0632	0.1460	0.5185	0.2152	0.0804	0.0651	0.127	0.3027	1.56	0.365	0.113	0.029	0.0121
2:1 Extract																

TPH Hazard		Sample ID	DS04		DS03	UT	TP07	LIT	TP05	LIT	TP03	LUT
Indexing		Depth (mbgl)	0.10	п	0.40		0.20	п	0.50	п	1.50	п
Aliphatics	Units	TSV										
TPH Aliphatic >C5 6	mg/kg	78	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00
TPH Aliphatic >C6- 8	mg/kg	230	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00
TPH Aliphatic >C8- 10	mg/kg	65	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00
TPH Aliphatic >C10-12	mg/kg	330	0.2	0.00	0.2	0.00	0.2	0.00	3.1	0.01	0.2	0.00
TPH Aliphatic >C12-16	mg/kg	2,400	4	0.00	4	0.00	4	0.00	15	0.01	4	0.00
TPH Aliphatic >C16-35	mg/kg	92,000	87	0.00	27	0.00	26	0.00	444	0.00	34	0.00
Alphatic Hazard Index				0.01		0.01		0.01		0.02		0.01
Aromatics												
TPH Aromatic >EC5-7 (Benzene)	mg/kg	0.41	0.1	0.24	0.1	0.24	0.1	0.24	0.1	0.24	0.1	0.24
TPH Aromatic >EC7-8	mg/kg	290	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00
TPH Aromatic >EC8-10	mg/kg	83	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00	0.1	0.00
TPH Aromatic >EC10-12	mg/kg	180	0.2	0.00	0.2	0.00	0.2	0.00	0.2	0.00	0.2	0.00
TPH Aromatic >EC12-16	mg/kg	330	8	0.02	4	0.01	4	0.01	4	0.01	4	0.01
TPH Aromatic >EC16-21	mg/kg	540	55	0.10	7	0.01	7	0.01	35	0.06	22	0.04
TPH Aromatic >EC21-35	mg/kg	1,500	307	0.20	7	0.00	7	0.00	489	0.33	84	0.06
Aromatic Hazard Index				0.58		0.28		0.28		0.65		0.36
Hazard Index				0.58		0.28		0.28		0.00		0.36

APPENDIX H – SOAKAWAY RESULTS

_								
W	YGF	nviron	ment			DATE:		14/09/2021
	IG L				1	PROJECT No:		B029129
					wgg.	PROJECT NAME:	Sha	w Lane, Carlton
L		a 1			00	CLIENT:	Ν	letwork Space
Enviro	onmental	Consultancy				TRIAL PIT ID:		SA01
Grour	na Engine	ering Services	TECT COI					
	50		1621 - 201		UN RATE/PI		ALCUL	
	0.00						_	
	0.20							
<u> </u>	0.40						_	
leve								
P u		***	♦♦ ♦					
	0.60					→		
	0.80							
te								
wai	1.00							
l of	1.00							
ept								
Ď	i 1.20 –					+	-	
	1.40 🗕							
	0	:	20000	40000	60000	80000 10	00000	120000
			Time from	filling to maximum ef	fective depth (seco	nds)		
				-				-
Time	e Elapsed	Time Elapsed	water surface	PIT LENGTH (m):	2.70	Pit	Construct	cion
	(s)	(mins)	from ground	PIT WIDTH (m):	0.60	TEREX THE 32 - WHEELEO		
			level (m)	PIT DEPTH (m):	1.60		_	
	0	0.00						
	30					PUT PARAMETERS:	(m^{3})	2.50
	() ()	1 50	0.560	Dit volumo botus	on 75% and 25% d	Total volume of pit	(m ³)	2.59
	90	1.50	0.560	Pit volume betwe	en 75% and 25% de	Total volume of pit Puths = L x W x ½D Effective denth of Pit	(m ³) (m ³)	2.59 1.30 1.60
	90 150 210	1.50 2.50 3.50	0.560 0.560 0.560 0.560	Pit volume betwe	en 75% and 25% de	Total volume of pit pths = L x W x ½D Effective depth of Pit procupied by gravel solids	(m ³) (m ³) (m) (0-1)	2.59 1.30 1.60
	90 150 210 270	1.50 2.50 3.50 4.50	0.560 0.560 0.560 0.560 0.560	Pit volume betwe	en 75% and 25% de ortion of pit volume	Total volume of pit epths = L x W x ½D Effective depth of Pit occupied by gravel solids otential volume of Water	(m ³) (m ³) (m) (0-1) (m ³)	2.59 1.30 1.60 0.00 2.59
	90 150 210 270 360	1.50 2.50 3.50 4.50 6.00	0.560 0.560 0.560 0.560 0.560 0.560	Pit volume betwe	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7	Total volume of pit pths = L x W x ½D Effective depth of Pit poccupied by gravel solids otential volume of Water 5% effective depth (p ₇₅)	(m ³) (m ³) (m) (0-1) (m ³) (m)	2.59 1.30 1.60 0.00 2.59 0.40
	90 150 210 270 360 480	1.50 2.50 3.50 4.50 6.00 8.00	0.560 0.560 0.560 0.560 0.560 0.560 0.560	Pit volume betwee	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2	Total volume of pit pths = L x W x ½D Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p ₇₅) 25% effective depth (p ₂₅)	(m ³) (m ³) (m) (0-1) (m ³) (m) (m)	2.59 1.30 1.60 0.00 2.59 0.40 1.20
	90 150 210 270 360 480 600	1.50 2.50 3.50 4.50 6.00 8.00 10.00	0.560 0.560 0.560 0.560 0.560 0.560 0.560	Pit volume betwee	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2	Total volume of pit epths = L x W x ½D Effective depth of Pit occupied by gravel solids otential volume of Water 5% effective depth (p ₇₅) 5% effective depth (p ₂₅)	(m ³) (m ³) (m) (0-1) (m ³) (m) (m)	2.59 1.30 1.60 0.00 2.59 0.40 1.20
	90 150 210 270 360 480 600 720	1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Pit volume betwee	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25%	Total volume of pit pths = L x W x ½D Effective depth of Pit poccupied by gravel solids otential volume of Water '5% effective depth (p ₇₅) 5% effective depth (p ₂₅) depth Vp ₇₅₋₂₅ = V x Pg	(m ³) (m ³) (m) (0-1) (m ³) (m) (m) (m)	2.59 1.30 1.60 0.00 2.59 0.40 1.20
	90 150 210 270 360 480 600 720 840	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Pit volume betwee Prop Leve Effective volume be Surfac	en 75% and 25% de prtion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50	PUT PARAMETERS: Total volume of pit epths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p ₇₅) 25% effective depth (p ₂₅) depth Vp ₇₅₋₂₅ = V x Pg 0% effective depth (A _{p50})	(m ³) (m ³) (m) (0-1) (m ³) (m) (m) (m) (m ³) (m ²)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90
	90 150 210 270 360 480 600 720 840 1200	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Pit volume betwee Prop	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50	PUT PARAMETERS: Total volume of pit epths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water 75% effective depth (p_{75}) 25% effective depth (p_{25}) depth Vp ₇₅₋₂₅ = V x Pg 0% effective depth (A_{p50})	(m ³) (m ³) (m) (0-1) (m ³) (m) (m) (m ³) (m ²)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90
	90 150 210 270 360 480 600 720 840 1200 1800	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Pit volume betwee Prop	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7	PUT PARAMETERS: Total volume of pit epths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p ₇₅) C5% effective depth (p ₂₅) depth Vp ₇₅₋₂₅ = V x Pg 0% effective depth (A _{p50}) 25% effective depth (p ₇₅)	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ³) (m ²)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90
	90 150 210 270 360 480 600 720 840 1200 1800 3000	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00	0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560 0.560	Pit volume betwee	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 2	PUT PARAMETERS: Total volume of pit epths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water 75% effective depth (p ₇₅) 25% effective depth (p ₂₅) depth Vp ₇₅₋₂₅ = V x Pg 0% effective depth (A _{p50}) 75% effective depth (p ₇₅) 25% effective depth (p ₇₅) 25% effective depth (p ₇₅)	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ³) (m ²) (s) (s)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400	1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00	0.560 0.	Pit volume betwee Prop	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 2 for 75% and 25% et	PUT PARAMETERS: Total volume of pit epths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p ₇₅) 25% effective depth (A _{p50}) 25% effective depth (A _{p50}) 25% effective depth (p ₇₅)	(m ³) (m ³) (m) (m ³) (m) (m) (m ³) (m ²) (s) (s) (s)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00	0.560 0.	Pit volume betwee	en 75% and 25% de prtion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 7 for 75% and 25% ef	PUT PARAMETERS: Total volume of pit epths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p ₇₅) 25% effective depth (p ₂₅) depth Vp ₇₅₋₂₅ = V x Pg 0% effective depth (A _{p50}) '5% effective depth (p ₇₅) 25% effective depth (p ₂₅) 25% effective depth (p ₂₅) if ective depth (Tp ₇₅₋₂₅) OUTPUT:	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ²) (s) (s) (s)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A #N/A
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00	0.560 0.	Pit volume betwee Prop Leve Effective volume be Surfac Time for outflow	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 7 for 75% and 25% ef	PUT PARAMETERS: Total volume of pit epths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p ₇₅) :5% effective depth (p ₂₅) depth Vp ₇₅₋₂₅ = V x Pg 0% effective depth (A _{p50}) '5% effective depth (p ₇₅) :5% effective depth (p ₂₅)	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ³) (m ²) (s) (s) (s) (s) (s) (s)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A #N/A #N/A
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000 16200	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00	0.560 0.	Pit volume betwee Prop	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 7 for 75% and 25% ef	PUT PARAMETERS: Total volume of pit appths = L x W x ½D Effective depth of Pit boccupied by gravel solids otential volume of Water '5% effective depth (p_{75}) '5% effective depth (p_{25}) '0% effective depth (p_{50}) '25% effective depth (p_{75}) '5% effective depth (p_{75}) '5% effective depth (p_{25}) '5% effective depth (p_{25}) '5% effective depth (p_{25}) '5% effective depth (p_{75}) '5% effective depth (p_{25}) '6% effective depth (p_{75}) '7% effective depth (p_{75}) '7% effective depth (p_{75}) '6% effective depth (p_{75}) <tr< td=""><td>(m³) (m³) (0-1) (m³) (m) (m) (m³) (m²) (s) (s) (s) (s) (s) (s) (s)</td><td>2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A #N/A</td></tr<>	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ³) (m ²) (s) (s) (s) (s) (s) (s) (s)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A #N/A
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000 16200	1.50 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00 330.00	0.560 0.	Pit volume betwee Prop Leve Effective volume be Surfac Time for outflow SOIL INFILTRATIO	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 2 for 75% and 25% ef N RATE (f)	PUT PARAMETERS: Total volume of pit epths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p ₇₅) 25% effective depth (p ₂₅) depth Vp ₇₅₋₂₅ = V x Pg 0% effective depth (A _{p50}) 75% effective depth (p ₇₅) 25% effective depth (p ₂₅) 15% effective dept	(m ³) (m ³) (m) (0-1) (m ³) (m) (m) (m) (m ²) (s) (s) (s) (s) (s)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A #N/A #N/A
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000 16200 19800 25200	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00 330.00 420.00	0.560 0.	Pit volume betwee Prop Leve Effective volume be Surfac Time for outflow SOIL INFILTRATIO WATER INPUT:	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 2 for 75% and 25% ef N RATE (f)	PUT PARAMETERS: Total volume of pit appths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p_{75}) 25% effective depth (p_{25}) depth Vp75-25 = V x Pg 0% effective depth (A_{p50}) '5% effective depth (p_{25}) 25% effective depth (p_{25}) '5% effective depth (p_{25}) '6UTPUT: $V_{p75 - 25}$ $A_{p50} \times T_{p75 - 25}$ in 3 Minut	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ²) (s) (s) (s) (s) (s) (s)	2.59 1.30 1.60 0.00 2.59 0.40 1.20
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000 16200 19800 25200 86400	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00 330.00 420.00 1440.00	0.560 0.	Pit volume betwee Prop Leve Effective volume be Surfac Time for outflow SOIL INFILTRATIO	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 7 Time at 2 for 75% and 25% ef N RATE (f) Unkown SECTION:	PUT PARAMETERS: Total volume of pit appths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p_{75}) :5% effective depth (p_{25}) depth Vp75-25 = V x Pg :0% effective depth (A_{p50}) '5% effective depth (p_{25}) :5% effective depth (p_{25}) :6ctive depth ($Tp75-25$) OUTPUT: V_{p75-25} $A_{p50} \times T_{p75-25}$ in 3 Minut with orangich brown cond	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ³) (m ²) (s) (s) (s) (s) (s) (s) (s) (s)	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A #N/A
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000 16200 19800 25200 86400 100800	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00 330.00 420.00 1440.00 1680.00	0.560 0.	Pit volume betwee Prop	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 7 Time at 7 for 75% and 25% ef N RATE (f) Unkown SECTION: Light grey mottled	PUT PARAMETERS: Total volume of pit appths = L x W x ½D Effective depth of Pit boccupied by gravel solids otential volume of Water '5% effective depth (p_{75}) '5% effective depth (p_{25}) depth Vp_{75-25} = V x Pg '0% effective depth (p_{75}) '5% effective depth (p_{75}) '5% effective depth (p_{25}) '60 UTPUT: V_{p75-25} $A_{p50} \times T_{p75-25}$ in 3 Minut with orangish brown sand	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ³) (m ²) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s	2.59 1.30 1.60 0.00 2.59 0.40 1.20 1.30 6.90 #N/A #N/A #N/A #N/A
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000 16200 19800 25200 86400 100800	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00 330.00 420.00 1440.00 1680.00	0.560 0.	Pit volume betwee Prop Leve Effective volume be Surfac Time for outflow SOIL INFILTRATIO WATER INPUT: GEOLOGY OF TEST	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 7 for 75% and 25% el N RATE (f) Unkown SECTION: Light grey mottled	PUT PARAMETERS: Total volume of pit appths = L x W x ½D Effective depth of Pit boccupied by gravel solids otential volume of Water '5% effective depth (p_{75}) '5% effective depth (p_{25}) depth Vp_{75-25} = V x Pg '0% effective depth (p_{75}) '5% effective depth (p_{75}) '6% effective depth (p_{75}) '75% effective depth (p_{75}) '60UTPUT: V_{p75-25} $A_{p50} \times T_{p75-25}$ $A_{p50} \times T_{p75-25}$ in 3 Minut with orangish brown sand	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ³) (m ²) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s	2.59 1.30 1.60 0.00 2.59 0.40 1.20
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000 16200 19800 25200 86400 100800	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00 330.00 420.00 1440.00	0.560 0.	Pit volume betwee Prop Leve Effective volume be Surfac Time for outflow SOIL INFILTRATIO WATER INPUT: GEOLOGY OF TEST	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 2 for 75% and 25% ef N RATE (f) Unkown SECTION: Light grey mottled	PUT PARAMETERS: Total volume of pit appths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p_{75}) 25% effective depth (p_{25}) depth Vp75-25 = V x Pg 0% effective depth (A_{p50}) '5% effective depth (p_{75}) 25% effective depth (p_{25}) '5% effective depth (p_{75} -25 Ap50 x T _{p75 - 25} Ap50 x T _{p75 - 25} in 3 Minut with orangish brown sand	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ²) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s	2.59 1.30 1.60 0.00 2.59 0.40 1.20
	90 150 210 270 360 480 600 720 840 1200 1800 3000 5400 9000 18000 16200 19800 25200 86400 00800	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00 330.00 420.00 1440.00	0.560 0.	Pit volume betwee Prop Leve Effective volume be Surfac Time for outflow SOIL INFILTRATIO WATER INPUT: GEOLOGY OF TEST	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 7 Time at 2 for 75% and 25% ef N RATE (f) Unkown SECTION: Light grey mottled	PUT PARAMETERS: Total volume of pit appths = L x W x $\frac{1}{2D}$ Effective depth of Pit occupied by gravel solids otential volume of Water '5% effective depth (p_{75}) '5% effective depth (p_{25}) '0% effective depth (A_{p50}) '5% effective depth (A_{p50}) '5% effective depth (p_{25}) '5% effective depth (p_{25}) '5% effective depth (p_{25}) '5% effective depth (p_{75} - 25 'a $A_{p50} \times T_{p75 - 25}$ 'a $A_{p50} \times T_{p75 - 25}$ in 3 Minut with orangish brown sand 'Compiled by: 'Checked but'	(m ³) (m ³) (0-1) (m ³) (m) (m) (m ²) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s	2.59 1.30 1.60 0.00 2.59 0.40 1.20
11 11 12 8 11	90 150 210 270 360 480 600 720 840 1200 1800 1200 1800 16200 19800 25200 86400 100800 BRE Direct	0.30 1.50 2.50 3.50 4.50 6.00 8.00 10.00 12.00 14.00 20.00 30.00 50.00 90.00 150.00 300.00 270.00 330.00 420.00 1440.00 1680.00	0.560 0.	Pit volume betwee Prop Leve Effective volume be Surfac Time for outflow SOIL INFILTRATIO WATER INPUT: GEOLOGY OF TEST	en 75% and 25% de ortion of pit volume Maximum p el of water in pit at 7 el of water in pit at 2 etween 75% & 25% e area of pit up to 50 Time at 7 Time at 7 Time at 2 for 75% and 25% ef N RATE (f) Unkown SECTION: Light grey mottled	PUT PARAMETERS: Total volume of pit appths = L x W x $\frac{1}{2D}$ Effective depth of Pit boccupied by gravel solids otential volume of Water '5% effective depth (p_{75}) '5% effective depth (p_{25}) '25% effective depth (p_{75}) '5% effective depth (p_{75}) '5% effective depth (p_{75}) '5% effective depth (p_{25}) '5% effective depth (p_{75} -25 '6 '0UTPUT: $V_{p75 - 25}$ $A_{p50} \times T_{p75 - 25}$ in 3 Minut with orangish brown sand Compiled by: Checked by:	(m ³) (m ³) (0-1) (m ³) (m) (m ³) (m ²) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s	2.59 1.30 1.60 0.00 2.59 0.40 1.20 #N/A #N/A #N/A #N/A #N/A Y. TB NB Page 1 of 1

