Intended for Potters-Ballotini Limited

Document type Report

^{Date} March 2024

Generic Quantitative Risk Assessment

Stairfoot Glassworks, Wombwell Lane, Barnsley

Generic Quantitative Risk Assessment

Stairfoot Glassworks, Wombwell Lane, Barnsley

Project name	Stairfoot Glassworks, Wombwell Lane, Barnsley
Project no.	R1620015371-002 Potters Stairfoot GQRA
Recipient	Potters-Ballotini Limited
Document type	Report
Version	3.0
Date	25/03/2024
Prepared by	Euan Riddle
Checked by	Michael Hazlehurst
Approved by	Tom Smith / Matthew Pannett
Description	Generic Quantitative Risk Assessment

Ramboll UK Limited Registered in England & Wales Company No: 03659970 Registered office: 240 Blackfriars Road London SE1 8NW

Contents

Executiv	/e Summary	i
1.	Introduction	1
1.1	Brief	1
1.2	Proposed Development	1
1.3	Objectives	2
1.4	Sustainability	2
1.5	Constraints and Limitations	3
2.	Summary of Preliminary Risk Assessment	4
2.1	Introduction	4
2.2	History	4
2.3	Site Setting	4
2.4	Environmental Receptors	4
2.5	Geology, Hydrogeology and Hydrology	4
2.6	Other Site Investigations	5
2.7	Current and Former Land Uses with Potential for Contamination	5
2.8	Preliminary Conceptual Site Model	5
3.	Ground Investigation	7
3.1	Design	7
3.2	Ground Investigation Activities	7
3.3	Sample Location Rationale	8
3.4	Sampling and Monitoring	8
3.5	Field Observations	11
4.	Human Health Assessment	15
4.1	Assessment Approach	15
4.2	Analytical Results - Soils	15
4.3	Asbestos	16
4.4	Analytical Results - Groundwater (Human Health)	16
4.5	Human Health Discussion	16
4.6	Construction Workers	17
5.	Water Environment Assessment	18
5.1	Assessment Approach	18
5.2	Analytical Results	18
5.3	Controlled Waters Discussion	22
6.	Ground Gas Assessment	23
6.1	Assessment Approach	23
6.2	Ground Gas Monitoring Results	23
6.3	Results and Discussion	23
6.4	Classification of Ground Gases	27
6.5	Future Development	29
7.	Source-Pathway-Receptor Risk Assessment	29

7.2	Climate Change Considerations	31
8.	Preliminary Waste Assessment	32
8.1	Methodology	32
8.2	Soils Assessment	32
8.3	Discussion	33
9.	Water Supply Pipes Assessment	34
10.	Conclusions and Recommendations	36
10.1	Conclusions	36
10.2	Sustainability	37
10.3	Recommendations	38

Appendices

Appendix 1 Figure 1: Site Location Figure 2: Site Layout Figure 3: Site Investigation Locations Figure 4: Proposed Development Overlay Figure 5: Groundwater Levels

Appendix 2 Legislative Context and Methodology

Appendix 3 Factual Site Investigation Information

Appendix 4 Field Methods

Appendix 5 Laboratory Testing Results – Summary Tables

Appendix 6 Laboratory Certificates

Appendix 7 Gas Screening

Appendix 8 Waste Assessment

Executive Summary

Ramboll UK Limited (Ramboll) has been instructed by Potters-Ballotini Limited (the "Client") to prepare a Generic Quantitative Risk Assessment for the Stairfoot Glassworks, Wombwell Lane, Barnsley (the "Site") (437880, 405014). This assessment has been undertaken on the basis that the site will be redeveloped for an end-use comprising a glass and metal recycling facility with associated buildings and outside yard areas. The buildings will include the construction of a clad building for internal processing works (from herein "processing building"), construction of a workshop and admin building, construction of; a gatehouse, external cullet bays, external processing area, lorry park, storage areas, car park and access. The nature of the development will mean there is limited potential for future site users to be exposed to soils as the majority of the site will be yard areas. A reasonable amount of the site will be left as 'soft' landscaping and this would need to be managed appropriately. A Site Location Plan is provided in Figure 1.

This report includes the objectives and reasons for undertaking a Generic Quantitative Risk Assessment, provides a summary of relevant background information, details how a ground investigation was designed and findings of that investigation, specifies how relevant generic assessment criteria were selected, provides a risk assessment and conceptual site model and identifies data gaps and further actions which are required.

Potential contaminant linkages (PCLs) were identified at Preliminary Risk Assessment (PRA) stage through development of a preliminary conceptual site model (CSM). The PRA information is provided in a separate report by Ramboll¹ and also summarised in this report. The GQRA environmental site investigation was designed to provide information to further assess those PCLs that were considered to be significant and to update the CSM. Those PCLs assessed mainly relate to the site's former use for landfilling and as part of a Brickworks with associated rail lines.

The ground conditions encountered by the GQRA comprised surfacing of reinforced concrete or bituminous tarmacadam (up to a maximum depth of 0.25m thick). Beneath the surfacing was Made Ground consisting of silty sandy gravels of part brick, clinker, ashy material and concrete which was generally 2.90m thick (although did vary and was greater than 4m in places). The Made Ground was underlain by soft to stiff silty, sandy clays with gravel of lithorelicts, overlying light brown mottled grey extremely friable mudstone, sandstone and siltstones to a maximum proven depth of 4.00m below ground level (bgl). The ground conditions are comparable to the regional British Geological Society (BGS) map of the area which identifies Made Ground and Coal Measures directly beneath the site.

Perched groundwater was encountered in the Made Ground at various levels (i.e. water perched on low permeability horizons above the main water table). Groundwater within the bedrock was not encountered and is considered to be at depth. The perched groundwater is not likely to be continuous or a viable water resource (which reduces its sensitivity).

Field observations of potential soil contamination were limited to slight hydrocarbon odours at various locations and the presence of Made Ground. An exception was evidence of moderate hydrocarbon odours and black oily staining observed in borehole location WS104. This oily staining appears to be localised based on other nearby sampling points. The oily staining did not appear to extend into the natural bedrock.

i

¹ Ramboll UK Limited, 2024. Potters Stairfoot Preliminary Risk Assessment (Ref 1620015371-002).

The soil analytical results were screened against a commercial & industrial end-use generic assessment criteria (GAC). None of the results exceeded the GAC and therefore no environmental remedial action is needed for the proposed development. Evidence of a hydrocarbon contamination hotpots was found in WS104 (albeit still below GAC). This appears to be isolated based on chemical analysis of nearby soil samples.

Two detections of asbestos were encountered relating to fibrous chrysotile in WS101A and TP108 soil samples. Asbestos in Made Ground is common and likely related to demolition materials or landfilling. Typically, a competent contractor would be able to manage asbestos in soils during redevelopment work (although appropriate procedures and method statements will need to be prepared). It is noted that fragments of asbestos may still be present throughout the site and some visual evidence of this was noted from past site walkovers. This would need to be considered by the development's design team and contractors.

Groundwater sampling identified some elevated contaminant concentrations in isolated areas when compared to conservative screening criteria. In general, evidence of significant pollution of Controlled Waters was not found. Of note, was hydrocarbon impacted groundwater in WS104 (as expected given the shallow water table and results of the soil sampling). Ammonia was found in the area of a former landfill, although was not site wide (ammonia is an indicator of landfill leachate). Groundwater has the capacity for natural attenuation, as evident from geochemical parameters including dissolved oxygen and iron, which reduces pollution risks. Overall, the perched water analytical results do not indicate a significant mobile source of contamination at the site.

Ground gas monitoring was conducted over six rounds of varying atmospheric conditions. The majority of wells (including under and around the proposed development) were Characteristic Situation 1 (CS1) (very low risk). WS102 (under the proposed admin building) and WS104 (under the proposed processing building) had consistent carbon dioxide concentrations over 5% volume with a negligible steady state flow rate. Although only a marginally elevated reading, Ramboll consider it prudent for the admin building to be classified as CS2 (low risk) given the proximity of landfills and levels of ground gas elsewhere on the site. Given the scale of the office the addition of basic gas protection measures should not be an onerous undertaking (for example, this could be achieved through installing a gas membrane or venting beneath the building). Given the gas risk could remain at CS1 (very low risk); however, any enclosed rooms such as offices it may be prudent to increase the classification to CS2 (low risk).

Ramboll's PRA identified that basic Radon protection measures are required in newly constructed / extended residential properties. Further, assessment is required to determine if gas radon protective measures are required in commercial buildings e.g. the offices; however, it may be prudent to install radon protective measures during construction.

Higher concentrations of methane and carbon dioxide were recorded at WS103, CP1 and occasionally CP2 towards the south-east of the site (in the area of Old Field landfill) and this area is classified as CS3 (medium risk); although no development is planned in the area.

In conclusion, the GQRA has not identified significant ground contamination. The PRA had raised concerns that contamination may be present largely due to past landfilling, however no significant Mage Ground was evident within the development area of the site. No remedial action is considered necessary to protect the environment. However, standard brownfield mitigation measures will be needed for the proposed development, including basic gas protection in some

buildings and management of waste soils generated through ground works. There could be abnormal costs associated with, for example, disposal of contaminated and surplus soils and other materials deposited onto the site. Appropriate development and contractor method statements and risk assessments should be prepared, including an asbestos management plan.

Ramboll recommends that the area of the site that is to remain as soft landscaping should be thoroughly inspected and cleared of wastes and materials that could cause a contaminant or physical hazard if accessed by future site users. Managing the landscaping in a nature positive way would increase biodiversity at the site.

A remediation strategy should also be prepared to formalise those actions needed for the proposed development (including gas protection measures, procedures for unexpected contamination and contractor responsibilities).

1. Introduction

1.1 Brief

Ramboll UK Limited (Ramboll) has been instructed by Potters-Ballotini Limited (the "Client") to prepare a Generic Quantitative Risk Assessment (GQRA) for the former Stairwell Brickworks, Barnsley, Wombwell Lane, S70 3NS (the "site"). The GQRA has been undertaken in connection with the development of the site for a proposed industrial end use. This assessment has been undertaken on the basis that the site will be redeveloped for an end-use comprising a glass and metal recycling facility with associated buildings and outside yard areas. A Site Location Plan is provided in Figure 1, Appendix 1.

This GQRA is produced with consideration to Tier 2 of Stage 1 (Risk Assessment) of Land Contamination Risk Management (LCRM) published by the Environment Agency (EA) in 2021. As such, the brief is to present the objectives, define the scope of investigation, define suitable generic assessment criteria to which results of investigation can be compared, present investigation findings and assessment of results, and update the preliminary conceptual site model (CSM) for the site which was produced at the Preliminary Risk Assessment (PRA) stage (Ramboll, March 2024 (Ref 1620015371-002_2.0)). The conclusions of the report are intended to inform what further action may be needed.

1.2 Proposed Development

The proposed development is a waste glass recycling and repurposing facility. The facility will operate in accordance with circular economy principles for the recycling and repurposing of mainly clean glass or cullet, particularly flat glass, diverting it back to the market for use as a raw material. The site would be operated and regulated under an Environmental Permit from the Environment Agency, incorporating a management system.

The proposed development will enable Potters to merge its existing Barnsley site located at Hoyle Mill and its INGS environmental Processing Facility at Groveport, Scunthorpe onto a purpose designed and modernised site. The proposal is anticipated to significantly reduce volumes of road miles per annum when compared to the current operational practices (which supports the United Nations (UN) Sustainable Development Goals (SGD), see Section 1.4.

The proposed development includes the processing building and glass processing equipment infrastructure along with an office and welfare block, parking, a double weighbridge, an electricity substation, and ancillary features such as storage bays (interlocking moveable blocks), site entrance (two-way access) and perimeter fencing.

The purpose of the proposed development is to recycle glass delivered to the site through processing pure and mixed glass. Clean glass is crushed to a certain size and any metals present within the glass (small amounts can be present in glass) are removed. Purified glass is sold to selected customers in the UK.

Mixed glass consists of higher proportions of other materials such as rubber, aluminium, and iron. Processing mixed glass therefore requires a separation process to split components into different products. Once purified, glass can be sold to UK customers, predominantly for the production of insulation (glass wool). Removed materials as part of the separation process would also be sold to appropriate recycling industries.

1.3 Objectives

The objectives of this report build upon the PRA and consider LCRM; specifically the objectives include:

- Confirm which potential contaminant linkages identified at PRA stage are to be assessed;
- Document how the ground investigation was designed to assess those potential contaminant linkages and any constraints on the ground investigation;
- Document findings of the ground investigation, and interpret the environmental ground conditions encountered during ground investigation;
- Document details of presence of structures and buried services that could influence the conceptual site model, where these have been identified through the investigation;
- Establish appropriate generic assessment criteria and a standard set of generic assumptions to assess the risks;
- Assess the potential for risks to both human health and environmental receptors (including controlled waters) based on the data collected;
- Carry out a contaminated land risk assessment based on a source-pathway-receptor methodology;
- Present a refined Conceptual Site Model (CSM) based on the findings of the ground investigation;
- Identify potential for changes to ground conditions due to weather conditions and seasonal / climatic patterns and how these changes may affect the CSM;
- Assess the suitability of the re-use of stockpiles and Made Ground soils at the site;
- Provide a commentary on contaminated land risks; and
- Assess what further action is needed.

1.4 Sustainability

The United Nations (UN) 2030 Agenda for Sustainable Development sets 17 Sustainable Development Goals (SDGs) which are designed to promote the achievement of a better and more sustainable future for all.

Contamination and pollution are recognised by the United Nations as risks to human health and wellbeing as well as sustainability of the places where we live. A target to substantially reduce those risks is enshrined in the UN Sustainable Development Goal (SDG) No 3: Good Health and Wellbeing, as well as SDG No. 11: Sustainable Cities and Communities, which also emphasises sustainable management of waste. Pollution is likewise recognised as a potential threat to water quality, both for human consumption and for its ability to support water-related ecosystems (UN SDG No. 6: Clean Water and Sanitation).

Contamination and pollution within soils, water and air at the site have been identified through the conceptual site model development process and strategic sampling and analysis. Characterisation and, if recommended as a result of the assessment contained within this report, remediation of contamination at the site thus directly support achievement of UN strategy. Implemented through technically robust investigation and risk assessment this focusses the proposals for remedial works where there is a scientifically justifiable need, thus minimising the carbon footprint of works carried out (supporting SDG No 13: Climate Action) as well as production of waste (SDG No. 11).

In order to recognise where the GQRA works completed are of relevance to the progression of the UN's SDG objectives, reference is made in this report to relevant SDGs.

1.5 Constraints and Limitations

This report has been prepared by Ramboll exclusively for the intended use by the client in accordance with the agreement (email between Ramboll and the client), dated 10 July 2023, defining, among others, the purpose, the scope and the terms and conditions for the services. No other warranty, expressed or implied, is made as to the professional advice included in this report or in respect of any matters outside the agreed scope of the services or the purpose for which the report and the associated agreed scope were intended, or any other services provided by Ramboll.

In preparation of the report and performance of any other services, Ramboll has relied upon publicly available information, information provided by the client and information provided by third parties. Accordingly, the conclusions in this report are valid only to the extent that the information provided to Ramboll was accurate, complete and available to Ramboll within the reporting schedule.

Ramboll's services are not intended as legal advice, nor an exhaustive review of site conditions and/or compliance. This report and accompanying documents are initial and intended solely for the use and benefit of the client for this purpose only and may not be used by or disclosed to, in whole or in part, any other person without the express written consent of Ramboll. Ramboll neither owes nor accepts any duty to any third party, unless formally agreed by Ramboll through that party entering into, at Ramboll's sole discretion, a written reliance agreement.

Unless otherwise stated in this report, the scope of services, assessment and conclusions made assume that the site will continue to be used for its current purpose and end-use without significant changes either on-site or off-site.

The ground investigation works were undertaken during a discrete period of time. The findings and conclusions presented in this report are accordingly factually limited by these circumstances and, unless stated otherwise in the report, are preliminary. The field investigations were restricted to a level of detail necessary to meet the stated objectives of the services. The results of any measurements taken may vary spatially or with time and further confirmatory measurements should be made after any significant period of time has elapsed since the sampling took place. The interpretation of the geological and environmental quality conditions is based on extrapolation from point-source data in a heterogeneous environment. Accordingly, more detailed investigation may be appropriate dependent upon the client objectives.

The ground investigation was limited by the following factors:

- It was not possible to progress WS101 to the south of the site due to the presence of underground services. WS101 was terminated and moved to WS101A.
- The advancement of WS109 was prevented where concrete obstructions are present at shallow depths of 1.10m bgl.
- It was not possible to undertake excavations into the stockpile of demolition materials in the north-west of the site, due to access and stability. The materials were visually observed to comprised of blocks of concrete, brick and rebar.