W	YG F	nviron	mont			DATE:		14/09/2021
			ment		1	PROJECT No:		B029129
					wyg.	PROJECT NAME:	Sha	w Lane, Carlton
Fasting		Consultance			00	CLIENT:	N	etwork Space
Grour	onmentai nd Engine	consultancy ering Services				TEST NUMBED		
Groui			TEST - SOT		ON RATE/DE			
 	50							
	0.00 —							
	0.20							
Ξ								
se l	0.40	\times \wedge \wedge			• = = = = = = = =		-	
l p		· •						
our l	0.60							
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	·							
	0.80							
ter b	_							
wat	1 00							
h of								
bt	- 1 00							
	1.20							
	1.40 +		20000	40000	60000	80000	100000	120000
	Ũ		Time from	filling to maximum of	factive denth (seco	nde)		
			Time iron	r mining to maximum er	lective depth (Seco	jild3)		
Time	Flansed	Time Flansed	Distance to water surface	PIT LENGTH (m):	2.60	Pit	constructi	on
TITIC	(s)	(mins)	from ground	PIT WIDTH (m):	0.50	TEREX TML 32 - Wheele	d Excavator	
	0	0.00	level (m)	PIT DEPTH (m):	1.55			
	0	0.00	0.430		11	Total volume of nit	(m ³)	2.02
	90	1 50	0.430	Pit volume betwe	en 75% and 25% de	Potential volume of pic	(m ³)	1.01
	150	2.50	0.430			Effective depth of Pit	(m)	1.55
	210	3.50	0.430	Propo	ortion of pit volume	occupied by gravel solids	(0-1)	0.00
	270	4.50	0.430		Maximum p	otential volume of Water	(m ³)	2.02
	360	6.00	0.440	Leve	el of water in pit at 7	'5% effective depth (p ₇₅)	(m)	0.39
	480	8.00	0.440	Leve	el of water in pit at 2	5% effective depth (p ₂₅)	(m)	1.16
	600	10.00	0.440	Effective velume he	twoon 750/ 9 250/	donth \/n==== \/ y Da	(m^{3})	1.01
	720 840	12.00	0.440	Surface	e area of pit up to 50	We frective depth (A_{max})	(m^2)	6.11
	1200	20.00	0.440	Sunder			()	
	1800	30.00	0.440		Time at 7	'5% effective depth (p ₇₅)	(S)	#N/A
	3000	50.00	0.440		Time at 2	5% effective depth (p ₂₅)	(s)	#N/A
	5400	90.00	0.440	Time for outflow	for 75% and 25% ef	fective depth (Tp75-25)	(s)	#N/A
9	9000	150.00	0.440			OUTPUT:		
1	12600	210.00	0.450	SOIL INFILTRATION	N RATE (f)	V _{p75 - 25}	(m/s)	#N/A
	10200	270.00	0.460			A _{p50} X I _{p75 - 25}		
-		330.00	0.400			in	ites	
7	79200	1320.00	0 490	WATER INPLIT:		in 75 mini		
7	79200 36400	1320.00 1440.00	0.490	WATER INPUT:	SECTION:			
7 8 9	79200 86400 97800	1320.00 1440.00 1630.00	0.490 0.500 0.520	WATER INPUT: GEOLOGY OF TEST S Light gr	SECTION: rey mottled with orar	ngish brown slightly sandy	y gravelly si	ity CLAY.
7 8 9	79200 36400 97800	1320.00 1440.00 1630.00	0.490 0.500 0.520	WATER INPUT: GEOLOGY OF TEST S Light gr	SECTION: rey mottled with orar	ngish brown slightly sand	y gravelly si	ilty CLAY.
7 8 9	79200 36400 97800	1320.00 1440.00 1630.00	0.490 0.500 0.520	WATER INPUT: GEOLOGY OF TEST S Light gr	SECTION: rey mottled with orar	ngish brown slightly sandy	y gravelly si	ilty CLAY.
7 8 9	79200 36400 97800	1320.00 1440.00 1630.00	0.490 0.500 0.520	WATER INPUT: GEOLOGY OF TEST S Light gr	SECTION: rey mottled with orar	ngish brown slightly sandy Compiled by:	y gravelly si	ilty CLAY.
	79200 36400 97800	1320.00 1440.00 1630.00	0.490 0.500 0.520	WATER INPUT: GEOLOGY OF TEST S Light gr	SECTION: rey mottled with orar	ngish brown slightly sandy Compiled by: Checked by:	y gravelly si	ilty CLAY. TB NB

APPENDIX I – HAZWASTE ONLINE DATA

www.hazwasteonline.com

Waste Classification Report

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)

- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

B029129 Shaw Lane, Carlton

Description/Comments

Project B029129

Classified by

Name:	Company:
Abigail Walters	Tetra Tech (WYG (White Young Green))
Date:	Geneva Building, Lake View Drive,
11 Nov 2021 14:05 GMT	Sherwood Business Park, Annesley
Telephone:	Nottingham
01623 684 565	NG15 0ED

Course Hazardous Waste Classification

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline[™] Certification:

3 year Refresher overdue

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	DS01 ES2	0.50	Non Hazardous		2
2	DS04 ES1	0.10	Non Hazardous		5
3	DS04 ES2	0.50	Non Hazardous		7
4	DS03 ES2	0.40	Non Hazardous		10
5	SA01 ES1	0.30	Non Hazardous		12
6	SA02 ES2	0.60	Non Hazardous		15
7	SA03 ES2	0.50	Non Hazardous		17
8	TP07 ES1	0.20	Non Hazardous		20
9	TP04 ES1	0.20	Non Hazardous		22
10	TP02 ES2	0.50	Non Hazardous		25
11	TP03 ES2	1.0	Non Hazardous		28
12	TP03 ES3	1.5	Non Hazardous		30
13	TP05 ES2	0.50	Non Hazardous		33

Site

Shaw Lane, Carlton

Related documents

#	Name	Description
1	Example waste stream template for contaminated soils	waste stream template used to create this Job

Report

Created by: Abigail Walters	Created date: 11 Nov 2021 14:05 GMT
Annendices	Paga
Appendices	1 age
Appendix A. Classifier defined and for our our our determinands	30
Appendix B: Rationale for selection of metal species	36
Appendix C: Version	37

PB-WHBD9-4MSKE

Date

15 Mar 2018

Classification of sample: DS01 ES2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
DS01 ES2	Chapter:
Sample Depth:	
0.50 m	Entry:
Moisture content:	
18.2%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 18.2% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		19.5 mg/kg	1.32	25.746 mg/kg	0.00257 %		
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		3.5 mg/kg	3.22	11.27 mg/kg	0.00113 %		
3	4	cadmium { cadmium oxide }		0.5 mg/kg	1.142	0.571 mg/kg	0.0000571 %		
4	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		41.1 mg/kg	1.462	60.07 mg/kg	0.00601 %		
5	4	chromium in chromium (VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		89 mg/kg	1.126	100.204 mg/kg	0.01 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	72 mg/kg	1.56	112.307 mg/kg	0.0072 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.2 mg/kg	1.353	0.271 mg/kg	0.0000271 %		
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 [14721-18-7		32.8 mg/kg	2.976	97.621 mg/kg	0.00976 %		
10	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		2 mg/kg	2.554	5.108 mg/kg	0.000511 %		
11	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		115 mg/kg	2.774	319.027 mg/kg	0.0319 %		
12	8	TPH (C6 to C40) petroleum group		259 mg/kg		259 mg/kg	0.0259 %		
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
14		benzene 601-020-00-8 200-753-7 71-43-2		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
15		toluene 601-021-00-3 203-625-9 108-88-3		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
16		ethylbenzene 601-023-00-4 202-849-4 100-41-4		8 mg/kg		8 mg/kg	0.0008 %		

#		Determinand			Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLF							ВC	
		xylene											
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		50	mg/kg		50	mg/kg	0.005 %		
18	~	cyanides { ⁹ salts exception of compl ferricyanides and n specified elsewhere	of hydrogen cyanid ex cyanides such a nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5			_								
19	8	рН	1		_	7.85	pН		7.85	pН	7.85 pH		
<u> </u>		nanhthalana		PH	_								
20		601-052-00-2	202-049-5	91-20-3	_	0.4	mg/kg		0.4	mg/kg	0.00004 %		
		acenaphthylene	202 043 3	51 20 0									
21	ľ		205-917-1	208-96-8	-	0.08	mg/kg		0.08	mg/kg	0.000008 %		
22		acenaphthene				0.00	ma/ka		0.09	ma/ka	0 000009 %		
			201-469-6	83-32-9		0.03	iiig/kg		0.03	iiig/kg	0.000003 /8		
23		fluorene				0.08	mg/kg		0.08	mg/kg	0.000008 %		
			201-695-5	86-73-7									
24	۲	phenanthrene		05.04.0		1.6	mg/kg		1.6	mg/kg	0.00016 %		
		anthracana	201-581-5	85-01-8	-								
25		anunacene	204-371-1	120-12-7	_	0.4	mg/kg		0.4	mg/kg	0.00004 %		
-		fluoranthene		120 12 1									
26			205-912-4	206-44-0	-	3.23	mg/kg		3.23	mg/kg	0.000323 %		
27		pyrene				2.52	ma/ka		2.52	ma/ka	0.000252.%		
			204-927-3	129-00-0		2.52	шу/ку		2.52	iiig/kg	0.000232 /0		
28		benzo[a]anthracen	е			1.41	ma/ka		1.41	ma/ka	0.000141 %		
		601-033-00-9	200-280-6	56-55-3									
29		chrysene				1.47	mg/kg		1.47	mg/kg	0.000147 %		
<u> </u>	-	601-048-00-0	205-923-4	218-01-9								\vdash	
30		601-034-00-4	b05-011-0	205-00-2	_	1.86	mg/kg		1.86	mg/kg	0.000186 %		
	-	benzo[k]fluoranthei	ne	L00 00 L	-							\vdash	
31		601-036-00-5	205-916-6	207-08-9	_	0.73	mg/kg		0.73	mg/kg	0.000073 %		
20		benzo[a]pyrene; be	enzo[def]chrysene			1.40	mc//		4 40	mc//	0.000143.8/	\square	
32		601-032-00-3	200-028-5	50-32-8	-	1.42	mg/kg		1.42	тg/кg	0.000142 %		
33		indeno[123-cd]pyre	ene			0.83	ma/ka		0.83	ma/ka	0.000083 %		
			205-893-2	193-39-5									
34		dibenz[a,h]anthrac	ene	1		0.19	mg/kg		0.19	mg/kg	0.000019 %		
		601-041-00-2	200-181-8	53-70-3									
35	8	benzo[ghi]perylene	;	404.04.0		0.76	mg/kg		0.76	mg/kg	0.000076 %		
	-	phonol	205-883-8	191-24-2	_							\vdash	
36		604-001-00-2	203-632-7	108-95-2	_	<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
		00- 001-00-2	200 002-1	100-30-2				l		Total:	0.104 %		

|--|

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product <mark>in samples.</mark>

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

ethylbenzene: (conc.: 0.0008%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0259%) xylene: (conc.: 0.005%)

Classification of sample: DS04 ES1

Sample details

Sample name:	LoW Code:	
DS04 ES1	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.10 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15.4%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15.4% No Moisture Correction applied (MC)

#			Determinand		Note	User entere	d data	Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used	
		CLP index number	EC Number	CAS Number	CLP							MC /	
1	8	TPH (C6 to C40) p	etroleum group			84	ma/ka		84	ma/ka	0.0084 %		
		-		TPH									
2		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane			<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
3		benzene				<5	ma/ka		<5	ma/ka	<0.0005 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
4		toluene				<5	ma/ka		<5	ma/ka	<0.0005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
5	0	ethylbenzene				6	ma/ka		6	ma/ka	0 0006 %		
Ŭ		601-023-00-4	202-849-4	100-41-4		<u> </u>							
		xylene											
6		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		33	mg/kg		33	mg/kg	0.0033 %		
7	0	pН		·		8.42	ρHα		8.42	рΗ	8.42 pH		
				PH		02	P			p	0 <u>=</u> p		
8		naphthalene				0.43	ma/ka		0.43	ma/ka	0 000043 %		
-		601-052-00-2	202-049-5	91-20-3									
9	0	acenaphthylene				0.69	ma/ka		0.69	ma/ka	0 000069 %		
_			205-917-1	208-96-8									
10	8	acenaphthene				0.99	ma/ka		0.99	ma/ka	0 000099 %		
			201-469-6	83-32-9									
11	0	fluorene				0.89	ma/ka		0.89	ma/ka	0 000089 %		
			201-695-5	86-73-7									
12	0	phenanthrene				9.42	ma/ka		9 42	ma/ka	0 000942 %		
			201-581-5	85-01-8		0.12			0.12	iiig/itg	0.000012 /0		
13	0	anthracene				4 21	ma/ka		4 21	ma/ka	0 000421 %		
			204-371-1	120-12-7						iiig/itg	0.000121 /0		
14	0	fluoranthene				20.67	ma/ka		20.67	ma/ka	0 00207 %		
14			205-912-4	206-44-0		20.07	ing/kg		20.07	iiig/itg	0.00207 /0		
15	8	pyrene			18 19	ma/ka		18 10	ma/ka	0 00182 %			
			204-927-3	129-00-0		10.10			10.10		5.00102 /0		
16		benzo[a]anthracen	enzo[a]anthracene			12 12	ma/ka		12.12	ma/ka	0.00121 %		
		601-033-00-9	200-280-6	56-55-3			5.5						

www.hazwasteonline.com

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound co	onc.	Classification value	AC Applied	Conc. Not Used
17		chrysene 601-048-00-0	205-923-4	218-01-9		10.13	mg/kg		10.13	mg/kg	0.00101 %		
18		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		14.08	mg/kg		14.08	mg/kg	0.00141 %		
19		benzo[k]fluoranthei 601-036-00-5	ne 205-916-6	207-08-9		5.48	mg/kg		5.48	mg/kg	0.000548 %		
20		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		11.17	mg/kg		11.17	mg/kg	0.00112 %		
21	8	indeno[123-cd]pyre	ene 205-893-2	193-39-5		7.07	mg/kg		7.07	mg/kg	0.000707 %		
22		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		1.35	mg/kg		1.35	mg/kg	0.000135 %		
23	Θ	benzo[ghi]perylene	205-883-8	191-24-2		6.72	mg/kg		6.72	mg/kg	0.000672 %		
										Total:	0.0262 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	

ND Not detected

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product in samples.

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

ethylbenzene: (conc.: 0.0006%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0084%) xylene: (conc.: 0.0033%)

Classification of sample: DS04 ES2

Sample details

Sample name:	LoW Code:	
DS04 ES2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11.7%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 11.7% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	1C Applied	Conc. Not Used
4	<u> </u>	arsenic { arsenic tri	oxide }			7	1.00	0.040 mg/kg	0.000024.0/	≥	
'		033-003-00-0	215-481-4	1327-53-3		/ mg/kg	1.32	9.242 Hig/kg	0.000924 %		
2	2	boron { diboron trio	xide; boric oxide }	·		1.2 ma/ka	2 22	3.964 ma/ka	0 000386 %		
2		005-008-00-8	215-125-8	1303-86-2		1.2 mg/kg	3.22	5.004 Hig/kg	0.000360 %		
2	2	cadmium { cadmiur	<mark>n oxide</mark> }			0.5 ma/ka	1 1 1 1 2	0.571 ma/ka	0 0000571 %		
5		048-002-00-0	215-146-2	1306-19-0		0.0 111g/kg	1.142	0.071 119/kg	0.0000371 /8		
4	6	chromium in chrom <mark>oxide (worst case)</mark>	ium(III) compounds }	; { [•] <mark>chromium(III)</mark>		81.4 mg/kg	1.462	118.971 mg/kg	0.0119 %		
		ala and son in a language	215-160-9	1308-38-9	-						
5	4	compounds, with th of compounds spec	e exception of barin cified elsewhere in t	um chromate and his Annex }	n.	<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< th=""></lod<>
_	•	coppor { dicoppor c	vido: connor (I) ovi								
6	4	029-002-00-X	215-270-7	1317-39-1		43 mg/kg	1.126	48.413 mg/kg	0.00484 %		
	-	lead { lead chromat	P }	1017 00 1							
7	*	082-004-00-2	231-846-0	7758-97-6	1	46 mg/kg	1.56	71.751 mg/kg	0.0046 %		
	mercury { mercury dichloride }						0.407 (
8	~	080-010-00-X	231-299-8	7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
0	2	<pre># nickel { nickel chromate }</pre>				16 E	2.076	40.100 ma/ka	0.00401.0/		
9		028-035-00-7	238-766-5	14721-18-7		16.5 mg/kg	2.976	49.108 mg/kg	0.00491 %		
10	8	selenium { nickel se	elenate }	·		-1 mg/kg	2 554	<2.554 ma/ka	<0.000255.%		
10		028-031-00-5	239-125-2	15060-62-5			2.334	<2.554 Hig/kg	<0.000233 /8		<lod< td=""></lod<>
11	4	zinc { zinc chromate	e}			110 ma/ka	2 774	305 156 ma/ka	0 0305 %		
		024-007-00-3	236-878-9	13530-65-9			2				
12	0	TPH (C6 to C40) pe	etroleum group			450 ma/ka		450 ma/ka	0.045 %		
				TPH				0 0			
13		tert-butyl methyl eth 2-methoxy-2-methy	ner; MTBE; /lpropane			<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	1						
14		benzene				<5 ma/ka		<5 ma/ka	<0.0005 %		
14		601-020-00-8	200-753-7	71-43-2					<0.0000 //		LOD
15		toluene				<5 ma/ka		<5 ma/ka	<0.0005 %		<lod< th=""></lod<>
		601-021-00-3	203-625-9	108-88-3							
16	۲	ethylbenzene				<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
		601-023-00-4	202-849-4	100-41-4				0 0			