Overall, Ramboll was able to investigate the majority of identified potential contaminant sources and it is considered that the exploratory holes provide an appropriate coverage across the accessible areas of the site.

2. Summary of Preliminary Risk Assessment

2.1 Introduction

This section summarises information gathered from Ramboll's PRA².

2.2 History

Historically, the site was occupied by agricultural fields and a Railway line from the 1850s. By the 1900s Stairfoot Brickworks was present on-site, with associated Clay Pits. The Brickworks and Clay Pits expanded until the late 1990s, when the Clay Pits had been infilled or used as landfills.

There are five landfills encroaching on to the site; North Field Phase I and II (to the north-west), South Field (to the north-north-east), Old Field (to the south-south-east) and Disused Railway Cutting (to the south-east). The site is currently vacant following the demolition of the Brickworks in 2016.

Potentially contaminative land uses within the surrounding area have included clay pits, landfills and the Oaks Chemical Plant (with associated Tanks and Gasometers) dating from 1930s until the 1980s. A Tesco branded petrol filling station (PFS) is located 70m west.

2.3 Site Setting

The site's National Grid Reference is 437880, 405014 (Figure 1). It comprises an irregular plot of land of approximately 6.39 hectares (ha). The topography of the site and surrounding area slopes towards the south-west with the nearest surface watercourse being the Dob Sike, located 110m south-west from the site.

Presently, the site is undeveloped comprising hard surfacing of concrete in the centre and the far east of the site, with soft landscaping generally contained to the periphery of the site. The north and south-east of the site comprise areas of either loose gravel and / or soft landscaping, which were historically landfills (North Field Phase I and Phase II (north-west), South Quarry (north) and Old Field landfill (south-west)). Impermeable surfacing occupies approximately 30% of the area of the site.

2.4 Environmental Receptors

The following sites have been designated as being environmentally sensitive, and were identified in the PRA report as potential sensitive environmental receptors:

- Stairfoot Brickworks is a designated Site of Special Scientific interest and is located at the eastern end of the site, adjacent to the site boundary.
- The Dearne Valley Park is a designated Local Nature Reserve (located 1.69 km north-west). There are three Green Belt areas within 2 km of the site (closest 15 m south-west) and two Nitrate Vulnerable Zone (closest is River Dearne NVZ pertaining to surface water located onsite) within 2 km of the site.

2.5 Geology, Hydrogeology and Hydrology

A summary of the expected geological conditions at the site is provided in Table 2.1, this information was sourced from the British Geological Society regional mapping.

² Ramboll, March 2024: Preliminary Risk Assessment - Former Stairfoot Brickworks, Wombwell Lane, Barnsley (1620015371-002 Potters Stairfoot PRA_2.0).

Table 2.1 Anticipated Geology and Hydrogeology

Stratum	Estimated Top of Stratum (metres below ground level (m bgl))	Estimated Average Thickness (m)	Description	Aquifer Designation
Made Ground	Ranges between ground level to 11.50	3.50m	Variable, but generally brick rubble fill and landfill material (domestic and commercial waste)	Unclassified
Pennine Middle Coal Measure	Ranges between 0.1 proven to 12.45	300m	Brown mottled grey clay overlying light brown friable interbedded mudstone / siltstone / sandstone	Secondary A

The site is in a moderately sensitive setting with regard to groundwater resources due to the underlying Secondary A aquifer. The site is not located within a Groundwater Source Protection Zone. There are three licensed groundwater abstractions within 2km of the site, and none are deemed to be for sensitive use.

The site is in a low to moderate sensitive setting with regard to surface water due to Dob Sike 110m south-west. There is one surface water abstraction within 2km and is not deemed to be for sensitive use.

2.6 Other Site Investigations

There have been previous ground investigations at the site (in 2011 and 2021) that have demonstrated that the site is not significantly contaminated with regards to the current commercial end use. However, the presence of the former landfills presents a risk due to ground gas and leachates. Gas mitigation measures including a venting trench have been implemented in the south-east of the site, outside of the proposed development area. During the 2021 ground investigation by Ashton Bennett Consultancy, ground gases were only monitored at four locations underneath the proposed development.

2.7 Current and Former Land Uses with Potential for Contamination

Current and Former Land Uses with Potential for Contamination include:

- Railway line from the 1850s.
- Brickworks, with associated Clay Pits extending off-site from 1900s to 2000s.
- Five Landfills extending from the site between 1980s and 1990s (accepted industrial, commercial and household waste).

2.8 Preliminary Conceptual Site Model

The main environmental legislation relating to contaminated land in the UK is Part 2A of the Environmental Protection Act 1990. The philosophy behind Part 2A is the source-pathway-receptor potential contaminant linkage; for land to be contaminated all three aspects of this linkage must be present (i.e. a contaminant must be present and able to move along a pathway and impact a receptor). Further details are provided in Appendix 2.

A preliminary conceptual site model that identifies those potential contaminant linkages forms the output of the PRA and is a simplified representation of the environmental conditions at the site, and in the vicinity of the site, and is used to initially identify potentially sensitive receptors and potential pollutant linkages).

A key aspect of LCRM is that the GQRA should assess the potential contaminant linkages identified in the preliminary conceptual site model. Those PCLs which were identified in the PRA's CSM as being significant and thus warranting further investigation are presented below:

- PCL1 Potential contaminant linkage via contact or inhalation / ingestion of soils and soil dusts during construction, posing a risk to construction workers and nearby land users e.g. from lead, benzo(a)pyrene and asbestos; site-wide.
- PCL2 Potential contaminant linkage to groundwater body in the underlying Secondary A Aquifer from soil contamination by metals, polycyclic aromatic hydrocarbons (PAHs) and total petroleum hydrocarbons (TPH) arising from Made Ground across the site.
- PCL3 Potential contaminant linkage to surface water arising from the migration of contaminants from groundwater at the site to Dob Sike 110m south-west.
- PCL4 Potential contaminant linkage to future site users of the proposed new development from vapours or landfill gas arising from soil and groundwater contamination across the whole site, including the proposed development and former landfills.

The ground investigation was designed to assess the PCLs above. The following sections describe the ground investigation strategy, the results of laboratory chemical analysis and monitoring and a qualitative source-pathway-receptor risk assessment. A revised conceptual model is then presented.

6

3. Ground Investigation

3.1 Design

The ground investigation was designed to investigate soil, ground gas and groundwater at the site and to test the preliminary conceptual site model, focussing on the assessment of PCLs identified in Section 2.

A Ramboll engineer attended the site in September 2023 to assess the current condition of the site and to perform a well integrity check. It was apparent from the visit that the several of the previously installed boreholes by Ashton Bennett in 2021 were damaged and/or no longer functional.

3.2 Ground Investigation Activities

The intrusive ground investigation was supervised by Ramboll, and was undertaken during 6th to 11th October 2023, with subsequent monitoring of groundwater undertaken on 13th October 2023. Six ground gas monitoring rounds were undertaken between 13th October 2023 to 30th November 2023. Factual records relating to the ground investigation are provided in Appendix 3.

The ground investigation was undertaken in general accordance with:

- BS 5930 Code of Practice for Ground Investigation³; and
- BS 10175 Investigation of Potentially Contaminated Sites Code of Practice⁴.

The level of investigation designed for is considered by Ramboll to be Detailed with respect to BS 10175.

A summary of the scope of the investigation undertaken at the site is presented in Table 3.1. Exploratory locations are shown on Figure 2. Borehole logs (including monitoring well details) are provided in Appendix 3.

Item	No.	Comments
Utilities Clearance Survey	Item	Prior to intrusive works a specialist service location contractor, RP Drilling Ltd was contracted to locate below ground services and mark out drilling locations. The cleared locations along with the accessible previous monitoring wells were levelled to ordnance datum (m AOD).
Window Sample Boreholes	12 No.	Rig type: Terrier Rig Depth range (m): 1.1 m to 4.0 m
Trial Pitting	8 No.	Method: JCB 3CX Excavator fitted with a 0.6m wide bucket Depth range (m): 1.44 m to 3.90 m
Hand Pitting	9 No.	Hand pits were dug to approximately 0.3m below ground level (bgl) to assess the ground conditions at the perimeter of the site where soil surface will remain.
Soil Sampling and Screening	30 No.	During the ground investigation, soil samples were recovered from each exploratory hole location (30 in total) and screened on-site using a handheld photo-ionisation detector (PID) (MiniRae Lite) for the presence of volatile organic compounds (103 samples screened).
Groundwater Sampling and Monitoring	6 No.	An oil / water interface probe was used to check for free-phase hydrocarbons and resting groundwater levels were monitored.
Gas Monitoring	6 No.	Ground gas monitoring was undertaken using a portable gas analyser (GFM 430 Series) and PID (MiniRae Lite).

Table 3.1 Summary of Intrusive Works

³ British Standards (2015) Code of Practice for site Investigation BS5930: 2015+A1: 2020

⁴ British Standards (2017) Code of Practice for the Investigation of Potentially Contaminated sites. BS10175:2011 + A2:2017

Item	No.	Comments
Waste Characterisation for Disposal	Item	All soil and groundwater arisings along with general waste generated during the works were stored in dedicated drums and skips during the investigation. A representative sample of the waste was submitted for chemical testing and was characterised for waste disposal purposes waste (i.e. hazardous or non-hazardous waste). Once characterised, the wastes (soil, water and general waste) were collected by Acorn Waste, who (under appropriate consignment notes) arranged for disposal to a suitably licenced facility.

3.3 Sample Location Rationale

The rationale for positioning the sampling locations is described in Table 3.2.

Table 3.2 Exploratory Hole Rationale

Exploratory Hole	Rationale
WS101A	To determine the shallow soil and ground gas conditions in the southern central area of the site within the vicinity of the proposed admin building.
WS102	To determine shallow soil and ground gas conditions in the vicinity of the proposed admin building.
WS103	To determine the shallow soil and ground gas conditions in the area of Old Field landfill.
WS104	To determine the shallow soil, groundwater and ground gas conditions in the in the vicinity of the proposed processing building.
WS105	To determine the shallow soil and ground gas conditions in the central area of the site.
WS106	To determine the shallow soil and ground gas conditions in the vicinity of the proposed processing building.
WS107 – WS108	To determine the shallow soil and ground gas conditions in the western area of the site.
WS109	To determine the shallow soil, groundwater and ground gas conditions in the vicinity of the former overground Tank.
WS110	To determine the shallow soil and ground gas conditions in the north-western area of the site.
WS111	To determine the shallow soil and ground gas conditions in the north area of the site.
WS112	To determine the shallow soil, groundwater and ground gas conditions in the vicinity of the proposed processing building.
TP101	To determine the shallow soil conditions in the north-western stockpile for waste classification purposes.
TP102	To determine the shallow soil conditions in the north-western area of the site in the western soil bund.
TP103	To determine the shallow soil conditions in the stockpiled materials for waste classification purposes.
TP104 – TP106	To determine the shallow soil conditions in the northern soil bund.
TP107	To determine the shallow soil conditions in the area of Old Field landfill located on the loose gravel.
TP108	To determine the shallow soil conditions in the southern stockpile for waste classification purposes.
HD1 – HD9	To determine the shallow soil conditions of retained soils across the proposed development area.

Ramboll also monitored / sampled a further nine monitoring wells located during the initial walkover. Details of the construction and response zones of the wells is provided in Table 5.3 (see Section 5.4).

3.4 Sampling and Monitoring

Details of the Ramboll's general sampling and monitoring methods utilised during the investigation are provided in Appendix 4. Project-specific details are summarised below.

Soil samples were recovered from each of the exploratory locations based at regular intervals and / or changes of strata. The soil samples were tested on-site for the presence of volatile

organic compounds (VOCs) using a photo-ionisation detector (PID), calibrated in accordance with Ramboll's Quality Management procedures. Each soil sample tested was placed into a sealed plastic bag and agitated. The PID was then inserted into the headspace and the total VOC reading recorded. The PID screens for a wide range of VOCs but does not indicate a specific compound; therefore, the results of the PID screening provide a semi-quantitative indication of the concentration of VOCs present in soil pore spaces.

Selected samples were placed in appropriate containers supplied by the laboratory appropriate to the type of analysis being undertaken and stored in cool boxes with ice packs. All samples were dispatched accompanied by chain of custody documentation to an independent Ramboll approved MCERTS accredited analytical laboratory (Element Materials Laboratory (Element)).

Groundwater sampling was undertaken on 13th October 2023 following the completion of the site investigation intrusive works.

Prior to sampling, the depth to the resting groundwater level (where present) and base of the monitoring wells were measured using an electronic interface probe. The monitoring wells were then purged of at least three times the saturated well volume prior to groundwater sampling. Where wells were purged dry, a sample was collected following a period of recovery. Purging and sampling was undertaken using a peristaltic pump with inert tubing for each well to prevent cross contamination.

The recovered samples were placed in containers supplied by the laboratory appropriate to the type of analysis being undertaken and stored in cool boxes with ice packs. Samples were dispatched accompanied by chain of custody documentation to Ramboll's subcontracted and suitably accredited laboratory (Element) for analysis.

On-site measurement of groundwater parameters was undertaken on selected wells using a YSI Professional Plus Portable Multi-Parameter Water Quality Meter, including temperature, dissolved oxygen (DO), specific conductivity, pH, redox potential, total suspend solids and salinity. Details of the groundwater monitoring, together with the on-site field parameters are presented in Appendix 3. Grab samples were obtained due to the slow recharge rates at WS104, WS112 and CP7.

Monitoring of ground gas was undertaken at all newly drilled locations, as well as nine existing wells drilled during the 2021 ground investigation. Due to limited groundwater being encountered within the monitoring wells, groundwater samples were collected from three of the newly drilled locations (WS104, WS109 and WS112) and three existing boreholes (CP7, WS8 and WS9). Details of the monitoring locations are summarised in Table 3.3.

Monitoring Wells				
Monitoring Position	Response Zone (m bgl)	Response Zone (m AOD)	Response Zone Strata	Monitoring Purpose
WS101A	0.50 – 1.15	47.02 – 46.37	Weathered Coal Measures	Ground gas
WS102	1.00 - 3.00	46.42 - 44.42	Made Ground	Ground gas
WS103	1.00 - 4.00	46.46 - 43.46	Made Ground	Ground gas
WS104	1.00 - 3.00	46.88 - 44.88	Made Ground	Groundwater / ground gas
WS105	0.40 – 1.50	47.75 – 46.65	Made Ground	Ground gas
WS106	0.30 – 0.85	47.84 – 47.29	Made Ground	Ground gas
WS107	1.40 - 2.80	46.48 - 45.08	Weathered Coal Measures	Ground gas
WS108	0.30 - 1.30	47.84 - 46.84	Made Ground	Ground gas

Table 3.3 Monitoring Locations

Monitoring Well	S			
Monitoring Position	Response Zone (m bgl)	Response Zone (m AOD)	Response Zone Strata	Monitoring Purpose
WS109	0.50 – 1.10	47.62 – 47.02	Made Ground	Groundwater / ground gas
WS110	1.50 – 2.95	46.56 – 45.11	Weathered Clay	Ground gas
WS111	0.50 – 2.50	49.09 - 47.09	Made Ground	Ground gas
WS112	1.30 – 2.00	47.10 – 46.40	Weathered Coal Measures	Groundwater / ground gas
CP1*	1.00 - 7.00	49.48 - 43.48	Made Ground	Ground gas
CP2*	1.00 - 9.00	48.77 – 40.77	Made Ground	Ground gas
CP7*	0.50 – 3.00	47.60 – 45.10	Made Ground / Clay / Siltstone**	Groundwater / ground gas
CP11*	0.50 - 3.00	49.83 – 47.33	Made Ground / Clay**	Ground gas
WS6*	1.00 - 3.00	51.03 – 49.03	Made Ground / Siltstone**	Ground gas
WS7*	1.00 – 2.00	51.19 – 50.19	Made Ground	Ground gas
WS8*	1.00 – 6.50	50.31 – 44.81	Made Ground	Groundwater / ground gas
WS9*	1.00 – 3.50	49.58 – 47.08	Made Ground / Clay / Siltstone**	Groundwater / ground gas
WS12*	0.60 – 1.30	47.22 – 47.52	Made Ground / Clay / Siltstone**	Ground gas
*Borehole from previous around investigation				

**Response zone crosses multiple strata

Table 3.4 summarises the analytical schedule for the samples tested together with the rationale for analysis.