#		Determinand		Note	User entered c	lata	Conv. Factor	Compound of	conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number	CAS Number	CLF							MC	
		xylene										
17		601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		9 r	ng/kg		9	mg/kg	0.0009 %		
18	*	cyanides { salts of hydrogen cyanide exception of complex cyanides such as ferricyanides and mercuric oxycyanide specified elsewhere in this Annex }	e with the s ferrocyanides, and those		<0.5 r	ng/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5										
19	۲	рН			8.47 p	ын		8.47	pН	8.47 pH		
<u> </u>			PH									
20		naphthalene	01-20-3		0.88 r	ng/kg		0.88	mg/kg	0.000088 %		
		acenaphthylene	51-20-3									
21	9	205-917-1	208-96-8		0.37 r	ng/kg		0.37	mg/kg	0.000037 %		
22		acenaphthene	I		0.68 r	na/ka		0.68	ma/ka	0 000068 %		
		201-469-6	83-32-9			iig/itg			ing/ng	0.000000 /0		
23	۲	fluorene			0.65 r	ng/kg		0.65	mg/kg	0.000065 %		
-		201-695-5	86-73-7	-								
24	۲	201-581-5	85-01-8		5.76 r	ng/kg		5.76	mg/kg	0.000576 %		
		anthracene	05-01-0									
25		204-371-1	120-12-7		1.76 r	ng/kg		1.76	mg/kg	0.000176 %		
26		fluoranthene	1		0.20	na/ka		0.20	malka	0.00020.%		
20		205-912-4	206-44-0		9.39	пу/ку		9.39	шу/ку	0.000939 %		
27	8	pyrene			8.36 r	na/ka		8.36	ma/ka	0.000836 %		
		204-927-3	129-00-0									
28		benzo[a]anthracene			4.88 r	ng/kg		4.88	mg/kg	0.000488 %		
		601-033-00-9 200-280-6	56-55-3									
29			b40.04.0		4.68 r	ng/kg		4.68	mg/kg	0.000468 %		
		601-048-00-0 205-923-4	218-01-9									
30		601-034-00-4 205-911-9	205-99-2		6.09 r	ng/kg		6.09	mg/kg	0.000609 %		
	_	benzo[k]fluoranthene	200 00 2									
31		601-036-00-5 205-916-6	207-08-9		2.37 r	ng/kg		2.37	mg/kg	0.000237 %		
		benzo[a]pyrene; benzo[def]chrysene			5.04			5.04		0.000504.0/		
32		601-032-00-3 200-028-5	50-32-8	1	5.04 r	ng/kg		5.04	тд/кд	0.000504 %		
33	8	indeno[123-cd]pyrene			2.98 r	na/ka		2 98	ma/ka	0 000298 %		
		205-893-2	193-39-5		2.00 1	iig/itg		2.00	ing/kg	0.000200 /0		
34		dibenz[a,h]anthracene			0.7 r	ng/kg		0.7	mg/kg	0.00007 %		
<u> </u>		601-041-00-2 200-181-8	53-70-3	-								
35	8	benzo[ghi]perylene	404 04 0		2.94 r	ng/kg		2.94	mg/kg	0.000294 %		
<u> </u>		205-883-8	191-24-2	+							\vdash	
36		604-001-00-2 203-632-7	108-95-2		<0.15 r	ng/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
									Total:	0.112 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product <mark>in samples.</mark>

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.045%) xylene: (conc.: 0.0009%)

Classification of sample: DS03 ES2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
DS03 ES2	Chapter:
Sample Depth:	
0.40 m	Entry:
Moisture content:	
24.3%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 24.3% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	1C Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3	U I	17.1 mg/kg	1.32	22.578 mg/kg	0.00226 %	Σ	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		2.5 mg/kg	3.22	8.05 mg/kg	0.000805 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.6 mg/kg	1.142	0.685 mg/kg	0.0000685 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		44.1 mg/kg	1.462	64.455 mg/kg	0.00645 %		
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		72 mg/kg	1.126	81.064 mg/kg	0.00811 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	47 mg/kg	1.56	73.311 mg/kg	0.0047 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		27.8 mg/kg	2.976	82.74 mg/kg	0.00827 %		
10	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		1 mg/kg	2.554	2.554 mg/kg	0.000255 %		
11	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		133 mg/kg	2.774	368.961 mg/kg	0.0369 %		
12	8	TPH (C6 to C40) petroleum group		189 mg/kg		189 mg/kg	0.0189 %		
13	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
14	8	pH PH		7.44 pH		7.44 pH	7.44 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3		0.05 mg/kg		0.05 mg/kg	0.000005 %		

Page 10 of 37

HazWasteOnline[™]

Report created by Abigail Walters on 11 Nov 2021

#		Determinand CLP index number EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound cor	IC.	Classification value	MC Applied	Conc. Not Used
16	8	acenaphthylene	208-96-8		<0.03	mg/kg		<0.03 n	ng/kg	<0.000003 %		<lod< th=""></lod<>
17	0	acenaphthene	200-30-0		<0.05	mg/kg		<0.05 m	ng/kg	<0.000005 %		<lod< th=""></lod<>
		fluorene	83-32-9									
18		201-695-5	86-73-7		<0.04	mg/kg		<0.04 m	ng/kg	<0.000004 %		<lod< th=""></lod<>
19	8	phenanthrene 201-581-5	85-01-8		0.1	mg/kg		0.1 m	ng/kg	0.00001 %		
20	۲	anthracene	120-12-7		<0.04	mg/kg		<0.04 n	ng/kg	<0.000004 %		<lod< th=""></lod<>
21	۰	fluoranthene	206-44-0		0.12	mg/kg		0.12 m	ng/kg	0.000012 %		
22	8	pyrene	400.00.0		0.11	mg/kg		0.11 m	ng/kg	0.000011 %		
		204-927-3	129-00-0									
23		601-033-00-9 200-280-6	56-55-3		0.09	mg/kg		0.09 n	ng/kg	0.000009 %		
24		chrysene			0.1	mg/kg		0.1 n	ng/kg	0.00001 %		
		601-048-00-0 205-923-4	218-01-9									
25		601-034-00-4 205-911-9	205-99-2		0.11	mg/kg		0.11 m	ng/kg	0.000011 %		
26		benzo[k]fluoranthene			0.04			0.04	~///~	0.000004.8/		
20		601-036-00-5 205-916-6	207-08-9		0.04	тід/кд		0.04 11	ід/кд	0.000004 %		
27		benzo[a]pyrene; benzo[def]chrysene			0.09	mg/kg		0.09 m	ng/kg	0.000009 %		
		601-032-00-3 200-028-5	50-32-8									
28	۲	Indeno[123-cd]pyrene 205-893-2	193-39-5		0.05	mg/kg		0.05 m	ng/kg	0.000005 %		
20		dibenz[a,h]anthracene			<0.04	ma/ka		<0.04 m	aa/ka	<0.000004.%		
29		601-041-00-2 200-181-8	53-70-3		<0.04	шу/ку		<0.04 11	іу/ку	<0.000004 /8		LOD
30	0	benzo[ghi]perylene			0.05 m	mg/kg		0.05 m	ng/kg	0.000005 %		
<u> </u>		205-883-8	191-24-2									
31		phenol	109 05 2		<0.15	mg/kg		<0.15 m	ng/kg	<0.000015 %		<lod< th=""></lod<>
\vdash		UU4-UU1-UU-Z ZU3-U3Z-1	100-30-2						Total:	0.087 %	\square	

Key

Rey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product in samples.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0189%)

Classification of sample: SA01 ES1

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
SA01 ES1	Chapter:
Sample Depth:	
0.30 m	Entry:
Moisture content:	
18.9%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 18.9% No Moisture Correction applied (MC)

#		CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		12 mg/kg	1.32	15.844 mg/kg	0.00158 %	<	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		2 mg/kg	3.22	6.44 mg/kg	0.000644 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.6 mg/kg	1.142	0.685 mg/kg	0.0000685 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		39.2 mg/kg	1.462	57.293 mg/kg	0.00573 %		
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		67 mg/kg	1.126	75.435 mg/kg	0.00754 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	83 mg/kg	1.56	129.465 mg/kg	0.0083 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 [14721-18-7		23.4 mg/kg	2.976	69.645 mg/kg	0.00696 %		
10	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		<1 mg/kg	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
11	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		153 mg/kg	2.774	424.444 mg/kg	0.0424 %		
12	8	TPH (C6 to C40) petroleum group		495 mg/kg		495 mg/kg	0.0495 %		
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
14		benzene 601-020-00-8 200-753-7 71-43-2		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
15		toluene 601-021-00-3 203-625-9 108-88-3		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
16	8	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>

#			Determinand		Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
		xylene											
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
18	4	cyanides { ^a salts exception of compl ferricyanides and r specified elsewher	of hydrogen cyanid lex cyanides such a nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
19	0	рН				8.21	pН		8.21	pН	8.21 pH		
				PH	_								
20		naphthalene 601-052-00-2	202-049-5	91-20-3	_	0.13	mg/kg		0.13	mg/kg	0.000013 %		
		acenaphthylene	,			0.45			0.45		0.000045.0/		
21			205-917-1	208-96-8		0.15	тg/кg		0.15	mg/kg	0.000015 %		
22		acenaphthene				0.08	ma/ka		0.08	ma/ka	0 000008 %		
			201-469-6	83-32-9		0.00	iiig/itg		0.00		0.000000 /8		
23	0	fluorene				0.08	ma/ka		0.08	mg/kg	0.000008 %		
			201-695-5	86-73-7									
24	0	phenanthrene				1.06	mg/kg		1.06	mg/kg	0.000106 %		
			201-581-5	85-01-8	_								
25	0	anthracene	004.074.4	400 40 7	_	0.5	mg/kg		0.5	mg/kg	0.00005 %		
<u> </u>		fluoranthana	204-371-1	120-12-7	+								
26	0		205 012 4	206 44 0	_	3.53	mg/kg		3.53	mg/kg	0.000353 %		
-		pyrene	200-012-4	200-44-0	+								
27			204-927-3	129-00-0	-	3.31	mg/kg		3.31	mg/kg	0.000331 %		
		benzolalanthracen	e	1.20 00 0									
28		601-033-00-9	200-280-6	56-55-3	-	2.72	mg/kg		2.72	mg/kg	0.000272 %		
20		chrysene				2.60	ma/ka		2 60	ma/ka	0 000269 %		
29		601-048-00-0	205-923-4	218-01-9		2.08	ту/кд		2.00	тту/кд	0.000208 %		
30		benzo[b]fluoranthe	ne			3.43	ma/ka		3 43	ma/ka	0 000343 %		
		601-034-00-4	205-911-9	205-99-2		0.40	ing/kg		0.+0	iiig/kg	0.000040 /0		
31		benzo[k]fluoranthe	ne			1.34	ma/ka		1.34	ma/ka	0.000134 %		
		601-036-00-5	205-916-6	207-08-9	1_		J9						
32		benzo[a]pyrene; be	enzo[def]chrysene			2.43	mg/kg		2.43	mg/kg	0.000243 %		
		601-032-00-3	200-028-5	50-32-8									
33	8	indeno[123-cd]pyre	ene	1400.00.5	_	1.37	mg/kg		1.37	mg/kg	0.000137 %		
<u> </u>	-	dihanafa blaath	KN2-893-2	193-39-5	+								
34		ubenzla,njantnrac		52 70 2	_	0.26	mg/kg		0.26	mg/kg	0.000026 %		
<u> </u>	-	benzo[abi]nervlond	<u>kon-101-0</u>	05-10-3	-								
35		Sourcolonilber Melle	205-883-8	191-24-2	-	1.31	mg/kg		1.31	mg/kg	0.000131 %		
		phenol	F										
36		604-001-00-2	203-632-7	108-95-2	-	<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
										Total:	0.128 %		

|--|

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product <mark>in samples.</mark>