Table 3.4 Analytical Strategy

	Dationala	Number of Samples Tested		
	Rationale	Soil	Groundwater	
Asbestos Screen	Commonly associated with Made Ground.	21	-	
Metals (including arsenic, cadmium, chromium, lead, mercury, copper, nickel, zinc vanadium, boron, beryllium and selenium)	Typically associated with brownfields sites historically used for industrial purposes.	30	6	
Total Petroleum Hydrocarbons Carbon Working Group (TPH CWG) including BTEX	Typically associated with fuels and oils	29	6	
Total cyanide, phenols	Typically associated with historical industrial sites and brownfield land.	29	6	
Water soluble sulphate	Typically associated with Made Ground.	28	6	
Polycyclic Aromatic Hydrocarbons (PAH)	Typically associated with fuels and oils.	30	6	
Polychlorinated Biphenyls (PCBs)	Associated with electrical equipment.	3	-	
Volatile Organic Compounds (VOCs) and Semi-Volatile Organic Compounds (SVOCs)	Typically associated with fuels and oils (like PAHs)	7	6	

	Dationala	Number of Samples Tested		
	Rationale	Soil	Groundwater	
Dissolved Ions (calcium, iron, magnesium, potassium and sodium)	To assess ion composition within underlying groundwater and landfill.	-	6	
Total hardness (as calcium carbonate)	Used to characterise the soils and derive an assessment criteria for some metals.	-	6	

3.5 Field Observations

3.5.1 Ground Conditions

Ground conditions identified by the investigation are summarised in Table 3.5. A full lithological description is recorded on the logs, which are provided as Appendix 3.

Made Ground is variable across the site, but generally thicker towards the north, north-east, north-west and south-east of the site (i.e. areas of former landfill). These areas comprise Made Ground of infilled material, waste, ashy material and bricks. The thickness of Made Ground beneath the concrete hardstanding is variable but is generally shallower when compared to areas of soft landscaping.

Table 3.5 Ground Conditions Encountered

Stratum	Description	Depth to Base (m bgl)	Approximate Average Thickness (where encountered) (m)
Reinforced Concrete / bituminous tarmacadam	Reinforced concrete was encountered at seven locations (excluding WS101A, WS103, WS111 and WS112), ranging in thickness between 0.15m to 0.25m. Bituminous tarmacadam was located at WS112 with a thickness of approximately 0.20m.	0.25	0.23 / 0.20
Made Ground	Made Ground was present in all exploratory locations with depths ranging from 0.1m to 4.0m bgl. The Made Ground generally comprised a silty sandy gravel of part brick, concrete, clinker and ashy material. Rare glass, wood fragments, clothing textiles and confectionary wrappers were observed in WS103 (Old Field landfill). Trial pits generally targeted the above ground stockpiles and soil bunds, with the thicknesses of Made Ground ranging from 1.5m above ground level (TP101) to 3.2m bgl (TP102). The stockpiles and soil bunds generally comprised brown clay with gravels of mudstone, siltstone and coal, and rare plastic and metal fragments. One of the stockpiles in the north-west of the site comprised of demolition materials e.g. brick and concrete blocks, with rebar.	0.10 – 4.00 variable across the site	2.90
Pennine Middle Coal Measures	Generally encountered as soft to stiff silty / sandy clay with gravel of lithorelicts over light brown mottled grey extremely friable mudstone / sandstone / siltstone.	Between 0.10 - 4.00 (proven)	0.75

The ground conditions encountered across the site are generally comparable to the geology described in the regional British Geological Survey (BGS) map and previous third-party intrusive investigations at the site.

Confidential

A total of 103 soil samples were screened in the field for volatile organic compound (VOC) contamination by headspace analysis using a photoionisation detector (PID). Results from 95 of the samples recorded low concentrations of VOCs, i.e. less than 10ppm. All eight PID samples that exceeded 10ppm were located at WS104; with a maximum VOC reading of 172.9ppm in WS104 at 2.80m bgl. This corresponds with visual and olfactory evidence of hydrocarbons (a sample was also analysed by the laboratory, as discussed in the next section).

Table 3.6 provides information of where notable visually or olfactory impacted soils were recorded, and any associated PID readings to correlate with the location of possible volatile substances.

Exploratory Location	Observations	PID Reading (parts per million (ppm))				
Made Ground						
WS102	Visual evidence of black oily staining and a slight hydrocarbon type odour at 3.8m bgl.	3.80m bgl (0.3ppm)				
WS103	Slight hydrocarbon type odour between 0.30m bgl to 0.60m bgl	0.50m bgl (1.1ppm)				
WS104	Visual evidence of black oily staining and moderate hydrocarbon type odours between 0.25m bgl to 1.30m bgl Visual evidence of and black oily staining material and moderate hydrocarbon type odours between 2.50m bgl to 2.95m bgl.	0.30m bgl (46ppm) 0.50m bgl (73ppm) 0.65m bgl (106ppm) 0.85m bgl (41ppm) 1.20m bgl (10ppm) 2.50m bgl (53ppm) 2.80m bgl (173ppm)				
WS108	Slight hydrocarbon type odour between 1.20m bgl and 1.30m bgl.	1.20m bgl (0.5ppm)				
WS110	Slight hydrocarbon type odour between reworked clay between 0.8m m bgl to 1.2m bgl.	0.90m bgl (0.7ppm)				
TP107	P107 Slight hydrocarbon type odour between 0.4m bgl to 1.70m bgl.					
Natural Soils						
WS104	2.95m bgl (11ppm)					

Table 3.6 Observations in Soils

3.5.2 Groundwater

The depth to resting groundwater levels were recorded during the groundwater and ground gas monitoring rounds. No Non-Aqueous Phase Liquid (NAPL) was identified during the monitoring. A summary of the groundwater levels and evidence for contamination observed throughout the monitoring period is provided in Table 3.7.

Monitoring Well	Range in Depth to Groundwater (m bgl)	Range in Groundwater Elevation (m AOD)	l nferred Aquifer Containing Groundwater ¹	Evidence for Contamination	Range of PID readings (ppm)	Number of Monitoring Rounds
WS101A	0.96 - DRY	46.40 - 47.52	Perched Water	None.	0.50 – 0.60	6
WS102	DRY – 3.14	44.28	Perched Water	None.	0.20 - 0.40	6

Table 3.7 Groundwater Observations

Monitoring Well	Range in Depth to Groundwater (m bgl)	Range in Groundwater Elevation (m AOD)	Inferred Aquifer Evidence for Containing Contamination Groundwater ¹		Range of PID readings (ppm)	Number of Monitoring Rounds
WS103	DRY	DRY	Perched Water	None.	0.30 – 6.50	6
WS104	2.40 - 2.53	45.35 - 45.48	Perched Water	Moderate hydrocarbon odour and oily sheen.	0.70 - 173	7
WS105	0.94 - 1.36	46.79 - 47.21	Perched Water	None.	0.20	6
WS106	0.29 - 0.69	47.45 – 47.88	Perched Water	None.	0.20 - 2.40	6
WS107	1.47 - 1.94	45.94 - 46.41	Perched Water	None.	0.10 - 0.20	6
WS108	1.08 - 1.29	46.85 - 47.06	Perched Water	None.	0.40 - 0.80	6
WS109	0.41 - 0.72	47.47 - 47.71	Perched Water	Slight hydrocarbon odour and oily sheen.	0.50	7
WS110	0.38 - 0.88	47.71 - 47.17	Perched Water	None.	0.30 - 0.70	6
WS111	1.68 - 1.84	47.75 - 47.91	Perched Water	None.	0.00 0.20	6
WS112	0.15 - 0.45	46.98 – 48.25	Perched Water	Oily seen noted.	0.40 - 0.80	7
CP1*	7.02 - 7.82	42.66 - 43.46	Perched Water	Acrid smell and black staining with slightly hydrocarbon odour.	NA	6
CP2*	6.45 - DRY	43.32 - DRY	Perched Water	ched Water Sawdust-like material on probe.		6
CP7*	0.00 - 0.93	47.18 - 48.10	Perched Water	None.	NA	7
CP11*	0.91 - 1.22	49.11 - 49.41	Perched Water	Frequent hairs encountered on probe along with acrid smell.	NA	6
WS6*	2.07 - 2.55	49.48 - 49.96	Perched Water	None.	NA	6
WS7*	1.47 - 1.91	50.28 - 50.70	Perched Water	Very slight hydrocarbon-like odour during Round 2.	NA	6
WS8*	1.91 - 3.12	48.19 - 49.40	Perched Water	None.	NA	7
WS9*	0.38 - 2.66	47.92 - 50.20	Perched Water	None.	NA	7
WS12*	0.50 - 0.63	47.19 - 47.33	Perched Water	None.	NA	6

Notes:

1 The inferred horizon has been identified by comparing the resting groundwater levels against the exploratory hole logs and monitoring well design.

Groundwater monitoring data taken during the first gas monitoring round in newly drilled wells have been excluded from the groundwater level column. The majority of wells were dry as the wells had only recently been drilled.

NA = Not Analysed due to previous ground investigation

*Borehole from previous ground investigation

**Response zone crosses multiple strata

Perched water was found at a variety of different levels and this reflects the heterogeneity of the Made Ground and likely discontinuity in perched water bodies. Flow of perched water was tentatively towards the south-south-west and Dob Syke (located 110m south-west); however, there is likely to be a complex flow pattern due to the heterogenous Made Ground.

The range in recorded groundwater elevations was 50.20m AOD (at WS9) to 42.66m AOD at CP1.

It is assumed that the drilled borehole close to the edge of the concrete hardstanding (i.e. WS110 and WS112) may be influenced by the areas of surface water flooding during the monitoring. The resting water level in these two locations was near ground level during all but the first gas monitoring round.

The field parameters measured during the groundwater monitoring are summarised as follows:

- Dissolved oxygen was recorded at concentrations between 0.54mg/l (WS8) and 7.06mg/l (CP7). The values indicate mildly aerobic to aerobic conditions, not typical of a landfill leachate;
- Oxygen Redox potential ranged between -32.2mV (WS8) and 207.7mV (WS112), which indicates mildly reducing to oxidising conditions;
- pH values ranged between pH 6.43 (WS112) and pH 7.91 (WS109), which is near neutral; and
- Electrical conductivity ranged from 439µs/cm (WS9) and 2,315µs/cm (WS8). This is not indicative of a typical landfill leachate.

In general, the geochemical parameters recorded during the groundwater monitoring show no clear trends or evidence of substantial landfill leachates.

4. Human Health Assessment

4.1 Assessment Approach

This assessment has been undertaken in general accordance with the current UK framework and comprises a GQRA as defined in LCRM¹⁶. Ramboll's assessment methodology is based on the Contaminated Land Exposure Assessment (CLEA) approach, further details of which are presented in Appendix 2.

LCRM states that the use of Generic Assessment Criteria (GAC) is appropriate for a range of management and site-specific technical factors. In choosing the GAC for human health assessment, Ramboll has considered stakeholder requirements, the complexity of the conceptual site model, combined and cumulative factors, potential changes in site circumstances, uncertainties and limitations.

Ramboll has derived GAC for the interpretation of soil and groundwater chemical analyses. The GAC are threshold-based screening criteria below which a significant risk is not considered to be present. Contaminants at concentrations above the GAC do not infer an unacceptable risk; rather that further assessment is required to more fully understand potential contamination risks (as discussed below).

GAC have been adopted for a commercial / industrial land use. This is based upon the proposed end use of the site. A soil organic matter (SOM) of 1% has been adopted for the assessment and this is based on Ramboll's GAC values based on Environment Agency guidance and software.

Chemical analyses are discussed below and are provided in full in Appendix 5. Laboratory certificates are provided in Appendix 6.

4.2 Analytical Results - Soils

No contaminants that were screened to a commercial / industrial end use exceed the GAC.

Metals were generally found at levels typical for a brownfield site with no obvious hotspots or elevated patterns.

PAHs were generally at low concentrations of <20mg/kg (total PAHs). The exception being two detections in TP107 and WS104 at concentrations of 83.1mg/kg and 106.4mg/kg respectively. These two soil samples were from Made Ground material within the former south-eastern landfill (TP107) and Made Ground where observations of hydrocarbon contamination was noted (WS104). These concentrations are isolated and not indicative of widespread contamination.

Similar to the PAHs, TPH was generally much less than 1,000mg/kg (total TPH) with the exception of detections in WS104 at 0.4m and 2.7m, and WS103 at 2.8m (8,584mg/kg, 6,136mg/kg and 1,020mg/kg respectively). The TPH detected is largely related to 'heavy' end hydrocarbons, which are typically less toxic and mobile in the environment (which is partly why the GACs are higher for these hydrocarbon fractions). As with the PAHs, the more elevated concentrations of hydrocarbons are localised to WS104 and not considered a significant risk to the proposed development.

VOCs were detected at trace concentrations which is consistent with low PID readings measured in the field. No obvious hotspot of VOC contamination was detected. sec-Butylbenzene (0.212mg/kg) was the highest VOC detected in WS104 (consistent with the highest PID readings detected. Total cyanide and phenol were also sporadically detected at low concentrations. The stockpiled material and soil bunds at the site generally comprise brown clays with gravels of mudstone, siltstone and coal. Rare fragments of plastic and metal were also detected. The stockpiled material generally had metals and PAHs at levels typical for a brownfield site with no obvious hotspots or elevated patterns.

4.3 Asbestos

Table 4.1 provides a summary of the locations at which asbestos was detected, the outcome of the laboratory testing and details of observations made on site. Concentrations of asbestos below 0.01% are considered to represent very low quantities, in accordance with current UK guidance provided by CL:AIRE⁵.

Fragments of suspected cement-bound asbestos containing material (ACM) were detected during Ramboll's initial walkover and during the ground investigation. The ACMs were generally on the ground surface and within the soil bund in the west of the site.

Location	Depth (m bgl)	Stratum	Asbestos Containing Material (ACM) Types Detected	Total % Asbestos in Sample
WS101A	0.10	Made Ground	Chrysotile Loose fibrous debris	<0.001
TP108	0.30 – 0.60	Made Ground	Chrysotile Loose fibrous debris	<0.001

Table 4.1 Asbestos Results - Detections

From the 21 soil samples submitted for asbestos identification testing from across the site, two samples (WS101A and TP108) detected loose fibrous chrysotile debris. Both samples were submitted for quantification, with asbestos concentrations recorded of <0.001%.

4.4 Analytical Results - Groundwater (Human Health)

The groundwater analytical results obtained during this investigation have been screened against the GAC for the protection of human health via volatilisation pathways from groundwater for commercial / industrial end use.

No determinands exceeded their relevant GAC.

4.5 Human Health Discussion

No contaminants were detected above a commercial / industrial end use GAC. This is consistent with past investigations and does not indicate a need for environmental remediation. Contaminants are still present at concentrations below the GAC, however, which may have implications for soil waste management and construction worker health and safety. As is standard, and common to many brownfield sites, specific risk assessments and method statements will still be need to manage the contamination detected in the soil.

Asbestos was detected within two samples (WS101A and TP108) in Made Ground. Both the detections of asbestos were recorded as chrysotile fibre bundles. Potential ACMs in the form of

⁵ CL:AIRE 2016 Interpretation for Managing and Working with Asbestos in Soil and Construction and Demolition Materials. Joint Industry Working Group CAR-SOIL

asbestos small grey fragments of cement sheets were observed on the surface of the concrete hardstanding and on the soil bund in the west of the site within the vicinity of WS111.

Evidence of contamination generally comprised limited visual / olfactory evidence of slight to moderate hydrocarbons odours. Oily staining was encountered at in WS102 (at 3.8m bgl) and WS104 (at 0.4m bgl and between 2.50m bgl to 2.95m bgl). Elevated PID readings were recorded in WS104 with 106ppm at 0.65m bgl and 173ppm at 2.80m bgl. Whilst no exceedances of TPH or phenolic compounds were detected in soils samples from these locations, concentrations were above the laboratory detection limit (total aliphatic and aromatic TPH concentrations of 47mg/kg was recorded in WS102 (at 3.80m bgl), 8,584mg/kg in WS104 at 0.4m bgl and 6,136mg/kg in WS104 at 2.70m bgl). There were also numerous detections of PAHs, BTEX, VOCs and SVOCs at these three sample locations, although the concentrations were significantly below the GAC.

TPH, PAH, VOCs and SVOCs were also detected at WS103 at 2.80m bgl in the former Old Field landfill area (total aliphatic and aromatic TPH concentrations were 1,020mg/kg), although no exceedances of the GAC were detected.

The hydrocarbon impacted soils are deemed to be localised and to not pose a significant threat to human health for the future development of the site.