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0495%)

Classification of sample: SA02 ES2

Sample details

Sample name:	LoW Code:	
SA02 ES2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17.6%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 17.6% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number		User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	8	TPH (C6 to C40) petroleum group		<30 mg/kg		<30 mg/kg	<0.003 %		<lod< th=""></lod<>
2	8	pH		8.2 pH		8.2 pH	8.2 pH		
3		naphthalene		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
4	8	acenaphthylene		<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
5	۵	acenaphthene		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
6	0	fluorene 201-695-5 86-73-7		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
7	8	phenanthrene 201-581-5 85-01-8		<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
8	Θ	anthracene 204-371-1 120-12-7		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
9	8	fluoranthene 205-912-4 206-44-0		<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
10	۲	pyrene 204-927-3 129-00-0		<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
11		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		<0.06 mg/kg		<0.06 mg/kg	<0.000006 %		<lod< td=""></lod<>
12		chrysene 601-048-00-0 205-923-4 218-01-9		0.04 mg/kg		0.04 mg/kg	0.000004 %		
13		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
14		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9		<0.02 mg/kg		<0.02 mg/kg	<0.000002 %		<lod< td=""></lod<>
15		benzo[a]pyrene; benzo[def]chrysene		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
16	Θ	indeno[123-cd]pyrene 205-893-2 193-39-5		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
17		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>

#			Determinand		o Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLF					MC	
18	8	benzo[ghi]perylene				<0.04 ma/ka	a	<0.04 ma/ka	<0.000004 %		<lod< th=""></lod<>
			205-883-8	191-24-2	_						
								Total:	0.00306 %		

Key

,	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected

Classification of sample: SA03 ES2

Sample details

Sample name:	LoW Code:	
SA03 ES2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
21.6%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 21.6% No Moisture Correction applied (MC)

#		Determinand	Note	User entered data Conv. Factor Compound conc. Classificati		Classification value	Applied	Conc. Not Used	
		CLP index number EC Number CAS Number	CLP						
1	4	arsenic { arsenic trioxide }		6.8 ma/ka	1.32	8.978 ma/ka	0.000898 %		
		033-003-00-0 215-481-4 1327-53-3							
2	4	boron { diboron trioxide; boric oxide }		0.6 mg/kg	3.22	1.932 mg/kg	0.000193 %		
		005-008-00-8 215-125-8 1303-86-2							
3	4	cadmium { cadmium oxide }		0.2 mg/kg	1.142	0.228 mg/kg	0.0000228 %		
		048-002-00-0 215-146-2 1306-19-0							
4	*	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		42.7 mg/kg	1.462	62.408 mg/kg	0.00624 %		
		215-160-9 1308-38-9							
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
		024-017-00-8							
6	4	copper { dicopper oxide; copper (I) oxide }		26 mg/kg	1.126	29.273 mg/kg	0.00293 %		
		029-002-00-X 215-270-7 1317-39-1							
7	4	lead { lead chromate }	1	18 mg/kg	1.56	28.077 mg/kg	0.0018 %		
		082-004-00-2 231-846-0 //58-97-6							
8	4	mercury { mercury dichloride }		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
	-	nickel (nickel chromate)			2.976		0.0146 %		
9	*	110001 { 110001 (110001 ate }		49.2 mg/kg		146.432 mg/kg			
		selenium / nickel selenate }							
10	*	028-031-00-5 239-125-2 15060-62-5		1 mg/kg	2.554	2.554 mg/kg	0.000255 %		
		zinc { zinc chromate }							
11	*	024-007-00-3 236-878-9 13530-65-9		87 mg/kg	2.774	241.351 mg/kg	0.0241 %		
10		TPH (C6 to C40) petroleum group		20		20	0.000.00		
12		ТРН		<30 mg/kg		<30 mg/kg	<0.003 %		<lod< td=""></lod<>
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4							
14		benzene		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2	-						
15		toluene		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
		ou1-021-00-3 203-625-9 [108-88-3	_					\vdash	
16	8			<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
		001-023-00-4 202-049-4 [100-41-4							

www.hazwasteonline.com

#		Determinand		INULE	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number	CAS Number	5					MC	
17		xylene 601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		15 mg/kg		15 mg/k	g 0.0015 %		
18	4	cyanides { Salts of hydrogen cyanide exception of complex cyanides such as ferricyanides and mercuric oxycyanide specified elsewhere in this Annex }	with the ferrocyanides, and those		<0.5 mg/kg	1.884	<0.942 mg/k	g <0.0000942 %		<lod< td=""></lod<>
19	8	pH			7.98 pH		7.98 pH	7.98 pH	Η	
-			PH							
20		601-052-00-2 202-049-5	91-20-3		<0.04 mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
21	۲	acenaphthylene 205-917-1	208-96-8		<0.03 mg/kg		<0.03 mg/k	g <0.000003 %		<lod< td=""></lod<>
22	8	acenaphthene 201-469-6	33-32-9		<0.05 mg/kg		<0.05 mg/k	g <0.000005 %		<lod< td=""></lod<>
23	۲	fluorene 201-695-5	36-73-7		<0.04 mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
24	8	phenanthrene	85-01-8		<0.03 mg/kg		<0.03 mg/k	g <0.000003 %	Π	<lod< td=""></lod<>
25	8	anthracene 204-371-1	120-12-7		<0.04 mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
26	8	fluoranthene	206.44.0		<0.03 mg/kg		<0.03 mg/k	g <0.000003 %	Π	<lod< td=""></lod<>
27	8	pyrene	400.00.0		<0.03 mg/kg		<0.03 mg/k	g <0.000003 %		<lod< td=""></lod<>
		204-927-3	129-00-0						H	
28		601-033-00-9 200-280-6	56-55-3		<0.06 mg/kg		<0.06 mg/k	g <0.000006 %		<lod< td=""></lod<>
29		chrysene 601-048-00-0 205-923-4	218-01-9		<0.02 mg/kg		<0.02 mg/k	g <0.000002 %		<lod< td=""></lod<>
30		benzo[b]fluoranthene	205-99-2		<0.05 mg/kg		<0.05 mg/k	g <0.000005 %		<lod< td=""></lod<>
31		benzo[k]fluoranthene	207-08-9		<0.02 mg/kg		<0.02 mg/k	g <0.000002 %		<lod< td=""></lod<>
32		benzo[a]pyrene; benzo[def]chrysene	50-32-8		<0.04 mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
33	8	indeno[123-cd]pyrene	193-39-5		<0.04 mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
34		dibenz[a,h]anthracene	53-70-3		<0.04 mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
	0	benzo[ghi]perylene	JU 70-0						Η	
35		205-883-8	191-24-2		<0.04 mg/kg		<0.04 mg/k	g <0.000004 %		<lod< td=""></lod<>
36		phenol	108-95-2		<0.15 mg/kg		<0.15 mg/k	g <0.000015 %		<lod< td=""></lod<>
	L						Tota	l: 0.0579 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product <mark>in samples.</mark>

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

xylene: (conc.: 0.0015%)

Classification of sample: TP07 ES1

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
TP07 ES1	Chapter:
Sample Depth:	
0.20 m	Entry:
Moisture content:	
25.2%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 25.2% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	AC Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		14.2 mg/kg	1.32	18.749 mg/kg	0.00187 %	<	
2	4	boron { diboron trioxide; boric oxide } 005-008-00-8 215-125-8 1303-86-2		2.7 mg/kg	3.22	8.694 mg/kg	0.000869 %		
3	4	cadmium {		0.5 mg/kg	1.142	0.571 mg/kg	0.0000571 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		41.3 mg/kg	1.462	60.362 mg/kg	0.00604 %		
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		77 mg/kg	1.126	86.693 mg/kg	0.00867 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	51 mg/kg	1.56	79.551 mg/kg	0.0051 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		26.1 mg/kg	2.976	77.681 mg/kg	0.00777 %		
10	4	selenium {		2 mg/kg	2.554	5.108 mg/kg	0.000511 %		
11	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		121 mg/kg	2.774	335.672 mg/kg	0.0336 %		
12	0	TPH (C6 to C40) petroleum group		59 mg/kg		59 mg/kg	0.0059 %		
13	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
14	8	pH		7.51 pH		7.51 pH	7.51 pH		
15		naphthalene 601-052-00-2 202-049-5 91-20-3		0.09 mg/kg		0.09 mg/kg	0.000009 %		

Page 20 of 37

HazWasteOnline[™]

Report created by Abigail Walters on 11 Nov 2021

#		Determinand CLP index number EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
16	8	acenaphthylene	208.06.8		<0.03	mg/kg		<0.03 mg/	′kg ·	<0.000003 %		<lod< th=""></lod<>
17		acenaphthene	200-30-0		<0.05	mg/kg		<0.05 mg/	′kg ·	<0.000005 %		<lod< th=""></lod<>
		201-469-6	83-32-9									
18	8	fluorene	96 73 7		<0.04	mg/kg		<0.04 mg/	′kg ·	<0.000004 %		<lod< th=""></lod<>
		201-093-3	00-73-7									
19		201-581-5	85-01-8		0.13	mg/kg		0.13 mg/	'kg	0.000013 %		
		anthracene			-0.04							
20		204-371-1	120-12-7		<0.04	mg/kg		<0.04 mg/	'kg ·	<0.000004 %		<lod< td=""></lod<>
21		fluoranthene			0.10	ma/ka		0.10 mg	ka	0.000010.%		
21		205-912-4	206-44-0		0.19	шу/ку		0.19 Hig/	ĸġ	0.000019 %		
22	8	pyrene			0.16	ma/ka		0.16 mg	'ka	0.000016 %		
		204-927-3	129-00-0			ing/kg			ng			
23		benzo[a]anthracene			0.13	ma/ka		0.13 ma/	'ka	0.000013 %		
		601-033-00-9 200-280-6	56-55-3									
24		chrysene			0.11	mg/kg		0.11 mg/	'kg	0.000011 %		
<u> </u>		601-048-00-0 205-923-4	218-01-9									
25		benzo[b]fluoranthene	005.00.0		0.14	mg/kg		0.14 mg/	'kg	0.000014 %		
		601-034-00-4 <u>205-911-9</u>	205-99-2							1		
26			207.09.0		0.06	mg/kg		0.06 mg/	'kg	0.000006 %		
		601-036-00-5 205-916-6	207-08-9	_					_			
27		601-032-00-3 200-028-5	50-32-8		0.1	mg/kg		0.1 mg/	'kg	0.00001 %		
		indeno[123-cd]pyrene	00 02 0	_								
28	ľ	205-893-2	193-39-5		0.06	mg/kg		0.06 mg/	'kg	0.000006 %		
00		dibenz[a,h]anthracene			0.04			0.04		0.000004.0/		1.05
29		601-041-00-2 200-181-8	53-70-3		<0.04	тg/кg		<0.04 mg/	ĸg	<0.000004 %		<lod< td=""></lod<>
30		benzo[ghi]perylene			0.06	ma/ka		0.06 mg	ka	0.00006.%		
30		205-883-8	191-24-2		0.00	шу/ку		0.00 mg/	ĸу	0.000000 /8		
31		phenol			<0.15	ma/ka		<0.15 mg	ka .	<0.000015 %		<lod< th=""></lod<>
Ľ		604-001-00-2 203-632-7	108-95-2		50.10			10.10 mg/	·····			
								Tot	al:	0.0707 %		

Key

itey	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product in samples.