4.6 Construction Workers

This report and the GAC consider long term and chronic risk to humans based on defined exposure scenarios set out in the CLEA model and in CAR-SOIL for asbestos impacts. In some cases, contaminants may also pose acute hazards to workers at a site, or a worker's exposure scenario may differ from the scenarios considered when deriving the GAC.

As exposure times for construction workers are generally short term, risks from site contamination are generally addressed through the use of appropriate working procedures and the use of personal protective equipment (PPE) in line with the Management of Health and Safety at Work Regulations⁶, Construction (Design and Management) Regulations⁷ (for some sites) and the Control of Substances Hazardous to Health Regulations⁸.

An Asbestos in Soils Management Plan would be required to provide a full assessment of risks to ground workers during construction and maintenance activities.

⁶ UK Statutory Instruments (1999) The Management of Health and Safety at Work Regulation No. 3242

⁷ UK Statutory Instruments (2015) Construction (Design and Management) Regulations No. 51

⁸ UK Statutory Instruments (2002) Control of Substances Hazardous to Health Regulations No. 2677

5. Water Environment Assessment

5.1 Assessment Approach

The potential risk to the aquatic environment from entry of pollutants (either directly or via a groundwater pathway) has been assessed using commonly accepted UK guidelines including country specific water regulations and the Environmental Quality Standards (EQS) defined in European legislation such as the Water Framework Directive (WFD) (2000/60/EC).

The potential receptors in the water environment which have been identified comprise:

- Groundwater in Pennine Middle Coal Measures (Secondary A Aquifer).
- Surface water within Dob Sike (110m south-west).

Assessment of the risk to these receptors is required using the appropriate GAC which are protective of that specific receptor. The GAC selected to assess the above receptors are detailed below in Table 5.1 and Table 5.2.

For those determinands included in the analytical suite which do not have corresponding European screening criteria derived from the above sources, UK-specific GAC are utilised. Where these are not available reference is made to other international guidance, further details of which are provided in Appendix 3.

5.2 Analytical Results

The results of the screening against relevant GACs are summarised in Table 5.1 and Table 5.2. Results are provided in full in Appendix 5. Exceedances of screening criteria do not infer that an unacceptable risk is present; the outcome of the screening is assessed further in the context of a qualitative source-pathway-receptor risk assessment.

All determinands omitted from Table 5.1 and Table 5.2 did not exceed the screening criteria for either groundwater or surface water. Therefore, there is no significant risk to either groundwater or surface water receptors.

Table 5.1 Exceedances of Groundwater GAC in Groundwater

Contaminant	No. of Samples	GAC (µg/l) [Source]	Number of Exceedances of GAC	Minimum Concentration (µg/I)	Maximum Concentration (µg/I)	Distribution Comment
Sulphate	6	188,000 [G1]	1	67,800	424,500	A singular exceedance was recorded at WS112.
Ammoniacal nitrogen	6	290 [G2]	1	<lod< td=""><td>42,200</td><td>A singular exceedance was recorded at WS8 (adjacent to South Field Quarry landfill).</td></lod<>	42,200	A singular exceedance was recorded at WS8 (adjacent to South Field Quarry landfill).
Arsenic	6	5 [G1]	1	<lod< td=""><td>18.8</td><td>A singular exceedance was recorded at WS8 (adjacent to South Field Quarry landfill).</td></lod<>	18.8	A singular exceedance was recorded at WS8 (adjacent to South Field Quarry landfill).
Nickel	6	15 [G1]	1	<lod< td=""><td>16.0</td><td>A singular exceedance was recorded at WS112.</td></lod<>	16.0	A singular exceedance was recorded at WS112.
Fluoranthene	6	0.075 [G1]	1	<lod< td=""><td>0.15</td><td>A singular exceedance was recorded at WS104.</td></lod<>	0.15	A singular exceedance was recorded at WS104.
Benzo(b)fluoranthene	6	0.05 [G1]	1	<lod< td=""><td>0.09</td><td>A singular exceedance was recorded at WS104.</td></lod<>	0.09	A singular exceedance was recorded at WS104.
Benzo(a)pyrene	6	0.005 [G1]	1	<lod< td=""><td>0.06</td><td>A singular exceedance was recorded at WS104.</td></lod<>	0.06	A singular exceedance was recorded at WS104.
Petroleum Hydrocarbons (Aliphatic $C_{12} - C_{16}$)	6	300 [G1]	1	<lod< td=""><td>400</td><td>A singular exceedance was recorded at WS104.</td></lod<>	400	A singular exceedance was recorded at WS104.
Petroleum Hydrocarbons (Aromatic C ₁₂ – C ₁₆)	6		1	<lod< td=""><td>210</td><td>A singular exceedance was recorded at WS104.</td></lod<>	210	A singular exceedance was recorded at WS104.
Petroleum Hydrocarbons (Aromatic C ₁₆ – C ₂₁)	6	90 [G1]	1	<lod< td=""><td>520</td><td>A singular exceedance was recorded at WS104.</td></lod<>	520	A singular exceedance was recorded at WS104.
Petroleum Hydrocarbons (Aromatic $C_{21} - C_{35}$)	6		1	<lod< td=""><td>260</td><td>A singular exceedance was recorded at WS104.</td></lod<>	260	A singular exceedance was recorded at WS104.

Table 5.2 Exceedances of Surface Water GAC in Groundwater

Contaminant	No. of Samples	GAC (µg/l) [Source]	Number of Exceedances of GAC	Minimum Concentration (µg∕l)	Maximum Concentration (µg∕I)	Distribution Comment
Cyanide	6	1.0 [S2]	2	<lod< td=""><td>20.0</td><td>Concentrations of cyanide that exceed the GAC were recorded at WS112 and WS8, both at a concentration of $20\mu g/l$.</td></lod<>	20.0	Concentrations of cyanide that exceed the GAC were recorded at WS112 and WS8, both at a concentration of $20\mu g/l$.
Sulphate	6	400,000 [S2]	1	67,800	424,500	A singular exceedance was recorded at WS112.
Ammoniacal nitrogen	6	1,100 [G2]	1	<lod< td=""><td>42,200</td><td>A singular exceedance was recorded at WS8 (adjacent to South Field Quarry landfill).</td></lod<>	42,200	A singular exceedance was recorded at WS8 (adjacent to South Field Quarry landfill).
Iron	6	1,000 [S2]	2	<lod< td=""><td>14,302</td><td>Exceedances of iron over the GAC were recorded at WS8 and WS104 (Made Ground).</td></lod<>	14,302	Exceedances of iron over the GAC were recorded at WS8 and WS104 (Made Ground).
Fluoranthene	6	0.0063 [S1]	1	<lod< td=""><td>0.148</td><td>A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.</td></lod<>	0.148	A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.
Benzo(b)fluoranthene	6	0.00017 [S1]	1	<lod< td=""><td>0.088</td><td>A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.</td></lod<>	0.088	A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.
Benzo(k)fluoranthene	6	0.00017 [S1]	1	<lod< td=""><td>0.035</td><td>A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.</td></lod<>	0.035	A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.
Benzo(a)pyrene	6	0.00017 [S1]	1	<lod< td=""><td>0.066</td><td>A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.</td></lod<>	0.066	A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.
Indeno(123-cd)pyrene	6	0.00017 [S1]	1	<lod< td=""><td>0.02</td><td>A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.</td></lod<>	0.02	A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.
Benzo(ghi)perylene	6	0.00017 [S1]	1	<lod< td=""><td>0.013</td><td>A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.</td></lod<>	0.013	A singular exceedance was recorded at WS104 (Made Ground). All other concentrations were below MRL.

Notes relating to Tables above

The following criteria have been used to select GAC:

G1 – Hazardous substances in groundwater for waterbodies at 'High' WFD status: UKTAG Technical Report on Groundwater Hazardous Substances Sept 2016 plus accompanying Confirmed Hazardous Substances List (January 2018); or in the absence the following GAC were selected: Limits of quantification (minimum reporting values) represent best available values at the Environment Agency laboratories, based on the requirement of the QA/QC Directive and Concentration in Groundwater Below Which Danger of Deterioration in Receiving Groundwater is Avoided: Concentrations recorded as annual average.

G2 - The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

S1 – The Annual Average (AA) Environmental Quality Standard (EQS) provides protection against long term exposure to chemicals

S2 – Specific and other pollutants in surface water: EA EQSs to be utilised in surface water risk assessments as part of environmental permit applications and WFD assessments of works in coastal and transitional waters in England.

Ramboll - Generic Quantitative Risk Assessment

NC – No criteria available N/A – Not applicable <LOD – Below limit of detection

5.3 Controlled Waters Discussion

Groundwater samples were obtained from six wells in total, including three new wells (WS104, WS109 and WS112) and three existing (CP7, WS8 and WS9).

Various heavy-end TPHs were detected within the shallow perched water at WS104 only. These include fluoranthene, benzo(b)fluoranthene and benzo(a)pyrene and TPH fractions aliphatic $C_{12} - C_{16}$, aromatic $C_{12} - C_{21}$ and aromatic $C_{21} - C_{35}$. The total TPH aliphatic and aromatic concentrations detected at WS104 were 2,765µg/l.

Trace concentrations of SVOCs were also detected at WS104, including (2-methylphenol ($10.6\mu g/I$, 2,4-dimethylphenol ($19\mu g/I$), 4-methylphenol ($12\mu g/I$), phenol ($2\mu g/I$), carbazole ($1.2\mu g/I$) and dibenzofuran ($0.6\mu g/I$).

The elevated TPH, PAHs and SVOCs at WS104 are consistent with the oily material and the higher TPH concentrations in soil at this location). Evidence from the soil sampling and other groundwater samples indicate that the extent of hydrocarbon contamination is limited and not likely to cause significant pollution. Exploratory locations in the vicinity down hydraulic gradient of WS104 recorded visual and olfactory evidence of impacts in soils e.g. oil staining and faint hydrocarbon type odours WS102 only, with impacts observed in WS106 or TP108. Groundwater in WS102, was only detected in one of the water level monitoring rounds with no visual or olfactory evidence of contamination. This indicates that the groundwater within WS104 is localised and is not migrating off-site.

The bedrock at WS104 is a stiff bluish grey extremely friable very silty mudstone, which had a slight hydrocarbon odour and a corresponding PID reading of 11ppm. No staining was observed on the bedrock and the PID readings are much less than the Made Ground. Therefore, based on this evidence, the hydrocarbon contamination appears to be restricted to the Made Ground and has not extended vertically downwards.

Other GAC exceedances in groundwater related to sulphate and nickel at WS112 and ammoniacal nitrogen and arsenic at WS8. The elevated concentrations of sulphate (424,500µg/l) may be attributed to the naturally high sulphate concentrations in mudstones. The high ammoniacal nitrogen concentrations at WS8 (42,200µg/l) is localised, as significantly lower concentrations were detected as WS9 (40µg/l), located 40m down hydraulic gradient. Ammonia is an indicator of landfill leachate, but the concentration detected does not indicate a substantial source of landfill leachates. There were also two detections of cyanide slightly above the GAC (20µg/l in both WS112 and WS8).

Nickel, arsenic and cyanide only marginally above the GAC and not considered significant or widespread.

Iron was detected at elevated concentrations at WS8 (14,302µg/l) and WS104 (2,548µg/l) both over the GAC of 1,000µg/l. Iron is often an indicator of anaerobic conditions and is likely to reflect reducing conditions created by the hydrocarbons detected in WS104 and evidence of ammonia (leachate indicator) in WS8. Other groundwater samples are more oxidising and this is reflected in the lower concentrations of iron elsewhere including the nearby WS9 (40m south). This provides evidence that natural attenuation is occurring and the hydrocarbons and ammonia are breaking down naturally (further reducing the risk of significant pollution occurring).

6. Ground Gas Assessment

6.1 Assessment Approach

Ground gases can be produced as a result of the decomposition of organic materials and may also originate from natural sources, such as coal seams and organic-rich soils. The principal components of ground gas are methane and carbon dioxide, although other gases may be present in trace concentrations. Ground gases can present a hazard to site occupants and property as result of flammable / explosive hazards, physiological effects, odour and effects on vegetation.

The ground gas assessment included in this report is provided for indicative purposes only and is not intended for use as a detailed ground gas risk assessment. Ramboll has applied a semiquantitative method in line with current good practice guidance on risk assessment to assess ground gas risks. Full details of Ramboll's assessment methodology are presented in Appendix 2.

6.2 Ground Gas Monitoring Results

Potential ground gas sources at or in the vicinity of the site, and subject to assessment are detailed in Table 8.1 below:

Potential Source Source		Applicable Monitoring Locations			
Potential Source 1	Made Ground - under the proposed development	WS102, WS104, WS105, WS106, WS107 (screened natural clay), WS112 (screened natural clay) and CP7			
Potential Source 2	On-site landfill - south- eastern area of the site	WS103, CP1 and CP2			
Potential Source 3	Off-site landfills – impacts to northern raised area	WS111, WS6, WS7, WS8, WS9 and CP11			

Table 6.1 Ground Gas Sources

In order to characterise the ground gas regime, six monitoring rounds were carried out between 12 October 2023 to 30 November 2023 . The number and frequency of monitoring rounds was based on guidance provided within CIRIA C655⁹. The ground gas monitoring results are provided in full in Appendix 3.

6.3 Results and Discussion

During the monitoring the following wells were recorded as flooded (where the resting groundwater is above the monitoring wells response zone) and therefore caution should be applied to the gas monitoring results:

 $^{^{\}rm 9}$ Assessing risks posed by hazardous ground gases to buildings; CIRIA C665, 2007

- WS106 during Round 2;
- WS109 during Rounds 2 and 3;
- CP7 during Rounds 2, 3 and 4; and
- WS9, WS12, WS110 and WS112 during Rounds 2, 3, 4, 5 and 6.

6.3.1 Atmospheric Pressure

All monitoring rounds were undertaken during periods of falling atmospheric pressure with the exception of Round 6 which was undertaken during steady atmospheric conditions. During Round 3, the atmospheric pressure fell more than 23mb within a 24 hour period prior to monitoring, hence giving a worst-case scenario.

Rounds 1, 5 and 6 were undertaken under high atmospheric pressure conditions (1012mb, 1017mb and 1003mb respectively); whereas Rounds 2, 3 and 4 were conducted under low atmospheric pressure (987mb, 960mb and 990mb respectively).

6.3.2 Flow Rates

In general steady state gas flow rates were recorded below or near to the instruments detection level of 0.1 litres per hour (l/hr). Only two locations recorded a flow rate of greater than 1.0l/hr; with 3.1l/hr recorded in WS103 and 3.5l/hr in CP1, both during Round 5.

The very low to negligible flow rates recorded over the six monitoring rounds do not indicate that large volumes of ground gases are being produced at the site or under the proposed development area. The area to the south-east (i.e. WS103, CP1 and CP2) in the vicinity of Old Field landfill has recorded elevated flow rates and ground gas concentrations (see Section 6.3.3 and 6.3.4). However, this area is outside of the development area and ground gas venting measures are currently in place (Ashton Bennett Consultancy, April 2022).

6.3.3 Methane

Methane recorded above the instrument detection limit (<0.1% volume by volume (v/v)) during the six monitoring rounds is discussed below.

Potential Source 1: Made Ground – Proposed Development Area

No significant methane concentrations were recorded within the vicinity of the proposed development. WS110 (located in the proposed service yard) detected peak methane concentrations of 0.1% v/v in Round 1 (no methane was detected in the following rounds).

Elevated lower explosive limit (LEL) concentrations were also measured during the monitoring. Wells screened within the Made Ground that exceeded LEL concentrations over the detection limit were limited to WS104 (7.7%) during Round 1 only, close to the proposed processing building. Further minor LEL concentrations were recorded in the service yard during Round 1; WS109 (0.5%) and WS110 (3.1%).

During Ashton Bennett's gas monitoring rounds in 2021, CP6 was located close to the proposed processing building and recorded a maximum methane concentrations at 0.2% v/v. WS18 was located close to the proposed admin building and recorded a maximum methane concentrations at 1.0% v/v.

Potential Source 2: On-site Landfill

Elevated methane concentrations were consistently recorded in the area of Old Field landfill (south-east of the site) in WS103, CP1 and occasionally CP2. At WS103, methane concentrations ranged between 29.2% v/v (Round 5) and 45.4%v/v (Round 3); CP1 ranged between 19.1 v/v (Round 4) and 31.1% v/v (Round 6). CP2 ranged between <0.1% v/v (Round 4 and 5) and 11.2% v/v (Round 3). The detections of methane generally corresponded with LEL of extremely flammable. All of these wells are screened within Made Ground material.