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0059%)

Classification of sample: TP04 ES1

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
TP04 ES1	Chapter:
Sample Depth:	
0.20 m	Entry:
Moisture content:	
24%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 24% No Moisture Correction applied (MC)

#		Determinand		User entered data	Conv.	Compound conc.	Classification	pplied	Conc. Not
		CLP index number EC Number CAS Number	CLP1		1 actor		value	MC A	Useu
1	4	arsenic { arsenic trioxide }		13.1 mg/kg	1.32	17.296 mg/kg	0.00173 %		
2	4	boron { diboron trioxide; boric oxide }		1.8 mg/kg	3.22	5.796 mg/kg	0.00058 %		
3	4	cadmium { cadmium oxide }		0.4 ma/ka	1.142	0.457 ma/ka	0.0000457 %		
Ľ		048-002-00-0 215-146-2 1306-19-0							
4	4	chromium in chromium(III) compounds { <pre> chromium(III) oxide (worst case) } </pre>		44.2 mg/kg	1.462	64.601 mg/kg	0.00646 %		
		215-160-9 1308-38-9							
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide }		54 mg/kg	1.126	60.798 mg/kg	0.00608 %		
		029-002-00-X 215-270-7 1317-39-1							
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	48 mg/kg	1.56	74.871 mg/kg	0.0048 %		
8	4	mercury { mercury dichloride }		0.1 ma/ka	1 353	0.135 ma/ka	0.0000135 %		
Ľ		080-010-00-X 231-299-8 7487-94-7			1.000				
9	ai a	nickel { nickel chromate }		25.4 ma/ka	2.976	75.597 ma/ka	0.00756 %		
		028-035-00-7 238-766-5 14721-18-7							
10	×\$	selenium { <mark>nickel selenate</mark> }		<1 ma/ka	2.554	<2.554 mg/kg	<0.000255 %		<lod< td=""></lod<>
		028-031-00-5 239-125-2 15060-62-5							
11	4	zinc { zinc chromate }		104 mg/kg	2.774	288.511 mg/kg	0.0289 %		
		U24-007-00-3 236-878-9 13530-65-9							
12	Θ	TPH (C6 to C40) petroleum group		60 mg/kg		60 mg/kg	0.006 %		
<u> </u>		tart butul matbul other: MTRE:							
13		2-methoxy-2-methylpropane		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4							
14		benzene		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
<u> </u>		toluopo							
15		601-021-00-3 203-625-9 108-88-3		<5 mg/kg		<5 mg/kg	g <0.0005 %		<lod< td=""></lod<>
	6	ethylbenzene							
16		601-023-00-4 202-849-4 100-41-4		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>

Page 22 of 37

#			Determinand		Note	User entered data		Conv. Factor		Compound conc.		Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC	
		xylene											
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
18	4	cyanides { salts exception of completerricyanides and means the specified elsewhere	of hydrogen cyanide ex cyanides such as nercuric oxycyanide e in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
19	۲	рН				6.94	pН		6.94	pН	6.94 pH		
				PH	_								
20		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
21	۰	acenaphthylene				<0.03	ma/ka		<0.03	ma/ka	<0.00003.%		
21			205-917-1	208-96-8		<0.00	iiig/kg		<0.05	mg/kg	<0.000003 /8		
22	۰	acenaphthene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
23	0	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	۰	phenanthrene				0.05	ma/ka		0.05	ma/ka	0 00005 %		
27			201-581-5	85-01-8		0.00	iiig/itg			iiig/itg			
25	۰	anthracene				<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
			204-371-1	120-12-7									
26	۲	fluoranthene				0.09	mg/kg		0.09	mg/kg	0.000009 %		
			205-912-4	206-44-0	-								
27	۲	pyrene	004 007 0	400.00.0	_	0.07	mg/kg		0.07	mg/kg	0.000007 %		
		hanzalalanthraaan	204-927-3	129-00-0	-					-			
28				56 55 3	_	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene	200-200-0	50-55-5	-								
29		601-048-00-0	205-923-4	218-01-9	-	0.05	mg/kg		0.05	mg/kg	0.000005 %		
		benzo[b]fluoranther	ne			6.00					0.000000.07		
30		601-034-00-4	205-911-9	205-99-2		0.06	mg/kg		0.06	mg/kg	0.000006 %		
21		benzo[k]fluoranther	ne	·		0.03	malka		0.03	ma/ka	0 00003 %		
51		601-036-00-5	205-916-6	207-08-9		0.03	ing/kg		0.03	mg/kg	0.000003 %		
32		benzo[a]pyrene; be	enzo[def]chrysene			<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8									
33	۲	indeno[123-cd]pyre	ene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
L			205-893-2	193-39-5	-								
34		dibenz[a,h]anthrace	ene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>	-	601-041-00-2	200-181-8	p3-70-3	-							$\left \right $	
35	8	penzolduliberaleue	b05 883 8	101 24 2	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>	-	nhenol	200-000-0	131-24-2	-							\vdash	
36		604-001-00-2	203-632-7	108-95-2	-	<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
										Total:	0.0651 %		

|--|

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product <mark>in samples.</mark>

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.006%)

Classification of sample: TP02 ES2

Sample details

•		
Sample name:	LoW Code:	
TP02 ES2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19.2%		
(no correction)		
(

Hazard properties

None identified

Determinands

Moisture content: 19.2% No Moisture Correction applied (MC)

#		Determinand	Note	User entered data Conv. Factor		Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CLF					ВC	
1	4	arsenic { arsenic trioxide }		21.8 mg/kg	1.32	28.783 mg/kg	0.00288 %		
		033-003-00-0 215-481-4 1327-53-3							
2	4	boron { diboron trioxide; boric oxide }		1.7 mg/kg	3.22	5.474 mg/kg	0.000547 %		
		005-008-00-8 215-125-8 1303-86-2							
3	4	cadmium { cadmium oxide }		0.4 mg/kg	1.142	0.457 mg/kg	0.0000457 %		
		048-002-00-0 215-146-2 1306-19-0							
4	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		36.8 mg/kg	1.462	53.785 mg/kg	0.00538 %		
		215-160-9 [1308-38-9	-						
5	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< th=""></lod<>
		024-017-00-8							
6	4	copper { dicopper oxide; copper (I) oxide }		54 mg/kg	1.126	60.798 mg/kg	0.00608 %		1
		029-002-00-X 215-270-7 1317-39-1							
7	4	lead { lead chromate }	1	47 mg/kg	1.56	73.311 mg/kg	0.0047 %		
		082-004-00-2 231-846-0 7758-97-6							
8	4	080-010-00-X 231-290-8 7/187-9/-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
		nickel { nickel chromate }					0.0151 %		
9	*	028-035-00-7 238-766-5 14721-18-7	-	50.8 mg/kg		151.194 mg/kg			
	-	selenium { nickel selenate }							
10	*	028-031-00-5 239-125-2 15060-62-5	-	2 mg/kg	2.554	5.108 mg/kg	0.000511 %		1
11	æ	zinc { zinc chromate }							
	~	024-007-00-3 236-878-9 13530-65-9	-	104 mg/кg	2.774	288.511 mg/kg	0.0289 %		
10		TPH (C6 to C40) petroleum group		096 ma/ka	g	096 ma/ka	0.0986 %		
12		TPH		966 IIIQ/K(900 Hig/kg			
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
		603-181-00-X 216-653-1 1634-04-4							
14		benzene		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
15		601-020-00-8 200-753-7 71-43-2						\square	
		toluene		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< th=""></lod<>
		601-021-00-3 203-625-9 108-88-3	\vdash					\vdash	
16	۲			<5 mg/kg		<5 mg/kg	g <0.0005 %		<lod< th=""></lod<>
		001-023-00-4 202-849-4 100-41-4							

#		Determinand		o Note	User entered	data	Conv. Factor	Compound o	onc.	Classification value	Applied	Conc. Not Used
		CLP index number EC Number	CAS Number	CLF							MC	
		xylene										
17		601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
18	*	cyanides { salts of hydrogen cyanid exception of complex cyanides such a ferricyanides and mercuric oxycyanide specified elsewhere in this Annex }	e with the s ferrocyanides, and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
<u> </u>		006-007-00-5		-								
19	Θ	рн	DU		7.55	pН		7.55	pН	7.55 pH		
<u> </u>		nanhthalana	РН	-					_			
20		601-052-00-2 202-049-5	91-20-3	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		acenaphthylene	51200	+								
21		205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
22	8	acenaphthene			-0.05	malka		-0.0E	malka	-0.0000E %		
22		201-469-6	83-32-9		<0.05	тту/ку		<0.05	тту/ку	<0.000005 %		<lod< td=""></lod<>
23	0	fluorene			<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		201-695-5	86-73-7						ing/itg			
24	8	phenanthrene	T		0.11	mg/kg		0.11	mg/kg	0.000011 %		
		201-581-5	85-01-8									
25	Θ	anthracene	400 40 7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>		204-371-1	120-12-7	-								
26	Θ	205-912-4	206-44-0	-	0.19	mg/kg		0.19	mg/kg	0.000019 %		
		pyrene		+								
27		204-927-3 129-00-0			0.18	mg/kg		0.18	mg/kg	0.000018 %		
		benzo[a]anthracene			0.40			0.40				
28		601-033-00-9 200-280-6	56-55-3		0.13	mg/kg		0.13	mg/кg	0.000013 %		
20		chrysene	1		0.13	ma/ka		0.13	ma/ka	0.000013 %		
29		601-048-00-0 205-923-4	218-01-9		0.13	шу/ку		0.13	шу/ку	0.000013 /8		
30		benzo[b]fluoranthene			0.18	ma/ka		0.18	ma/ka	0.000018 %		
		601-034-00-4 205-911-9	205-99-2									
31		benzo[k]fluoranthene			0.07	mg/kg		0.07	mg/kg	0.000007 %		
		601-036-00-5 205-916-6	207-08-9									
32		benzo[a]pyrene; benzo[def]chrysene			0.12	mg/kg		0.12	mg/kg	0.000012 %		
		601-032-00-3 200-028-5	50-32-8									
33	Θ	Indeno[123-cd]pyrene	102 20 5		0.08	mg/kg		0.08	mg/kg	0.000008 %		
-		dibonzía blanthracono	193-39-5	-	·							
34		601-041-00-2 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	6	benzo[ghi]pervlene	20100									
35		205-883-8 191-24-2		0.1	mg/kg		0.1	mg/kg	0.00001 %			
26		phenol	1		-0.45			.0.45		-0.00045.0/		.1.00
36		604-001-00-2 203-632-7	108-95-2		<0.15	ту/кд		<0.15	пд/кд	<0.000015 %		
			·						Total:	0.166 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product <mark>in samples.</mark>

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0986%)

Classification of sample: TP03 ES2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
TP03 ES2	Chapter:
Sample Depth:	
1.0 m	Entry:
Moisture content:	
18.6%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 18.6% No Moisture Correction applied (MC)

#			Determinand		Note	User entered data		User entered data Conv. Factor		Compound conc.		Classification value		Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP							MC		
1	8	TPH (C6 to C40) petr	roleum group			<30	ma/ka		<30	ma/ka	<0.003 %		<lod< td=""></lod<>	
				ТРН			5.5			5.5			_	
2		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane				<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>	
		603-181-00-X 21	16-653-1	1634-04-4										
3		benzene				<5	mg/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>	
		601-020-00-8 20	00-753-7	71-43-2			0.0							
4		toluene				<5	<5 ma/ka		<5	ma/ka	<0.0005 %		<lod< td=""></lod<>	
		601-021-00-3 20)3-625-9	108-88-3			5.5			5 5			-	
5	8	ethylbenzene				<5	ma/ka		<5	ma/ka	<0.0005 %		<lod< td=""></lod<>	
		601-023-00-4 20)2-849-4	100-41-4										
		xylene					mg/kg							
6		601-022-00-9 20 20 20 21 21)2-422-2 [1])3-396-5 [2])3-576-3 [3] 15-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5			<5	mg/kg	<0.0005 %		<lod< td=""></lod<>	
7		рН				0 10			0 1 2	n Ll	9 12 pH			
'				PH	1	0.12	рп		0.12	рп	6.12 pm			
8		naphthalene		1		0.06	ma/ka		0.06	ma/ka	0 000006 %			
		601-052-00-2 20)2-049-5	91-20-3	1									
q	0	acenaphthylene				<0.03	ma/ka		<0.03	ma/ka	<0.000003 %		<1 OD	
Ŭ		20	05-917-1	208-96-8	1		iiig/itg			iiig/kg				
10		acenaphthene				<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<1 OD	
		20	01-469-6	83-32-9	1	40.00	iiig/itg			iiig/itg	<0.000000 /0		LOD	
11	Θ	fluorene				<0.04	ma/ka		<0.04	ma/ka	~0 000004 %			
		20	01-695-5	86-73-7		40.01	iiig/itg		40.01	iiig/itg	CO.000001 /0		LOD	
12		phenanthrene				0.2	ma/ka		0.2	ma/ka	0 00002 %			
12		20	01-581-5	85-01-8		0.2	iiig/kg		0.2	iiig/kg	0.00002 /8			
12		anthracene				0.07	ma/ka		0.07	ma/ka	0 00007 %			
15		20)4-371-1	120-12-7	1	0.07	iiig/kg		0.07	iiig/kg	0.000007 /8			
14		fluoranthene				0.66	ma/ka		0.66	ma/ka	0.000066.%			
14		205-912-4 206-44-0				0.00	iiig/kg		0.00	iiig/kg	0.000000 /8			
15		pyrene				0.65	ma/ka		0.65	ma/ka	0 000065 %			
		20)4-927-3	129-00-0		0.05	ing/kg	3	0.65 mg/kg	0.000065 %				
16		benzo[a]anthracene	0-280-6	56-55-3		0.45	mg/kg		0.45	mg/kg	0.000045 %			
		20.000000	200 0					L						

Page 28 of 37

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
17		chrysene 601-048-00-0	205-923-4	218-01-9	_	0.42	mg/kg		0.42	mg/kg	0.000042 %		
18		benzo[b]fluoranther 601-034-00-4	ne 205-911-9	205-99-2	-	0.78	mg/kg		0.78	mg/kg	0.000078 %		
19		benzo[k]fluoranther 601-036-00-5	ne 205-916-6	207-08-9	_	0.31	mg/kg		0.31	mg/kg	0.000031 %		
20		benzo[a]pyrene; be 601-032-00-3	nzo[def]chrysene 200-028-5	50-32-8	_	0.66	mg/kg		0.66	mg/kg	0.000066 %		
21	•	indeno[123-cd]pyre	ne 205-893-2	193-39-5	_	0.37	mg/kg		0.37	mg/kg	0.000037 %		
22		dibenz[a,h]anthrace 601-041-00-2	ene 200-181-8	53-70-3	_	0.11	mg/kg		0.11	mg/kg	0.000011 %		
23	9	benzo[ghi]perylene	205-883-8	191-24-2	_	0.39	mg/kg		0.39	mg/kg	0.000039 %		
										Total:	0.00603 %		

Key

User supplied data

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A) .

<LOD Below limit of detection

ND Not detected

Classification of sample: TP03 ES3

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
TP03 ES3	Chapter:
Sample Depth:	
1.5 m	Entry:
Moisture content:	
59%	
(no correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 59% No Moisture Correction applied (MC)

#		Determinand	P Note	User entered data	Conv. Factor	Compound conc.	Classification value	C Applied	Conc. Not Used
1	4	arsenic { arsenic trioxide }	บี เ	14.3 mg/kg	1.32	18.881 mg/kg	0.00189 %	Ň	
2	4	boron { diboron trioxide; boric oxide } 1303-86-2 005-008-00-8 215-125-8 1303-86-2		3.8 mg/kg	3.22	12.236 mg/kg	0.00122 %		
3	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0		0.8 mg/kg	1.142	0.914 mg/kg	0.0000914 %		
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		51.2 mg/kg	1.462	74.832 mg/kg	0.00748 %		
5	4	chromium in chromium (VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		43 mg/kg	1.126	48.413 mg/kg	0.00484 %		
7	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	68 mg/kg	1.56	106.067 mg/kg	0.0068 %		
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
9	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		37.9 mg/kg	2.976	112.8 mg/kg	0.0113 %		
10	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		2 mg/kg	2.554	5.108 mg/kg	0.000511 %		
11	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		129 mg/kg	2.774	357.865 mg/kg	0.0358 %		
12	Θ	TPH (C6 to C40) petroleum group		133 mg/kg		133 mg/kg	0.0133 %		
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
14		benzene 601-020-00-8 200-753-7 71-43-2		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
15		toluene 601-021-00-3 203-625-9 108-88-3		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>
16	8	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<5 mg/kg		<5 mg/kg	<0.0005 %		<lod< td=""></lod<>

#			Determinand		Note	User entered d	lata	Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used	
		CLP index number	EC Number	CAS Number	CLP							MC/	
		xylene											
17		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5 n	ng/kg		<5	mg/kg	<0.0005 %		<lod< td=""></lod<>
18	4	cyanides { ^a salts exception of compl ferricyanides and r specified elsewher	of hydrogen cyanid lex cyanides such a nercuric oxycyanide re in this Annex }	e with the s ferrocyanides, and those		<0.5 n	ng/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
19	Θ	рН				6.97 p	ы		6.97	pН	6.97 pH		
				PH	\vdash						-		
20		naphthalene	202 040 5	01 20 2	_	<0.04 n	ng/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		acenanhthylene	202-049-5	91-20-3	-								
21		acenaphinylene	205-917-1	208-96-8	-	<0.03 n	ng/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
22		acenaphthene				<0.05 m	na/ka		<0.05	ma/ka	<0.000005 %		
			201-469-6	83-32-9		<0.05	iig/kg		<0.05	iiig/kg	<0.000003 /8		
23		fluorene				<0.04 n	na/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
			201-695-5	86-73-7			5.5						
24	۲	phenanthrene	004 504 5			<0.03 n	ng/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			201-581-5	85-01-8	-								
25	8	anthracene	204-371-1	120-12-7	-	<0.04 n	ng/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
26		fluoranthene	1		1	-0.02	~~//~~		.0.02		-0.000002.8/		
20			205-912-4	206-44-0	-	<0.03 11	пу/ку		<0.03	тту/ку	<0.000003 %		<lod< td=""></lod<>
27		pyrene				<0.03 n	na/ka		<0.03	ma/ka	<0.000003 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
28		benzo[a]anthracen	ie			<0.06 n	ng/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	-		0.0						
29		chrysene				<0.02 n	ng/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	-								
30		penzolpjiluorantne	bos 011 0	205 00 2		<0.05 n	ng/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	-	benzo[k]fluoranthe	kno-all-a	200-99-2	+							\vdash	
31		601-036-00-5	205-916-6	207-08-9		<0.02 n	ng/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[a]pyrene: be	enzoldeflchrvsene	201 00 0	+							H	
32		601-032-00-3	200-028-5	50-32-8		<0.04 n	ng/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
22		indeno[123-cd]pyre	ene		1	-0.04	~~//~~		.0.04		-0.000004.8/		
33			205-893-2		<0.04 1	пд/кд		<0.04	тід/кд	<0.000004 %		<lud< td=""></lud<>	
34		dibenz[a,h]anthrac	ene			<0.04 n	na/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
Ľ		601-041-00-2	1		59					Ц			
35	8	benzo[ghi]perylene	9			<0.04 n	ng/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>			205-883-8	191-24-2	-							\vdash	
36		pnenoi 604-001-00-2	203-632-7	108-95-2	-	<0.15 n	ng/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
<u> </u>		001002								Total:	0.086 %	H	

|--|

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< td=""><td>Below limit of detection</td></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Relatively low concentrations present and no evidence of free phase product <mark>in samples.</mark>

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0133%)

Classification of sample: TP05 ES2

Sample details

•		
Sample name:	LoW Code:	
TP05 ES2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.50 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15.4%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15.4% No Moisture Correction applied (MC)

#		Determinand	Note	User entered data	Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used
		CLP index number EC Number CAS Number	CL					MC	
1	4	arsenic { arsenic trioxide }		18.6 mg/kg	1.32	24.558 mg/kg	0.00246 %		
		033-003-00-0 215-481-4 1327-53-3							
2	4	boron { diboron trioxide; boric oxide }		0.2 mg/kg	3.22	0.644 mg/kg	0.0000644 %		
		005-008-00-8 215-125-8 1303-86-2							
3	4	cadmium { cadmium oxide }		0.1 mg/kg	1.142	0.114 mg/kg	0.0000114 %		
		048-002-00-0 215-146-2 1306-19-0							
4	~	chromium in chromium(III) compounds {		39.2 mg/kg	1.462	57.293 mg/kg	0.00573 %		
		215-160-9 1308-38-9							
5	*	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex }		<0.3 mg/kg	2.27	<0.681 mg/kg	<0.0000681 %		<lod< td=""></lod<>
6	4	Copper { accopper 0xide, copper (i) 0xide } 020,002,00,X b15,270,7 b1317,30,1		24 mg/kg	1.126	27.021 mg/kg	0.0027 %		
		lead { lead chromate }							
7	*	082-004-00-2 231-846-0 7758-97-6	1	26 mg/kg	1.56	40.555 mg/kg	0.0026 %		
	A	mercury { mercury dichloride }							
8	~	080-010-00-X 231-299-8 7487-94-7		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
	8	nickel { nickel chromate }		44.5 //	0.070	100 111 1	0.0100.0/		
9	~	028-035-00-7 238-766-5 14721-18-7		44.5 mg/kg	2.976	132.444 mg/кg	0.0132 %		
10	æ	selenium { nickel selenate }		2 malka	2 554 5 409	E 109 mg/kg	0.000511.9/		
10		028-031-00-5 239-125-2 15060-62-5		2 mg/kg	2.554	5.106 mg/kg	0.000511 %		
11	Å	zinc { <mark>zinc chromate</mark> }		115 ma/ka	2 774	319.027 ma/ka	0.0319 %		
<u> </u>		024-007-00-3 236-878-9 13530-65-9			2.114	010.027 mg/kg	0.0010 //		
12	0	TPH (C6 to C40) petroleum group		<30 mg/kg		<30 mg/kg	<0.003 %		<lod< td=""></lod<>
13	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
14		pH		737 pH		7 37 pH	7 37 pH		
14		PH		7.57 pri		7.57 pri			
15		naphthalene 91-20-3		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>

www.hazwasteonline.com

	_												
#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
16	Θ	acenaphthylene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		6	205-917-1	208-96-8									
17	0	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
18	0	fluorene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		f	201-695-5	86-73-7									
19	0	phenanthrene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			201-581-5	85-01-8									
20	0	anthracene				<0.04	ma/ka		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		4	204-371-1	120-12-7						3 3		Ц	
21	Θ	fluoranthene				< 0.03	ma/ka		< 0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		4	205-912-4	206-44-0	1								
22	8	pyrene				< 0.03	ma/ka		< 0.03	ma/ka	<0.000003 %		<lod< td=""></lod<>
			204-927-3	129-00-0									
23		benzo[a]anthracene	9			<0.06	ma/ka		<0.06	ma/ka	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3									
24		chrysene				~0.02	ma/ka		~0.02	ma/ka	~0 000002 %		
24		601-048-00-0	205-923-4	218-01-9		<0.02	iiig/kg		<0.02	iiig/kg	<0.000002 /8		LOD
25		benzo[b]fluoranther	ne			<0.05 mg	ma/ka		<0.05	ma/ka	~0 000005 %		
25		601-034-00-4	205-911-9	205-99-2			mg/kg		<0.05	тg/кg	<0.000003 /8		<lod< td=""></lod<>
26		benzo[k]fluoranthen	ie			-0.02	malka		-0.02	malka	-0.00002.9/		
20		601-036-00-5	205-916-6	207-08-9	1	<0.02	шу/ку		<0.02	шу/ку	<0.000002 %		<lod< td=""></lod<>
27		benzo[a]pyrene; be	nzo[def]chrysene			-0.04	malka		-0.04	malka	-0.00004.9/		
21		601-032-00-3	200-028-5	50-32-8	1	<0.04	шу/ку		<0.04	шу/ку	<0.000004 %		<lod< td=""></lod<>
20		indeno[123-cd]pyre	ne			-0.04	malka		-0.04	malka	-0.00001.9/		
20			205-893-2	193-39-5	1	<0.04	шу/ку		<0.04	тту/ку	<0.000004 %		<lod< td=""></lod<>
20		dibenz[a,h]anthrace	ene			-0.04			-0.04		-0.000004.9/		
29		601-041-00-2	200-181-8	53-70-3	1	<0.04	тід/кд		<0.04	тід/кд	<0.000004 %		<lod< td=""></lod<>
30		benzo[ghi]perylene	benzo[ghi]perylene			-0.04			-0.04		-0.000004.9/		
			205-883-8	191-24-2	1	<0.04	mg/kg	g	<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24		phenol		1		-0.45			0.45		-0.000015.0/		
31		604-001-00-2	203-632-7	108-95-2		<0.15	тд/кд		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
		I		1.				1		Total:	0.0625 %	Г	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