Potential Source 3: Off-site Landfill

WS7 and WS8 both recorded peak methane concentrations of 0.1% v/v during Round 1 (no methane was detected in following rounds).

The following elevated LEL concentrations were also recorded during Round 1:-

WS111 (0.9%)
CP11 (0.8%)

- WS7 (2.7%)
- WS8 (2.8%)
- WS6 (1.0%) WS9 (1.7%)

No further LEL concentrations were recorded above the instrument detection limit at any of the locations located on the northern raised area.

6.3.4 Carbon Dioxide

Carbon dioxide concentrations were variable throughout the site. Elevated carbon dioxide concentrations above 5% were recorded at the following locations:

Potential Source 1: Made Ground – Proposed Development Area

- WS102, located under the proposed admin building (during all monitoring rounds except Round 6, maximum concentration 13.3% v/v during Round 1);
- WS104, located close to the proposed processing building (during monitoring Rounds 1, 2 and 3, maximum concentration of 9% v/v during Round 3); and
- WS108, located in the proposed service yard (during monitoring Round 2, concentration of 6.9% v/v).

The location of the proposed admin building recorded carbon dioxide concentrations over 5% v/v during all monitoring rounds except Round 6 (WS102). This location recorded a negligible flow rate during all rounds except Round 6.

During Ashton Bennett's gas monitoring rounds in 2021, CP6 was located close to the proposed processing building and recorded a maximum carbon dioxide concentrations at 0.3% v/v. WS18 was located close to the proposed admin building and recorded a maximum carbon dioxide concentrations at 1.2% v/v.

Potential Source 2: On-site Landfill

- WS103 (during all monitoring rounds, maximum concentration of 23.8% v/v during Round 3);
- CP1 (during all monitoring rounds, maximum concentration of 18.9% v/v during Round 1); and
- CP2 (during monitoring Rounds 2, 3, 4 and 6, maximum concentration of 16.9% v/v during Round 2).

Potential Source 3: Off-site Landfill

- WS111 (during monitoring Rounds 2 and 4, maximum concentration of 9.1% v/v during Round 2); and
- WS8 (during monitoring Rounds 2 and 3, maximum concentration of 9.2% v/v during Round 2).

With the exception of WS103, CP1 and CP2 (Old Field Landfill), the majority of the locations did not record any steady state flow rates over the instrument detection limit corresponding with the maximum carbon dioxide concentrations.

Carbon dioxide concentrations were recorded under 5% v/v at a number of other locations, including locations in the vicinity of the proposed processing building (i.e. WS107, WS108 and WS109), with negligible flow rate detected at these locations.

It is assumed that the elevated carbon dioxide concentrations (i.e. above 5%) are considered likely to be associated with the frequent ashy clinker and brick deposits within the Made Ground and / or infilled ground throughout the site. The elevated concentrations at WS104 correlate with the field observations of hydrocarbon impacted shallow soils. It is considered likely that the degradation of hydrocarbons in soil and / or groundwater at WS104 is the source of the elevated ground gases.

6.3.5 Oxygen

Oxygen concentrations varied from <0.1 % by volume in WS103 and CP1 (south-east of the site within the vicinity of Old Field landfill) and 24.8 % by volume in WS7 (north of the site). Oxygen levels were recorded to be below 18 % by volume in wells screened in Made Ground consistently throughout the site, indicating that indicating depleted oxygen concentrations are present in the shallow ground.

Depleted oxygen concentrations were recorded during all monitoring rounds in select boreholes that generally correspond with the highest recorded methane and carbon dioxide concentrations and is likely to be a result of the carbon dioxide and methane concentrations displacing the oxygen.

Elevated oxygen levels recorded during Round 6 are likely to be affected by an instrument error on the oxygen sensor.

6.3.6 Carbon Monoxide

Carbon monoxide was generally detected at low concentrations (1ppm or <1ppm) at the majority of locations during all monitoring rounds. During Round 1, elevated carbon monoxide concentrations were detected at WS105 (11ppm), WS108 (3ppm), WS110 (31ppm), WS111 (7ppm), WS112 (47ppm). The following rounds did not record any carbon dioxide concentrations over 4ppm (WS111 during Round 3; WS109 during Round 4; WS102 and WS103 during Round 5 and WS105 during Round 6).

6.3.7 Hydrogen Sulphide

Hydrogen sulphide was generally detected at low concentrations (1ppm or <1ppm) at the majority of locations during all monitoring rounds. Elevated hydrogen sulphide concentrations were detected in boreholes located within the vicinity of Old Field landfill (i.e. WS103, CP1 and CP2) with a maximum concentration of 24ppm at WS103 during Round 3. The concentrations were variable, as all locations did not record any hydrogen sulphide concentrations above the instrument detection limit in Round 5 and 6. Within the remainder of the site, hydrogen sulphide concentrations were

detected during Round 1 (maximum 8ppm at WS112). The peak concentration following Round 1 was 2ppm.

6.3.8 Volatile Organic Compounds (VOCs)

During the ground gas monitoring a photo-ionisation detector (PID) was used to screen for the potential presence of VOCs within the monitoring wells. PID readings were typically recorded below the instrument detection limit or at low concentrations (below 1ppm). The borehole with the highest recorded VOC concentrations during all monitoring rounds was WS104 (maximum concentration of 3.3ppm during Round 4). The highest readings correspond with the evidence of hydrocarbon impact to soil and groundwater at this location.

6.4 Classification of Ground Gases

Details of Ramboll's assessment methodology is presented in Appendix 2 and a discussion of the results is provided below. The risk posed by ground gases has been assessed by calculating a Gas Screening Value (GSV). Details of Ramboll's GSV assessment are provided in Appendix 7.

A worst case GSV has been calculated based on the worst-case scenario, i.e. maximum ground gas concentrations and maximum steady state flow rates and applied as relevant to each of the potential sources; as summarised in Table 6.2. The GSV is used to support assessment of the site's characteristic situation (CS).

BS8485 guidance asks that a 'worst case' gas assessment be carried out by using the maximum flow / maximum concentration for each strata and zone to determine the GSV. Both BS8485 and NF94¹⁰ highlights that the assessor should be confident that this is a prudent and reasonable approach and does not result in over-conservatism. Multiple lines of evidence should be used to derive the GSV. A worst-case assessment is not appropriate where continuous monitoring has been used.

		CO ₂		CH ₄	_	
Potential Source	Maximum Steady State Flow Rate (I/hr)	Maximum Steady State Gas Concentration (% v/v)	GSV (I/hr)	Maximum Steady State Gas Concentration (% v/v)	GSV (I/hr)	Characteristic Situation
Potential Source 1 (proposed processing building)	0.1	9.0	0.009	0.1	0.0001	CS1
Potential Source 1 (proposed admin building)	-0.3	13.3	-0.040	0.1	0.0003	CS2
Potential Source 2	3.5	45.4	1.589	24.1	0.8435	CS3
Potential Source 3	-0.6	9.2	-0.055	0.1	-0.0006	CS1

Table 6.2 Ground Gas Assessment

Based on BS84857

Current guidance¹¹ indicates that where methane is typically greater than 1% and/or carbon dioxide is typically greater than 5%, consideration should be given to increasing the classification

¹¹ British Standard Institute (2015) Code of Practice for the Design of Protective Measures for Methane and Carbon Dioxide Ground Gases for New Building 8485:2015+A1:2019

¹⁰ Hazardous Ground Gas - An essential guide for housebuilders (NF94). NHBC, April 2023.

from CS1 to CS2. In such circumstances of increase in classification, gas protection measures would be required.

Potential Source 1: Made Ground – Proposed Development Area

The carbon dioxide GSV ranged between 0.009 I/hr and -0.040 I/hr . All GSVs correspond to 'Characteristic Situation 1' (CS1, very low hazard) in BS8485. However, due to the consistent elevated carbon dioxide concentrations at WS102 (under the proposed admin building), Ramboll considers it prudent to raise the GSV to CS2 (low hazard), with basic gas protection measures incorporated into the development. This is also partly due to the landfill material at and nearby to this location.

The methane GSV ranged between 0.0001I/hr and 0.0003I/hr. All GSVs correspond to 'Characteristic Situation 1' (CS1, very low hazard) in BS8485.

Carbon dioxide concentrations slightly above 5% were recorded in WS104 (beneath the eastern side of the proposed processing building) during three of the six monitoring rounds. WS104 encountered Made Ground to 2.95m bgl comprising clay with varying amounts of brick and concrete, with visual and olfactory evidence of hydrocarbons. It is likely that the carbon dioxide is a result of biodegradation of localised impacts of hydrocarbons, as no significant quantities of putrescible materials were observed in this location. No flow was recorded in WS104 during any of the monitoring rounds indicating that only limited volumes of ground gas are being generated. Furthermore, no significant quantities of carbon dioxide were recorded in the other three locations (WS105, WS106 and WS112) in the vicinity of the proposed processing building. Whilst a GSV of CS1 (very low risk) has been calculated for the area around the proposed processing building, Ramboll considers it prudent to recommend a GSV of CS2 (low risk) for any enclosed rooms such as offices.

Carbon dioxide concentrations slightly above 5% have been consistently encountered in WS102 (beneath the proposed office building) during the monitoring rounds. WS102 encountered Made Ground to 4.0m bgl comprising ashy material in the Made Ground which is unlikely to contain any significant quantities of degradable organic material. Only very low borehole flow rates were recorded during the final round (-0.3l/hr during Round 6) indicating that only limited volumes of ground gas are being generated. Despite WS102 calculating a GSV of CS1 (very low risk), Ramboll considers it prudent to recommend a GSV of CS2 (low risk) for the proposed office building given the carbon dioxide concentrations and proximity to the former Old Field landfill.

Potential Source 2: On-site Landfill

The calculated carbon dioxide GSV 1.589l/hr. This GSV correspond to 'Characteristic Situation 3' (CS3, medium hazard) in BS8485. The calculated methane GSV is 0.8435l/hr. This GSVs correspond to 'Characteristic Situation 3' (CS3, medium hazard) in BS8485.

Potential Source 2 is located adjacent to the proposed admin and processing buildings. Elevated readings of carbon dioxide and methane on-site were recorded within the on-site landfill, with lower readings recorded outside of this source area. This indicates that landfill gas migration is not considered to be occurring at significant rates.

Methane concentrations above 1% have been encountered at WS103 and CP1 during one or more of the monitoring rounds. All of these wells are located within the footprint of the former Old Field landfill where deeper Made Ground is present (up to 11.5m bgl). The higher concentrations

of methane are considered to be associated with degradable organic landfill material. Maximum borehole flow rates at WS103 (3.1l/hr during Round 5) and CP1 (3.5l/hr during Round 5) indicates that a continuous ground gas source is present within the south-east of the site. There are gas mitigation measures in place to vent the ground gases, and the ground gas does not seem to have migrated towards the west and the proposed development.

Potential Source 3: Off-site Landfill

In the northern area of the site, the calculated GSV for carbon dioxide (-0.055l/hr) and for methane (-0.0006l/hr) correspond to 'Characteristic Situation 1' (CS1, very low hazard) in BS8485.

Ashton Bennett Gas Monitoring GSV

The Ashton Bennett report from 2021 calculated the GSV of the entire site to be 0.017 (CS1 (very low hazard)). However, they suggested that the site be classified as CS2 (low risk) due to elevated concentrations of methane and carbon dioxide. The report did not zone the site into separate areas that could be classified individually.

6.5 Future Development

The design of future buildings on site will need to take into account the findings of this gas risk assessment and will need to consider the incorporation of ground gas protection measures for the proposed use of the site (the proposed admin building and any enclosed rooms/offices of the proposed processing building). The requirement (or otherwise) and design of gas protection measures will need to be agreed in consultation with the building control authority prior to construction and implemented in line with guidance provided in BS8485 which includes consideration for the building's construction and use.

7. Source-Pathway-Receptor Risk Assessment

7.1.1 Qualitative Risk Assessment

The PCLs which were identified at PRA stage as posing a potentially significant risk are considered further by reassessment based on the ground investigation findings. This forms a qualitative risk assessment.

Potential pollutant linkages are identified using the source-pathway-receptor framework detailed in Appendix 2. An assessment of the potential significance of each linkage is then made by consideration of the likely magnitude and mobility of the source, the sensitivity of the receptor and nature of the migration/exposure pathways between them.

This qualitative risk assessment has been undertaken by definition of risk categories in accordance with NHBC and EA guidance, further details of which are provided in Appendix 2.

Table 7.1 summarises the updated assessment of PCLs and risk categories associated with the proposed development as assessed following interpretation of the results of the ground investigation.
Table 7.1 Updated Conceptual Site Model

Potential Contaminant Linkage	Source	Distribution	Contaminants of Concern	Pathway	Receptor	Probability of Consequence Risk being of Risk being Realised Realised		Risk Classification	
PCL1	Made Ground soils	No significant soil contamination, two detections of asbestos in Made Ground. Potential for asbestos elsewhere including fragments observed on the site surface	TPH and asbestos	Contact or inhalation/ingestion of soils and soil dust	Construction workers and nearby land users	Low	Mild	Low, risk mitigated during construction by appropriate Risk assessments and method statements	
PCL2	Leaching of	In soil and perched groundwater at WS104, localised		Vertical migration of contamination groundwater	Secondary A Aquifer	Low	Mild	Low, significantly mobile contamination not detected	
PCL3	into shallow perched water	exceedances of TPH and PAHs exceed the GAC in groundwater	PAHs	Migration of contaminanted groundwater to watercourse(s)	Surface water	Low	Minor	Low, receptor is 110m south-west and no evidence of significant lateral contaminant migration	
PCL4	Vapours arising from soil and groundwater contamination	Mainly centred around the proposed development (processing building and admin building)	Carbon dioxide, methane and VOCs	Migration of vapours/ground gases into buildings and structures	Future buildings	Low	Medium	Low to Moderate, no significant sources of ground gases have been identified in the development area. Basic gas protection measures in new buildings would be prudent (CS2).	

Risks identified as being moderate/low or higher are considered to be significant and are therefore PCLs of concern for which further actions are required.

7.2 Climate Change Considerations

The UK Government and devolved administrations have produced climate change adaptation programmes, including plans for both mitigating and adapting to climate change. SDGs support the development of Sustainable Cities and Communities (SDG No. 11), Clean Water and Sanitation (SDG No.6), sustainable ecosystems (SDG No.14. Life below Water and SDC No. 15 Life on Land). It is therefore important to recognise how changes in weather / season / climate could affect the ground conditions that were encountered during the investigation.

Climate change projections¹² demonstrate that in the UK the following conditions are expected to result from future climate change: drier and hotter summers, wetter and milder winters, a higher frequency of intense rainfall periods and sea level rise. The following are considered relevant to the assessment:

- Drier, hotter weather potential for low permeability horizons to desiccate and permit a higher rate of infiltration, loss of Groundwater Dependent Terrestrial Ecosystems (GWDTEs), migration of contaminants from surface into subsurface, increase in groundwater abstractions causing change in flow paths or introducing new receptors, reduced leaching, loss of vegetation
- Wetter weather causing increased leaching and runoff, increased contaminant mobilisation, changes to locations of surface water receptors
- Higher water table mobilisation of contaminants which are currently within the unsaturated zone, mobilisation through pathways such as service / drainage routes that previously were above the water table, new groundwater-surface water interaction, introduction of new GWDTEs
- Greater fluctuation of water table changes to groundwater discharge locations and flow directions
- Temperature changes changes to the stability / degradation and volatilisation rate of contaminants in soil / groundwater

Based on the above considerations, the updated CSM presented in Table 7.1 could be affected such that there is a change in the following risks:

• The CSM may be influenced by wetter weather and changes in shallow water table. The potential for the leaching / mobilisation of contaminants into perched water may be exacerbated by adverse weather over the next 100 years. Although this cannot be ruled out, the likelihood of significant changes to the CSM is not expected at the site due to groundwater anticipated at depth.

¹² Meteorological Office UK (2018). UKCP18 Land Projections: Science Report. Updated March 2019.

8. Preliminary Waste Assessment

8.1 Methodology

The assessment has been undertaken using available soil chemical data and HazWasteOnline, a web-based tool for classifying waste. The software utilises EA guidance and European regulations to classify samples in line with current requirements. Further details of the waste classification methodology are provided in Appendix 2.

8.2 Soils Assessment

Samples collected during the ground investigations were submitted for laboratory analysis for a range of contaminants based on the history of the site. The results were combined and entered into the HazWasteOnline assessment tool, including:

- 31 samples of Made Ground; and
- Two samples of natural clay and sand, and a sample of friable mudstone (from the Weathered Coal Measures).
- Four samples were submitted for Waste Acceptance Criteria (WAC) results (WS108, WS111 and TP108 (Made Ground) and WS110 (natural sandstone)).

The results of the four WAC results undertaken are shown in Table 8.1, along with any potential hazardous results obtained from the HazWasteOnline assessment. The HazWasteOnline output sheets for all the screened samples are provided in Appendix 8.

The Hazardous Waste (England and Wales) Regulations¹³ requires that any waste having an asbestos content greater than 0.1 % w/w be classified as Hazardous Waste. Any waste with a total asbestos content of less than 0.1 % w/w can be classified as non-hazardous waste, unless there are other contaminants present which would make the waste hazardous. Details of asbestos testing are provided in Table 10.1.

ID	Depth (m bgl)	Waste Classification (European Waste Management Regulations)	Hazardous Properties	Asbestos (x∕₽∕)	Landfill Type Based on WAC Results	Waste Assessment Outcome	
Made Ground							
WE104	0.40	Hazardous	ЫР 7- ЫР 11	প্ল	Hazardous	Hazardous	
W3104	2.70	1828 0003	10 7, 115 11		1102010003		
WS108	0.30	Non-hazardous	NA	ダ	Inert	Inert	
WS111	2.20	Non-hazardous	NA	ର୍ଯ	Inert	Inert	
TP108	0.30 – 0.60	Non-hazardous	NA	₽- <%0.001	Stable non- reactive hazardous	Stable non- reactive hazardous	

Table 10.1 Preliminary Waste Classification Assessment

¹³ UK Statutory Instruments (2005) Hazardous Waste (England and Wales) Regulations. No. 894

ID	Depth (m bgl)	Waste Classification (European Waste Management Regulations)	Hazardous Properties	Asbestos (x/₽-)	Landfill Type Based on WAC Results	Waste Assessment Outcome
Natural Strata						
WS110 (Weathered Coal Measures)	1.40	Non-hazardous	NA	ଷ	Inert	Inert

In all four WAC tests, the pH exceeds >6 guideline for a 'stable non-reactive hazardous waste in non-hazardous landfill' criteria limit. All other results are below or fall into an 'inert waste landfill', so if material was to be exported off-site it is likely that it would be accepted by an inert landfill.

8.3 Discussion

The preliminary waste assessment suggests that the majority of the underlying Made Ground beneath the concrete hardstanding, as well as the stockpiled material throughout the site is suitable for re-use on-site. If unexpected contamination is detected, appropriate soil sampling will need to be undertaken to assess the suitability of the material and to assess potential disposal methods.

Note that the indicative waste classifications provided as a part of this assessment should be confirmed by any receiving facility prior to disposal, under Duty of Care, following discussions with the producer of the waste. Additional WAC analysis is likely to be required to be undertaken by the contractor prior to disposal, under current legislative requirements post excavation.

Should the re-use of site won materials be considered suitable, consideration should be given to the risk to human health and the environment that any such material may pose as part of its new use. This could be under for example, the provisions of the CL: AIRE Definition of Waste Development Industry Code of Practice¹⁴.

¹⁴ CL:AIRE (2011) The Definition of Waste: Development Industry Code of Practice Version 2. ISBN 978-1-905046-23-2

9. Water Supply Pipes Assessment

This preliminary water supply pipes assessment has been completed in accordance with the principles outlined in the UK Guidance for the Specification of Water Supply Pipes to be used in Brownfield Sites (UK Water Industry Research Ltd. UKWIR, 2010 and 2014¹⁵). This preliminary water supply assessment is a guide to inform the local water authority, therefore further assessment will be required to fulfil the UKWIR recommendations.

This guidance provides threshold concentrations for different pipe material for various chemical groups which site conditions have been compared to. A full assessment for suitable water supply pipes would require knowledge of pipe routes and is beyond the scope of this report.

The pipeline materials considered by the guidance are polyethylene (PE), polyvinyl chloride (PVC), wrapped steel, wrapped ductile iron or copper pipe and barrier pipe. PE and PVC are assessed using threshold concentrations for various chemical groups including VOCs with tentatively identified compounds (TICs), SVOCs with TICs, and mineral oils. Wrapped steel, wrapped ductile iron and copper pipe are assessed using corrosive soil properties.

Site specific results have been assessed in outline, in general accordance with UKWIR methods. Findings are summarised in Table 11.1.

Test Group	Testing Required?	Threshold – PE/PVC Pipes mg/kg	Threshold - Metal Pipes/ Barrier Pipe	Maximum Concentration mg/kg	Pipe Suitability
Total VOCs		0.5	Pass	0.212	PE/PVC or metal/barrier pipe suitable
Total BTEX & MTBE		0.1	Pass	0.02	PE/PVC or metal/barrier pipe suitable
Total SVOCs (excluding PAHs and those substances marked with an *)	Where	2	Pass	0.93	PE/PVC or metal/barrier pipe suitable
EC5-EC10 aliphatic and aromatic hydrocarbons	Preliminary Risk Assessment (PRA) has	2	Pass	1.4	PE/PVC or metal/barrier pipe suitable
EC10-EC16 aliphatic and aromatic hydrocarbons	potentially affected by contamination	10	Fail	993	Metal / barrier pipe only suitable
EC16-EC40 aliphatic and aromatic hydrocarbons		500	Fail	3,968	Metal / barrier pipe only suitable
Phenols* (from SVOC analysis)	-	2	Pass	0.035	PE/PVC or metal/barrier pipe suitable
Cresols and chlorinated phenols* (from SVOC analysis)		2	Pass	0.048	PE/PVC or metal/barrier pipe suitable

Table 11.1 Water Pipe Assessment

Note [1] Threshold:

For wrapped steel, corrosive if pH<7 and conductivity > 400µS/cm

¹⁵ UKWIR 2010 and 2014 Update. Guidance for the Selection of Water Supply Pipes to be Used in Brownfield Sites 10/WM/03/21

• For wrapped ductile iron corrosive if pH<5, Eh not neutral and conductivity > 400µS/cm

Areas that failed the EC10-EC16 aliphatic and aromatic hydrocarbons PE/PVC pipe threshold of 10mg/kg were HD6, HD9, TP107, WS104 and WS103. HD6, HD9 and TP107 are located on the south-western boundary or within Old Field landfill. WS103 and WS104 are located south-central or central to the site.

Areas that failed the EC16-EC40 aliphatic and aromatic hydrocarbons PE/PVC threshold of 500mg/kg were TP107, WS104 and WS103. WS103 and WS104 are located south-central or central to the site.

The other areas of the site would be suitable for PE/PVC pipe, although it may be prudent to undertake further testing in the areas of proposed service trenches to further assess the suitability of plastic pipes.

This constitutes a preliminary assessment relating to the selection of suitable water supply pipe materials. Details contained within this preliminary assessment should be provided to the local planning authority and the local water authority to inform discussion with them and to agree suitable water supply pipe materials to be used for the development.

10. Conclusions and Recommendations

10.1 Conclusions

Ramboll has undertaken a GQRA at the Stairfoot Glassworks, Barnsley. This assessment has been undertaken on the basis that the site will be redeveloped for an end-use comprising a glass and metal recycling facility with associated buildings and outside yard areas. The buildings will include the construction of a clad building for internal processing works (from herein "processing building"), construction of a workshop and admin office building, construction of; a gatehouse, external cullet bays, external processing area, lorry park, storage areas, car park and access.

The scope comprised twelve window samples drilled to a maximum depth of 4.0m bgl, eight trial pits excavated to depths ranging between 1.50m above ground level to 3.20m bgl and nine hand dug pits to 0.30m bgl. Groundwater and gas monitoring standpipes were installed at all window sample locations. One groundwater monitoring round and six gas monitoring rounds were undertaken on newly installed monitoring wells and accessible previously installed monitoring wells following the commencement of the site investigation.

The geology encountered at the site comprised reinforced concrete or bituminous tarmacadam within the centre of the site, underlain by Made Ground soils comprising silty sandy soils with brick, concrete, clinker and ashy material to a maximum depth of 4.0m bgl. Rare glass, clothing and confectionary wrappers were detected in WS103 in the area of Old Field landfill. Bedrock geology of the Pennine Middle Coal Measures was identified underneath weathered soft to stiff silty / sandy clays with gravels of lithorelicts overlying brown mottled grey friable mudstone / sandstone and siltstones.

Up to 30 soil samples were submitted for chemical testing. Soil samples were screened against GAC protective of human health in a commercial / industrial end use. No exceedances of GACs were detected in any soil samples. Asbestos fibres in the form of fibrous chrysotile bundles were only detected in two of the 21 samples submitted for asbestos screening (WS101A and TP108). Subsequent quantification analysis on samples from WS101A and TP108 did not record asbestos fibres above the detection limit <0.001%. Visual / olfactory evidence of soil contamination was limited to slight hydrocarbon type odours, although oily stained material was detected in WS102 (at 3.8m bgl) and in WS104 (between 0.25m bgl to 1.30m bgl and 2.50m bgl and 2.95m bgl) in Made Ground soils. TPH concentrations along with phenolic compounds were detected in samples from WS104 although no concentrations exceeded their respective GAC.

Six groundwater samples were obtained and screened against GAC / EQS for the protection of the underlying Secondary A Aquifer and surface water receptors (Dob Sike, 110m south-west). The risk to both receptors is deemed to be *low to moderate*, despite some marginal TPH, PAH, metal and inorganic compound exceedances over the GAC and EQS. Vertical migration into deeper groundwater is unlikely from perched water due to anticipated groundwater being at depth and a clay confining layer from the weathered Coal Measures being present. The impacts to shallow perched water are generally localised and are not widely detected throughout the site.

Ground gas monitoring was conducted over six rounds of varying atmospheric conditions. The majority of wells (including under and around the proposed development) were Characteristic Situation 1 (CS1) (very low risk). WS102 (under the proposed admin building) and WS104 (under the proposed processing building) had consistent carbon dioxide concentrations over 5% volume with a negligible steady state flow rate. Although only a marginally elevated reading, Ramboll consider it prudent for the admin building to be classified as CS2 (low risk) given the proximity of

landfills and levels of ground gas elsewhere on the site. Given the scale of the admin building the addition of basic gas protection measures should not be an onerous undertaking (for example, this could be achieved through installing a gas membrane or venting beneath the building). Given the activities and construction type of the proposed processing building (large open warehouse), the gas risk could remain at CS1 (very low risk); however, any enclosed rooms such as offices it may be prudent to increase the classification to CS2 (low risk).

Higher concentrations of methane and carbon dioxide were recorded at WS103, CP1 and occasionally CP2 towards the south-east of the site (in the area of Old Field landfill) and this area is classified as CS3 (medium risk); although no development is planned in the area.

Following WAC testing and a waste assessment using available soil chemical data using HazWasteOnline, the Made Ground impacted soils at WS104 would be classified as hazardous waste. All other soil samples located throughout the site assessed were classified as non-hazardous.

The water supply pipe assessment has indicated that the threshold for metal pipes or barrier pipes has failed for EC_{10} - EC_{16} and EC_{16} - EC_{40} aliphatic and aromatic carbons, within the area of HD6, HD9, TP107, WS103 and WS104. The assessment indicates that metal / barrier pipe is only suitable within these areas.

Overall, Ramboll has sufficiently characterised the soil, groundwater and ground gas regime at the site. With respect to soil and groundwater the risk posed to human health and environmental receptors is deemed to be *low to moderate*.

In conclusion, the GQRA has not identified significant ground contamination. The PRA had raised concerns that contamination may be present largely due to past landfilling; however no significant Made Ground was evident within the development area of the site. No remedial action is considered necessary to protect the environment. However, standard brownfield mitigation measures will be needed for the proposed development, including basic gas protection in some buildings and management of waste soils generated through ground works. There could be abnormal costs associated with, for example, disposal of contaminated and surplus soils and other materials deposited onto the site. Appropriate development and contractor method statements and risk assessments should be prepared, including an asbestos management plan.

Ramboll recommends that the area of the site that is to remain as soft landscaping should be thoroughly inspected and cleared of wastes and materials that could cause a contaminant or physical hazard if accessed by future site users. Managing the landscaping in a nature positive way would increase biodiversity at the site and may provide additional credits for the site or wider business.

A remediation strategy should also be prepared to formalise those actions needed for the proposed development (including gas protection measures, procedures for unexpected contamination and contractor responsibilities).

10.2 Sustainability

The findings discussed within this report support sustainable development of the site; through strategic sampling and analysis of various environmental media including soil and groundwater, combined with technically robust investigation and risk assessment processes. This facilitates proportionate and scientifically justifiable recommendations to reduce risks to humans and

ecosystems alike. It allows for development of sustainable remedial measures and management of soils.

10.3 Recommendations

The assessments undertaken herein have resulted in the identification of one plausible pollutant linkages that require further investigation or remedial intervention in order to deliver a site that is suitable for use for the proposed development.

The recommended next steps are summarised in Table 10.1.

In accordance with good practice in developing brownfield land, it is recommended that a watching brief is implemented during ground works to identify unforeseen ground conditions or localised contamination hotspots (e.g. concentrated pockets of ash, asbestos or hydrocarbons). If previously unforeseen contamination is identified, the risk assessment should be updated accordingly.

Potential Contaminant Linkage (PCL) of Concern	Recommendation	Timescales	Implications	Likely Interactions and Stakeholders
PCL1 Contact or inhalation/ingestion of soils and soil dusts during construction, posing a risk to construction workers and nearby land users e.g. from lead, BaP and asbestos; site-wide.	Risk management measures required to address potential risks to human health during and after construction. Mitigated with standard PPE and provision of dust control measures. Such measures would need to be included within a construction environmental management plan (CEMP).	Prior to development	Construction	Development contractor
PCL2 and PCL3 Leaching of hydrocarbons and PAHs from Made Ground into underlying groundwater affecting water quality across the site, and potentially affecting surface waters	Impacts in the Made Ground are not widespread. Should the development required movement of excavated soils within the site, then a Material Management Plan (MMP) should be implemented to control the risks of moving impacted soils currently under hardstanding to open unsurfaced areas.	Prior to development	Design	EA, local authority and development contractor
PCL4 Release of ground gases, and build-up of these in confined spaces. Inhalation of gases in the proposed new buildings or confined spaces.	Gas mitigation measures are required to be incorporated into the development design for the admin building. This is required due to consistent carbon dioxide concentrations over 5% (maximum 13.3% v/v) and the location being located within the vicinity of the Old Field landfill. Risk management measures required in remedial strategy. Gassing regime may become more onerous as a result of development causing lateral migration of ground gas or increased gas generation.	Prior to development	Design	Local authority and development contractor

Table 10.1 Recommended Next Steps

Ramboll's PRA identified that basic radon protection measures are required in newly constructed / extended residential properties. Further, assessment is required to determine if gas radon

protective measures are required in commercial buildings e.g. the offices; however, it may be prudent to install radon protective measures during construction.

Appendix 1 Figure 1: Site Location Figure 2: Site Layout Figure 3: Site Investigation Locations Figure 4: Proposed Development Overlay Figure 5: Groundwater Levels

1620015371_002_RAM-MA-CS-00001_SiteLoc_02.pagx

© Crown copyright 2024 OS 100040631. Contains OS Data © Crown copyright and database rights 2024.

© OpenStreetMap (and) contributors, CC-BY-SA, Esri Community Maps Contributors, Esri UK, Esri, TomTom, Garmin, Foursquare, GeoTechnologies, Inc, METI/NASA, USGS

Coordinate System: British National Grid. Projection: Transverse Mercator. Datum: OSGB 1936.