Appendix A: Classifier defined and non CLP determinands

echromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1 H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3 H226 , Asp. Tox. 1 H304 , STOT RE 2 H373 , Muta. 1B H340 , Carc. 1B H350 , Repr. 2 H361d , Aquatic Chronic 2 H411

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

CLP index number: 601-023-00-4 Description/Comments: Data source: Commission Regulation (EU) No 605/2014 – 6th Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP6) Additional Hazard Statement(s): Carc. 2 H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2 H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

CLP index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Data source: Commission Regulation (EC) No 790/2009 - 1st Adaptation to Technical Progress for Regulation (EC) No 1272/2008. (ATP1) Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4 H302 , Acute Tox. 1 H330 , Acute Tox. 1 H310 , Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2 H319 , STOT SE 3 H335 , Skin Irrit. 2 H315 , Aquatic Acute 1 H400 , Aquatic Chronic 1 H410 , Aquatic Chronic 2 H411

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Data source date: 06 Aug 2015

Hazard Statements: Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 2 H351, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410, Skin Irrit. 2 H315

Report created by Abigail Walters on 11 Nov 2021

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database

Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015

Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

[•] pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2 H351

• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1 H400 , Aquatic Chronic 1 H410

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide; boric oxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass (edit as required)

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. (edit as required) Worst case compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history (edit as required)

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass (edit as required)

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. (edit as required) Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected. (edit as required)

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

Report created by Abigail Walters on 11 Nov 2021

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight (edit as required)

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide] (edit as required)

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1, May 2018 HazWasteOnline Classification Engine Version: 2021.293.4891.9295 (20 Oct 2021) HazWasteOnline Database: 2021.293.4891.9295 (20 Oct 2021)

This classification utilises the following guidance and legislation: WM3 v1.1 - Waste Classification - 1st Edition v1.1 - May 2018 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2019 - UK: 2019 No. 720 of 27th March 2019 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 POPs Regulation 2019 - Regulation (EU) 2019/1021 of 20 June 2019

APPENDIX J – GAS AND GROUNDWATER MONITORING SHEETS

Gas Monitoring Results

Client	Network Space Developments Ltd
Project	Shaw Lane, Carlton
Job Number	784-B029129

21/09/21 Start 14:00 End 15:00 By TB AP Trend Rising Weather Dry, slight breeze Date

Instruments used - GA5000 with internal flow pod, Oil/Water Interface Meter. •

Instruments used - GA5000 with internal flow pod, Oil/Water Interface Meter.											
Background (start)	CH ₄	0.0	CO ₂	0.1	02	21.1%	AP	1026			
Background (end)	CH ₄	0.0	CO ₂	0.1	02	21.3%	AP	1026			

Installation Borehole Level (mAQD)		BH CH ₄ (% vol)			CO ₂ (% vol)			O2 (% vol)			CO (ppm) H ₂ S (ppm) PID		Flow Rate (l/hr)		Atmospheric Pressure	Depth to Water	Depth to Water	Depth to Base	Remarks			
	(11/100)	mb	Peak	Min	Steady	Peak	Min	Steady	Peak	Min	Steady	Peak	Peak	Peak	Steady	Peak	Steady	(mbar)	(mbgl)	(mAOD)	(mbgl)	
DS01	45.34	0.14	0.0	0.0	0.0	4.0	0.7	4.0	21.1	9.7	9.7	3	0	0.0	0.0	-0.3	0.0	1026	2.00	43.34	2.85	Silty at base
DS02	43.35	0.19	0.1	0.1	0.1	3.1	3.0	3.1	19.3	19.2	19.2	1	0	0.0	0.0	-0.3	0.0	1026	1.58	41.77	2.78	-
DS03	46.87	0.15	0.0	0.0	0.0	1.6	0.2	1.6	20.9	19.8	19.8	1	0	0.0	0.0	-0.2	0.0	1026	DRY	DRY	2.84	-
DS04	45.95	0.14	0.0	0.0	0.0	2.5	0.1	2.5	21.1	18.3	18.3	1	0	0.0	0.0	-0.3	0.0	1026	1.86	44.09	2.84	-
DS05	46.46	0.19	0.1	0.1	0.1	0.4	0.1	0.4	21.1	20.5	20.5	1	0	0.0	0.0	-0.3	0.0	1026	1.21	45.25	2.38	-

WAB = Wet at base

Gas Monitoring Results

Client	Network Space Developments Ltd
Project	Shaw Lane, Carlton
Job Number	784-B029129

4/10/2021 09:15 10:30 TB AP Trend Stable Weather Dry, light cloud cover Date Start End Ву

Instruments used - GA5000 with internal flow pod, Oil/Water Interface Meter. Background (start) 0.1

CH₄ 0.1 CH₄ 0.1 21.1% **AP** 21.1% **AP** 999 999 CO₂ CO₂ 02 02 Background (end) 0.1

Installation Borehole Level (mAOD)		BH Pressure		CH ₄ (% vol)		CO ₂ (% vol)		O2 (% vol)		CO (ppm)	H₂S (ppm)	P.	ID	Flow Ra	ite (l/hr)	Atmospheric Pressure	Depth to Water	Depth to Water	Depth to Base	Remarks
	(11/100)	mb	Peak	Min	Steady	Peak	Min	Steady	Peak	Min	Steady	Peak	Peak	Peak	Steady	Peak	Steady	(mbar)	(mbgl)	(mAOD)	(mbgl)	
DS01	45.34	0.03	0.1	0.1	0.1	7.9	0.1	7.9	21.1	1.1	1.2	0	0	-	-	-1.9	0.0	999	1.91	43.43	2.87	Silty at base
DS02	43.35	0.00	0.1	0.1	0.1	3.0	0.1	3.0	20.8	17.4	17.4	0	0	-	-	0.3	0.3	999	1.48	41.87	2.78	-
DS03	46.87	0.03	0.1	0.1	0.1	2.2	0.4	2.2	20.6	19.4	19.4	0	0	-	-	0.3	0.3	999	DRY	DRY	2.80	-
DS04	45.95	0.17	0.1	0.1	0.1	3.2	0.1	3.2	20.9	16.8	16.8	0	0	-	-	0.3	0.3	999	1.71	44.24	2.86	-
DS05	46.46	-0.05	0.1	0.1	0.1	1.3	0.2	1.3	21.0	18.8	18.8	0	0	-	-	0.3	0.3	999	1.16	45.30	2.41	-

WAB = Wet at base

Gas Monitoring Results

Client	Network Space Developments Ltd
Project	Shaw Lane, Carlton
Job Number	784-B029129

Date 19/10/2021 Start 09:30 End 10:30 By TB AP Trend Falling Weather Raining/Overcast

Instruments used - GA5000 with	internal flow po	d, Oil/Wa	ater Interf	ace Meter.				
Background (start)	CH₄	0.1	CO ₂	0.1	02	20.7%	AP	1002
Background (end)	CH	0.1	CO2	0.1	0,	21.5%	ΔP	1002

Background (end)		CH4	0.1		0.1	02	21.5%	AP	1002	•												
Installation Borehole Level		BH Pressure		CH ₄ (% vol)		CO ₂ (% vol))		O2 (% vol)		CO (ppm)	H₂S (ppm)	P	ID	Flow Ra	ate (l/hr)	Atmospheric Pressure	Depth to Water	Depth to Water	Depth to Base	Remarks
	(mb	Peak	Min	Steady	Peak	Min	Steady	Peak	Min	Steady	Peak	Peak	Peak	Steady	Peak	Steady	(mbar)	(mbgl)	(mAOD)	(mbgl)	
DS01	45.34	0.10	0.1	0.1	0.1	5.5	0.1	5.5	20.6	6.3	6.3	1	1	-	-	0.2	0.2	1002	1.75	43.59	2.87	Silty at base
DS02	43.35	0.15	0.1	0.1	0.1	3.1	0.2	3.1	20.9	17.0	17.0	0	0	-	-	0.2	0.2	1002	1.42	41.93	2.78	-
DS03	46.87	0.15	0.1	0.1	0.1	2.6	0.2	2.6	21.0	19.0	19.0	0	0	-	-	0.2	0.2	1002	DRY	DRY	2.80	-
DS04	45.95	0.12	0.1	0.1	0.1	3.4	0.2	3.4	21.3	17.7	17.7	0	0	-	-	0.2	0.2	1002	1.69	45.18	2.85	-
DS05	46.46	0.17	0.1	0.1	0.1	1.1	0.2	1.1	21.4	20.3	20.3	0	0	-	-	-0.8	-0.2	1002	1.09	45.27	2.40	-

WAB = Wet at base

APPENDIX K- CIRIA C552 RISK METHODOLOGY

The following tables are derived from CIRIA C552 and have been used to define the risk rating presented in the Qualitative Risk Assessment matrix.

Classification	Definition
Severe	Short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short term risk of pollution (note; Water Resources Act contains no scope for considering significant pollution) of sensitive water resource. Catastrophic damage to building/property. A short-term risk to a particular ecosystem, or organism forming part of such ecosystem. (Note the definitions of ecological systems within the Draft Circular on Contaminated Land DETR, 2000).
Medium	Chronic damage to human health ('significant harm', as defined In DETR, 2000). Pollution of sensitive water resources (note; Water Resources Act contains no scope for considering significant pollution). A significant change in a particular ecosystem, or an organism forming part of such an ecosystem. (Note the definitions of ecological systems within the Draft Circular on Contaminated Land DETR, 2000).
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm', as defined In DETR, 2000). Damage to sensitive buildings/structures/services or the environment.
Minor	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc). Easily repairable effects of damage to buildings, structures and services.

Classification of consequence

Classification of probability

Classification	Definition
High	There is a pollution linkage and an event that either appears very likely in the short term
likelihood	and almost inevitable over the long term or there is evidence at the receptor of harm or
	pollution.
Likely	There is a pollutant linkage and all the elements are present and in the right place, which
	means that it is probable that an event will occur. Circumstances are such that an event
	is not inevitable, but possible in the short term and likely over the long term.
Low	There is a pollution linkage and circumstances are possible under which an event could
likelihood	occur. However, it is by no means certain that even over a longer period that such an
	event would take place, and is even less likely in the shorter term.
Unlikely	There is a pollution linkage but circumstances are such that it is improbable that an event
	would occur even in the very long term.

Matrix of consequence against probability to gain a risk classification

		Consequence			
		Severe	Medium	Mild	Minor
	High	Very High Risk	High Risk	Moderate	Moderate/Low
	Likelihood			Risk	Risk
	Likely	High Risk	Moderate	Moderate/Low	Low Risk
>			Risk	Risk	
lit	Low	Moderate Risk	Moderate/Low	Low Risk	Very Low Risk
abi	likelihood		Risk		
ğ	Unlikely	Moderate/Low	Low Risk	Very Low Risk	Very Low Risk
L Z		Risk			