© OpenStreetMap (and) contributors, CC-BY-SA, Esri Community Maps Contributors, Esri UK, Esri, TomTom, Garmin, Foursquare, GeoTechnologies, Inc, METI/NASA, USGS

	Par lan		
	Site Bour	ndary	
	Hand Du	g Pit	
÷	Trial Pit		
	Window	Sample	
s	Ashton B	ennett Boreho	ole
Figure Titl Boreh	e ole Locat	tion	
Figure Titl Boreh	e ole Locat	tion	
Figure Titl Boreh Project Na Stairfo	e ole Loca ame pot Glass	tion works	
Figure Titl Boreh Project Na Stairfo Project No 162001	e ole Locat ame bot Glass 0./Filery ID 15371-002	tion works / REH20231	N03396
Figure Titl Boreh Project Na Stairfo Project No 162001 Date Mar	e ole Local ame pot Glass 2./Filery ID 15371-002 ch 2024	tion works / REH2023N	N03396 Revision
Figure Titl Boreh Project Na Stairfo 162001 Date Mari Prepared	e ole Locat ame pot Glass p/Filery ID 15371-002 ch 2024 By MP	tion works / REH2023N Figure No. 3 Scale 1:2 000	N03396 Revision 1.0
Figure Titl Boreh Project Na Stairfo Project No 162001 Date Mare Prepared	e ole Local ame bot Glass 0./Filery ID 15371-002 ch 2024 By MP	tion works / REH2023N Figure No. 3 Scale 1:2,000	N03390 Revision 1.0 @A

Proposed Site Plan 965-D5A-XX-XX-DR-A-0003-Proposed_Site_Plan-A3-C01.dwg crated by D5 Architecs LLP

537

© OpenStreetMap (and) contributors, CC-BY-SA

	Site Boundar	У	
	- Groundwater	Contour	
e	Ashton Benn	ett Boreh	ole
5	Window Sam	ple	
t	Groundwater	Flow Din	ection
Figure Title Groun	e dwater Leve	əl 09.11	.2023
Figure Title Groun Project Na Stairfo	e dwater Leve me ot Glasswo	el 09.11	.2023
Figure Title Groun Project Na Stairfo Project No 162001	a dwater Leve ne ot Glasswo /Filery ID 5371-002 / RI	el 09.11 rks EH2023	N03396
Figure Title Groun Project Na Stairfo Project No 162001 Date Mare	dwater Leve me ot Glasswo /Filery ID 5371-002 / RI	el 09.11 rks EH2023 ^{gure No.} 5	N03396 Revision 1.0
Figure Title Groun Project Na Stairfo Project No 162001 Date Marc Prepared I	a dwater Leve ne ot Glasswo /Filery ID 5371-002 / RI 5371-002 / RI ch 2024	el 09.11 rks EH2023 gure No. 5 cale 1:2,000	N03396 Revision 1.0 @A3

Appendix 2 Legislative Context and Methodology

Legislative Context

The regime for contaminated land was set out in Part 2A (ss.78A-78YC) of the Environmental Protection Act 1990 (EPA), as inserted by S.57 of The Environment Act 1995 and came into effect in England on 1st April 2000 as The Contaminated Land (England) Regulations 2000 (SI 2000/227). These regulations were subsequently revoked with the provision of The Contaminated Land (England) Regulations 2006 (SI 2006/1380) (as amended), which came into force in August 2006, and consolidated the previous regulations and amendments. Revised statutory guidance ("the Guidance") for local authorities on how to implement the regime, including the decision-making process on whether land is contaminated land in the legal sense, has been published by Defra and entered into force in April 2012.

Under Part 2A of the EPA Section 78A(2), "contaminated land" is defined as "land which appears... to be in such a condition, by reason of substances in, on or under the land, that:

- a) significant harm is being caused or there is a significant possibility of such harm being caused¹; or
- b) significant pollution of controlled waters is being caused, or there is a significant possibility of such pollution being caused".

"Significant harm" is defined in the Guidance on risk-based criteria and must be the result of one or more relevant 'contaminant linkages' relating to the land. The presence of a contaminant linkage relies on the Source-Pathway-Receptor concept, where all three factors must be present and potentially or actually linked for a potential risk to exist. Under the Guidance, a 'significant contaminant linkage' is one which gives rise to a level of risk sufficient to justify a piece of land being determined as contaminated land. Should the authority consider that there is an unacceptably high probability, supported by robust science-based evidence that significant harm would occur if no action is taken to stop it, the land should be deemed a Category 1: Human Health. Land should be placed into Category 2 if the authority concludes, on the basis that there is a strong case for considering that the risks from the land are of sufficient concern, that the land poses a significant possibility of significant harm. Both Category 1 and Category 2 cases would be capable of being determined as contaminated land under Part 2A on the grounds of significant possibility of significant harm is not met, the authority should place the land into Category 3. If the local authority considers that there is no risk or that the level of risk posed is low, the land should be placed into Category 4.

The pollution of controlled waters is defined in Section 78A(9) of the Act as "the entry into controlled waters of any poisonous, noxious or polluting matter or any solid waste matter". The new Guidance stresses that the Part 2A regime is designed to identify and deal with 'significant pollution' and not lesser levels of pollution. As with human health risk, Categories 1 and 2 comprise land where the local authority considers that a significant possibility of significant pollution of controlled waters exists and Categories 3 and 4 comprises cases where the authority considers that a significant possibility of such pollution does not exist. The local authority should be satisfied that a substance is continuing to enter controlled waters or is likely to enter controlled waters.

Risk Assessment Framework

"Significant harm" or "significant pollution of controlled waters" is defined in the Guidance on riskbased criteria and must be the result of one or more relevant 'contaminant linkages' relating to the land.

The presence of a contaminant linkage relies on the Source-Pathway-Receptor concept, where all three factors must be present and potentially or actually linked for a potential risk to exist. For a risk

¹ Water Act 2003 (Commencement No. 11) Order 2012

of pollution or environmental harm to occur as a result of ground contamination, all of the following elements must be present:

- A source a substance that is capable of causing pollution or harm;
- A receptor something which could be adversely affected by the contaminant; and
- A pathway a route by which the contaminant can reach the receptor.

If one of these elements is absent there can be no significant risk. If all are present then the magnitude of the risk is a function of the magnitude and mobility of the source, the sensitivity of the receptor and the nature of the migration pathway.

The Land Contamination: Risk Management² (LCRM) provides the technical framework for structured decision making about land contamination. LCRM advocates a phased approach, commencing with Stage 1 Risk Assessment comprising:

- Preliminary Risk Assessment (PRA) desk study and qualitative assessment to develop of an outline Conceptual Site Model (CSM);
- Generic Quantitative Risk Assessment (GQRA) an estimation of risk through assessment of contaminant concentrations against generic assessment criteria; and
- Detailed Quantitative Risk Assessment (DQRA) an estimation of risk through detailed sitespecific risk assessment and development of site-specific assessment criteria (SSAC) and sitespecific risk assessment.

Each stage of assessment is focussed upon the development and refinement of a conceptual site model, which identifies Source-Pathway-Receptor linkages. The conceptual site model has been developed with consideration to guidance including BS EN ISO 21365:2020 Soil quality – Conceptual site models for potentially contaminated sites.

Risk Estimation

An assessment of environmental risks is made for each potential pollutant linkage identified.

Risk estimation has been completed in accordance with the guidance provided in:

• NHBC and Environment Agency 2008. Guidance for the Safe Development of Housing on Land Affected by Contamination. R&D Publication 66: 2008.

The following is taken directly from NHBC/EA 2008. The key to the classification is that the designation of risk is based upon the consideration of both:

- the magnitude of the potential consequence (i.e. severity) [takes into account both the potential severity of the hazard and the sensitivity of the receptor]; and
- the magnitude of probability (i.e. likelihood) [takes into account both the presence of the hazard and receptor and the integrity of the pathway].

² Land Contamination: Risk Management (LCRM), published by the Environment Agency on 8 October 2020

 Highly elevated concentrations likely to result in "significant harm" to human health as defined by the EPA 1990, Part 2A, if exposure occurs. Equivalent to EA Category 1 pollution incident including persistent and/or extensive effects on water quality; leading to closure of a potable abstraction point; major impact on amenity value or 	Category
Equivalent to EA Category 1 pollution incident including persistent and/or extensive effects on water quality; leading to closure of a potable abstraction point; major impact on amenity value or	
Severe major damage to agriculture or commerce.	Severe
Major damage to aquatic or other ecosystems, which is likely to result in a substantial adverse change in its functioning or harm to a species of special interest that endangers the long-term maintenance of the population.	
Catastrophic damage to crops, buildings or property.	
Elevated concentrations which could result in "significant harm" to human health as defined by the EPA 1990, Part 2A if exposure occurs.	
Equivalent to EA Category 2 pollution incident including significant effect on water quality; notification required to abstractors; reduction in amenity value or significant damage to agriculture or commerce.Medium	Medium
Significant damage to aquatic or other ecosystems, which may result in a substantial adverse change in its functioning or harm to a species of special interest that may endanger the long-term maintenance of the population.	
Significant damage to crops, buildings or property.	
Exposure to human health unlikely to lead to "significant harm".	
Equivalent to EA Category 3 pollution incident including minimal or short-lived effect on water quality; marginal effect on amenity value, agriculture or commerce.	
Mild Minor or short lived damage to aquatic or other ecosystems, which is unlikely to result in a substantial adverse change in its functioning or harm to a species of special interest that would endanger the long-term maintenance of the population.	Mild
Minor damage to crops, buildings or property.	
No measurable effect on humans.	
Minor Equivalent to insubstantial pollution incident with no observed effect on water quality or ecosystems.	Minor
Repairable effects of damage to buildings, structures and services.	

Table 1: Classification of Consequence (after NHBC/EA 2008)

* For these purposes, disease is to be taken to mean an unhealthy condition of the body or a part of it and can include, for example, cancer, liver dysfunction or extensive skin ailments. Mental dysfunction is included only insofar as it is attributable to the effects of a pollutant on the body of the person concerned.

The likelihood of an event (probability) takes into account both the presence of the hazard and target and the integrity of the pathway and has been assessed based on the categories given below.

Category	Definition
High Likelihood	There is pollutant linkage and an event would appear very likely in the short-term and almost inevitable over the long-term, or there is evidence at the receptor of harm or pollution.
Likely	There is pollutant linkage and all the elements are present and in the right place which means that it is probable that an event will occur. Circumstances are such that an event is not inevitable, but possible in the short-term and likely over the long-term.
Low Likelihood	There is pollutant linkage and circumstances are possible under which an event could occur. However, it is by no means certain that even over a long period such an event would take place and is less likely in the shorter term.
Unlikely	There is pollutant linkage, but circumstances are such that it is improbable that an event would occur even in the very long-term.

Table 2: Classification of Probability (after NHBC/EA 2008)

The potential severity of the risk and the probability of the risk occurring have been combined in accordance with the following matrix in order to give a level of risk for each potential hazard.

Table 3: The Classification of Risk (after NHBC/EA 2008)

		Consequence											
		Severe	Medium	Mild	Minor								
	High Likelihood	Very high	High	Moderate	Low								
bility	Likely	High	Moderate	Moderate/Low	Low								
Prob	Low Likelihood	Moderate	Moderate/ Low	Low	Very low								
	Unlikely	Moderate/ Low	Low	Very low	Very low								

Very high risk

There is a high probability that severe harm could arise to a designated receptor from an identified hazard at the site without remediation action OR there is evidence that severe harm to a designated receptor is already occurring. Realisation of that risk is likely to present a substantial liability to be site owner/or occupier. Investigation is required as a matter of urgency and remediation works likely to follow in the short-term.

High risk

Harm is likely to arise to a designated receptor from an identified hazard at the site without remediation action. Realisation of the risk is likely to present a substantial liability to the site owner/or occupier. Investigation is required as a matter of urgency to clarify the risk. Remediation works may be necessary in the short-term and are likely over the longer term.

Moderate risk

It is possible that harm could arise to a designated receptor from an identified hazard. However, it is either relatively unlikely that any such harm would be severe, and if any harm were to occur it is more likely, that the harm would be relatively mild. Further investigative work is normally required to clarify the risk and to determine the potential liability to site owner/occupier. Some remediation works may be required in the longer term.

Low risk

It is possible that harm could arise to a designated receptor from identified hazard, but it is likely at worst, that this harm if realised would normally be mild. It is unlikely that the site owner/or occupier

would face substantial liabilities from such a risk. Further investigative work (which is likely to be limited) to clarify the risk may be required. Any subsequent remediation works are likely to be relatively limited.

Very low risk

It is a low possibility that harm could arise to a designated receptor, but it is likely at worst, that this harm if realised would normally be mild or minor.

No potential risk

There is no potential risk if no pollution linkage has been established.

GQRA Methodologies

In order to assess the significance of contaminant concentrations, Ramboll has derived Generic Assessment Criteria (GAC) for screening purposes. GAC are derived for each critical receptor identified. Receptors are considered in relation to:

- Human health receptors (e.g. site users); and
- The water environment (e.g. groundwater and surface water).

Potential risks to human health are considered primarily using measured concentrations of contaminants in soil. Potential risks to the water environment are considered primarily using groundwater and soil leachate (most commonly in the absence of groundwater) concentrations as indicative of the potentially mobile fraction of any soil impact.

Additional receptors may be relevant, dependent on the site e.g. flora/fauna, agricultural use, water supply pipes, buried concrete etc. These are considered separately on a site specific basis if relevant.

Soil Human Health Risk Assessment

The Ramboll GAC for human health risk assessment of soils are based on the generic scenarios outlined in the Defra³ SP1010 guidance, Contaminated Land Exposure Assessment (CLEA) methodology and associated guidance documents. The Ramboll GAC have been calculated by use of two proprietary risk assessment models (CLEA Version 1.071 and the ASTM RBCA⁴ Tool Kit Version 2.6 for Chemical Releases) which have been altered, where necessary, to reflect the current UK approach to human health risk assessment as set out in LCRM, DEFRA SP1010 guidance, and the CLEA guidance documents (incorporating Science Reports SC050021/SR2 (January 2009), SR3 (January 2009), SR4 (September 2009) and the SGV reports (2009)). The Ramboll GAC include the conservative assumptions of a sandy soil type and 1% soil organic matter.

A methodology for derivation of screening values, the Category 4 Screening Levels, or C4SLs, has been developed and endorsed for use by Defra that describe a low level of risk just below the Category 3/4 boundary set in the Statutory Guidance, i.e. where concentrations are below the C4SL, there is no risk or the level of risk is acceptably low. Initially, C4SLs were developed for six common contaminants (benzo(a)pyrene, cadmium, arsenic, benzene, hexavalent chromium and lead). The Environment Agency states under their LCRM approach that they expect C4SL values to be used in risk assessments for land contamination. C4SLs for additional compounds are being developed by Contaminated Land: Applications in Real Environments (CL:AIRE) and are published on their website when approved for publication⁵. Currently additional C4SLs have been published for vinyl chloride, trichloroethene, tetrachloroethene and 1,2-dichloroethane.

³ SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination – Policy Companion Document, Defra, revised December 2014.

⁴ American Society for Testing Materials – Risk Based Corrective Action Model, Version 2.6

⁵ C4SL (claire.co.uk)

Defra's SP1010 Policy Companion document states that it is anticipated that risk assessors will use the C4SL values, where derived, in line with Part 2A Statutory Guidance. In the absence of a suitable C4SL, risk assessors should identify and select appropriate generic assessment criteria in accordance with established good practice. On this basis, Ramboll has adopted the use of C4SLs where available, however minimal risk (instead of the 'low' level of risk) toxicological assumptions have been applied for in-house Ramboll GAC for other contaminants of concern within our screening assessments.

For contaminants which do not have published C4SLs, the physiochemical and toxicological data has been taken from or derived using the methodology detailed in SR7 (November 2008) and SGV reports (2009), where feasible. Ramboll also attended the Land Quality Management and Chartered Institute of Environmental Health workshop for the collaborative development of 'Suitable 4 Use Levels' (S4ULs) and reference has been made to their publication 'The LQM/CIEH S4ULs for Human Health Risk Assessment, 2015'. Review of additional UK organisation guidance including CL:AIRE and partners GAC, including addendums up until 10 April 2012 has also been made. Finally, where necessary, other published sources of (non-UK) information, such as the RBCA V2.6 database have also been reviewed.

Assessment of Impact to Waters

Assessment of risks to water resources (referred to as "controlled waters" in England & Wales) is completed in general accordance with guidance provided in the Environment Agency's Approach to groundwater protection (2018).

Generic assessment criteria for waters have been selected by Ramboll to assess potential risks to the identified environmental receptors. A hierarchical approach has been taken to the use of assessment criteria based on adoption of published water quality standards at European level and UK specific standards, with those standards being chosen based on the conceptual site model and identified critical receptors. For those determinants included in the analytical suite which do not have a corresponding UK drinking water or environmental screening criteria, reference is made to international guidance in accordance with Environment Agency recommendations.

Where such standards are unavailable, standards taken from other organisations, for example the World Health Organisation or OSPAR, have been used.

The list of critical legislation used in this approach is described below.

European Assessment Criteria:

- 2000/60/EC: Water Framework Directive;
- 2006/118/EC: On the Protection of Groundwater Against Pollution and Deterioration; and
- 2013/39/EU: Priority Substances in the Field of Water Policy Directive.

UK Assessment Criteria:

• UKTAG Groundwater Hazardous Substances Standards 2016, annex 2018.

English and Welsh Criteria:

- The Water Environment (Water Framework Directive) (England and Wales) Regulations 2017;
- The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015;
- The Groundwater (Water Framework Directive) (England) Direction 2016; and
- The Water Supply (Miscellaneous Amendments) Regulations (England and Wales) 2010.

Other Criteria:

• World Health Organisation (WHO) Drinking Water Regulations 4th edition 2011;

⁶ The Environment Agency's approach to groundwater protection; February 2018; Version 1.2.

- World Health Organisation (WHO): Petroleum Products in Drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality 2008;
- USEPA National Primary Drinking Water Regulations; and
- OSPAR: Establishment of a List of Predicted No Effect Concentrations (PNECs) for Naturally Occurring Substances in Produced Water. OSPAR Agreement 2014-2015.

Minimum reporting values are also considered for hazardous substances for assessment of risks to groundwater resources in order to comply with the requirements of the guidance to 'prevent' input of hazardous substances to groundwater.

Assessment of Water Impact to Human Health

A methodology for the generation of the GAC for groundwater vapours (GACgwvap) was published by the Society of Brownfield Risk Assessment (SoBRA) in February 2017⁷, which is based on the CLEA model. Ramboll has adopted SoBRA's approach and modified the model input parameters to reflect site conditions and generate site SSAC for groundwater contaminant sources designed to be protective of site users for a residential and/or commercial/industrial scenario as appropriate.

The SoBRA (GACgwvap) methodology uses the Environment Agency's CLEA software model. The CLEA software was originally provided for deriving assessment criteria for soils, not groundwater; however, groundwater assessment criteria can be extracted from the calculations within CLEA. CLEA assumes a steady state equilibrium between the sorbed, water and vapour phase concentrations in soil. Consequently, as part of the process of calculating soil phase concentrations, the software also calculates the vapour phase concentration and the pore water dissolved concentration (soil solution concentration) at the soil GAC. Therefore, for given soil assessment criteria derived to be protective of health, a soil solution concentration is also available within the CLEA calculations which would give rise to this vapour concentration at the tolerable risk level. This soil solution concentration is used as an inferred groundwater SSAC.

The proprietary risk assessment model, the ASTM RBCA[®] Tool Kit Version 2.6 for Chemical Releases, has been used for compounds which could not be run in CLEA. The RBCA model has been altered where necessary to reflect the current UK approach to human health risk assessment, as appropriate.

Contaminant Distribution Assessment

Concentrations above the GAC are considered further in relation to vertical and lateral distribution across the site. Where relevant, statistical analysis has been used with consideration to guidance provided in CL:AIRE statistical assessment guidance⁹.

Ground Gas Risk Assessment

The assessment of risks from ground gas is based on current best practice guidance provided in the following documents:

- BS8485:2015+A1:2019. Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings; and
- NF94, NHBC2023. Hazardous ground gas an essential guide for housebuilders

Derivation of Characteristic Situation

⁷ SoBRA (2017) Development of Generic Assessment Criteria for Assessing Vapour Risks to Human Health from Volatile Contaminants in Groundwater. Version 1.0

⁸ American Society for Testing Materials – Risk Based Corrective Action Model, Version 2.6

⁹ CL:AiRE (2020) Professional Guidance: Comparing Soil Contamination Data with a Critical Concentration

The risk posed by ground gases using the approaches outlined in the documents above are assessed by calculating a Gas Screening Value (GSV). Derivation of the GSV is calculated by multiplying the steady state borehole flow rate (I/hr) with the peak carbon dioxide and methane concentrations for each well. Where required, a 'worst case' condition is also calculated by multiplying the maximum recorded steady state borehole flow rate with the peak carbon dioxide and methane concentrations for different strata across the entire site or zone (as applicable).

The calculated GSV is used to derive a 'Characteristic Situation' which ranges between CS1 (very low hazard potential) to CS6 (very high hazard potential) as defined within BS8485. This approach is applicable to commercial, industrial, and both high-rise and (since 2023) low-rise residential buildings (replacing the former NHBC traffic light system).

Requirement for Gas Protection Measures

The British Standards Characteristic Situation is used to determine the gas protection measures needed for a building. Gas protection measures are generally not required for CS1 (very low risk)sites unless the Conceptual Site Model indicates a need for further consideration. Although BS8485 relates to assessment for new buildings the same assessment methodology can be applied for appraisal of existing site buildings.

BS8485 requires a gas protection score to be identified for a proposed development. This is categorised based on the 'building type' from Type A to D, based on factors including construction and use of the building, together with the control of future structural changes to the building and its maintenance, since potential risks posed by ground gases are strongly influenced by these factors. Gas protection measures are selected to meet the required gas protection score in BS8485, although for some developments in higher Characteristic Situations the gas hazard is considered too high to use the method outlined in BS8485 to define the gas protection measures and further detailed quantitative gas risk assessment is required.

Water Supply Pipes

The assessment has been completed with consideration to the current UK guidance:

- Water UK. Jan 2014. Contaminated Land Assessment Guidance; and
- UKWIR UK Water Industry Research Ltd, 2010. Guidance for Selection of Water Supply Pipes to be used in Brownfield Sites.

This guidance provides threshold concentrations for different pipe material for various chemical groups.

The pipeline materials considered by the guidance are PE, PVC, wrapped steel, wrapped ductile iron or copper pipe and barrier pipe. PE and PVC are assessed using threshold concentrations for various chemical groups including volatile organic compounds (VOC) with tentatively identified compounds (TICs), semi-volatile organic compounds (SVOC) with TICs, and mineral oils. Wrapped steel, wrapped ductile iron and copper pipe are assessed using corrosive properties.

Regional water companies may have adopted additional more stringent thresholds which they apply locally, thus consultation with the water authority must always be completed prior to final determination of water supply pipe materials. Further, more detailed assessment may be required along the route of the proposed water supply pipes, once this is ascertained.

Appendix 3 Factual Site Investigation Information

				Project	Title: Sta	irfoot Gl	asswo	orks				St		Location ID:				
R	AN	1 B C		Loca	ation: For	mer Stai	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL		WS10	1	
				C	lient: Pot	ters Ball	otini L	imited			roundwat)r	Location Typ	e: Inspection p	it			
	Ram 1 Br The	boll UK Ltd oad Gate, Headrow		From (m)	To (m)	Type		Plant Us	ed	Strike (m)	Time (mins)	Rose To (m)	Coords: 4378	892E/405084N		Level: 4	7.56m	
	L	Leeds S1 8EQ		0.00	0.40	IP	H	land To	ols				National Grid		Final	Depth:	0.40	m
ht	Tel: 01 ps://wv	13 245 7552 vw.ramboll.c	2 :om/										Orientatio	n: 90°	Inc	lination:	0°	
	She	eet 1 of 1	,	-									Date Star	t: 10/10/202	:3 C	ate End:	10/10/20)23
Inst/	Water		Sam	nples & Test	S		Strata	Level	Legend		1	Strata [Description		V	/indow Sam	pling	Depth
Backfill	Level (m)	Sample Depth (m)	Type/ Ref	Tes	st/Results		Depth (m)	(m) (thick)	/Cover					WS Ru (m)	n Diam (mm)	Recovery (%)	/ (111)	
			Ket				0.40	47.16		MADE GR brick, san half bricks	OUND: Loose dstone and co s. Frequent rec	fine to coars ncrete over I Idish brown	e angular to sub brown silty soil. ashy material. D ited due to po able.	rounded Gravel of Frequent whole and ry.	ervice			
Remai	ks:	ntorod ! -	cation +	orminata-l								Borehol	le Diameter	Hammer Inf	ormation Serial No.	Sc	ale 1:10	
Service	encou	ntered. Lo	cation te	erminated	•							Debru (m)	mani (mm)	гный кадо (%)	Settat NO.	Logger	(s): ER	
											Install Respo	nse Zones	Checked	by: MH				

Ref

From (m)

To (m)

Project ID

			Project	Title: Stai	irfoot G	lasswo	orks					Status: Location ID:				ID:		
RAI	мвω		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL			WS101	A	
			С	lient: Pot	ters Ball	lotini L	imited			·		Location Tv	pe: Inspection r	 bit				
Ran 1 E Th	nboll UK Ltd Broad Gate, e Headrow		From (m)	To (m)	Type		Plant Us	ed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437	901E/404926N			Level: 47	.52m	
	Leeds LS1 8EQ		0.00	1.15	IP	H	land To	ols				National Grid	rvey Great Britain	1	Final De	epth:	1.15	m
Tel: 0 https://w	113 245 7552 ww.ramboll.c	2 :om/										Orientatio	on: 90°		Inclin	ation:	0°	
Sł	neet 1 of 1	,	-									Date Sta	rt: 10/10/202	23	Dat	e End:	10/10/20	23
Inst/ Water	-	Sam	nples & Test	S		Strata	Level	Legend		1	Strata [Description		Wir	ndow Sam	oling	Depth	
Backfill Level (m)	Sample Depth (m)	Type/ Ref	Tes	st/Results		Depth (m)	(m) (thick)	/Cover				WS (I			WS Run (m)	Diam (mm)	Recovery (%)	((((((((((((((((((((
			PID C	0.05m 0.6ppm		0.10	(0.10)		MADE GR brick, lime	OUND: Loose estone, sandst	prounded Gravel of yn silty soil. Dry.	part						
	0.10	ES 1	PID C).30m 0.5ppm		0.70	47.42 (0.60) 46.82 (0.45) 46.37		Soft to sti	emely friable I mangular to s [5]	ey friable ver orown gravel ubrounded o	ry silty weathers	DSTONE. Gravel is f veathered COAL	ine				
Done-rile											D ! !	o Diarro i	11	for mar. 11			1.10	_
Refusal on st	iff bedrock										Borehol Depth (m)	e Diameter Diam (mm)	Hammer Inf Energy Ratio (%)	ormatic Serial	on I No.	Sca	ILE 1:10	
No visual or o	olfactory ev	idence c	of contami	nation.							1.15	50			-+	Logger(5). EK	
m bgl = mete	ers below gr	ound lev	vel.								Casing	Diamator	Install Respo	nse Zone	25	Checked b	iect ID	

1.15

1620015371-002

0.50

1

				Project	Title: Sta	irfoot G	lasswo	orks					S	tatus:			Location	ID:	
F	2 A N	1 B Ø I		Loc	ation: For	mer Sta	irfoot	Brickw	vorks, Ba	arnsley, S	70 3NS		F	INAL			WS10	2	
				0	lient: Pot	ters Ball	lotini L	imited.					Location Tv	ne: Window sa	mple				
	Ram 1 Br The	boll UK Ltd oad Gate, Headrow		From (m)	Met To (m)	thod and Type	d Plant	t Plant U:	sed	Strike	Time	Rose To	Coords: 437	917E/404902N			Level: 47	.42m	
		Leeds		0.00	1.20	IP		land To	ools	(111)	(111115)	(11)	Ordnance Sui National Grid	rvey Great Britai	n	Final De	epth:	4.00	m
	Tel: 01	13 245 7552	<u>.</u> ,	1.20	4.00	WLS	Da	ando Te	errier				Orientatio	n: 90°		Inclin	nation:	0°	
ht	tps://wv	/w.ramboll.c	om/	_									Date Sta	rt: 10/10/20	23	Dat	e End:	10/10/20)23
Inst/	Water	2011011	Sar	nples & Tes	ts		Strata	Level	Legend			Strata I	Description			Wi	ndow Sam	pling	Depth
Backfill	Level	Sample	Type/	Te	st/Results		Depth (m)	(m)	/Cover							WS Run	Diam	Recovery	/ (m)
	(11)	Depth (m)	Rei				(11)	(0.23)		Reinforce	d concrete.					(11)	(mm)	(%)	
				PID	0.30m 0.2ppm	-	0.23	47.18 (0.37)		MADE GR silty CLAY. clinker an	OUND: Loose Gravel is fine d sandstone. I	brown to da to coarse ar Dry.	rk brown slightl Igular to subrou	y clayey gravelly ve nded of part brick,	ery coal,				-
		0.90	ES 1	PID	0.60m 0.2ppm	-	0.60	46.82		MADE GR concrete a	OUND: Loose and clinker. Fre	red silty fine equent part	e to coarse Grave brick cobbles. R	el of part brick, coa are fabric. Dry.	ıl,				-
						-	1.20	46.22 (0.20)		NO RECO	VERY								1
				PID :	1.40m 0.4ppm		1.40	46.02		MADE GR brick with coal and c	OUND: Loose occasional fir :linker. Dry.	red very ash ne to coarse	y very silty Cobl angular to subro	oles of part and whounded Gravel of b	ole ricks,	1.20 2.00	101	80	-
						-	2.00	45.42 (0.40)		NO RECOV	VERY								- 2
				PID :	2.40m 0.2ppm	-	2.40	45.02 (0.60)		MADE GR brick with coal and c	OUND: Loose i occasional fir :linker. Dry.	red very ash e to coarse	y very silty Cobl angular to subro	oles of part and wh ounded Gravel of b	ole ricks,	2.00 3.00	92	60	-
							3.00	44.42		from NO RECOV	<u>2.95 to 3.00n</u> VERY	n bgl - Soft n	nulticoloured we	eathered Clay.		3.00 4.00	79	40	- 3
		3.80	ES 2	PID :	3.80m 0.3ppm	-	4.00	43.82 (0.40) 43.42		MADE GR brick with coal and c <i>from</i> hydr	OUND: Loose occasional fir linker. Dry. ocarbon odou End of work	red very ash ne to coarse n <i>bgl - Black</i> r. ss at 4.00m	y very silty Cobl angular to subro oily staining wit	oles of part and wh ounded Gravel of b <i>ch slight</i> stiff bedrock.	iole ricks,				- 4
Derr													- Di-		<i>c</i>			1- 1-25	5
Rema	rks: Lon ctif	fhedrock										Boreho Depth (m	le Diameter	Hammer Ir Energy Ratio (%)	iformat Seri	tion ial No.	Sca	ale 1:25	
m bgl :	= meter	s below gr	ound le	vel.								3.25	50	3,			Logger(sj: EK	
Install	to 3.25	m bgl due t	o infilli	ng of loose	e materia	l.								Install Resp	onse Zoi	nes	Checked b	oy: MH	
												Casing	Diameter	Ref From	(m)	To (m)	Pro	ject ID	

Ref

1

From (m)

1.00

To (m)

3.00

				Project	Title: Sta	irfoot G	lasswo	orks					S	tatus:		I	Location	ID:	
R	AM	1 B C	LL	Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL			WS10	3	
	Paml	noll 11K 1+4			.nent: Pot Met	thod an	d Plant	imited		G	Groundwat	er	Location Ty	pe: Window sar	mple				
	1 Br The	oad Gate, Headrow		From (m)	To (m)	Туре		- Plant Us	sed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437	967E/404845N	, Г		Level: 47	.46m	
	Ľ	Leeds S1 8EQ		0.00	1.20	IP	H	land To	ools				National Grid		I	Final De	pth:	4.00	m
ht	Tel: 01: ps://ww	13 245 7552 /w.ramboll.c	2 com/	1.20	4.00	WLS	Da	indo ie	errier				Orientatio	on: 90°		Inclin	ation:	0°	
	She	et 1 of 1		-									Date Sta	rt: 10/10/202	23	Date	e End:	11/10/20)23
Inst/	Water		San	nples & Test	ts		Strata	Level	Legend			Strata [Description		_	Win	idow Sami	oling	Depth (m)
васкпії	(m)	Sample Depth (m)	Type/ Ref	Tes	st/Results		(m)	(m) (thick)	/Cover							WS Run (m)	Diam (mm)	Recovery (%)	/
				PID (0.20m 0.3ppm	-	0.30	(0.30) 47.16 (0.30)		MADE GR part brick concrete o 0.10 0.20 MADE GR subround	OUND: Loose , limestone ar cobbles. Dry. <i>m bgl - Concre m bgl - Large</i> OUND: Loose ed Gravel of p	grey fine to o d concrete o ete layer. <u>piece of reba</u> black very si art brick, clir	coarse angular t wer dark brown r. Ity fine to coars aker, concrete a	to subrounded Grav silty soil. Frequent e angular to nd coal. Slight	rel of				
				PID (0.50m 1.1ppm		0.60	46.86		hydrocarb	oon odour. Dry								-
				PID (0.70m 0.4ppm	_	1.20	(0.60) 46.26 (0.30)		MADE GR fine to coa sandstone	OUND: Firm b arse angular tr e. Rare patche e. Rare patche	rown stained o subrounded s of yellow fi	d black silty ven d of part brick, (ne sand. Slighti	y gravelly CLAY. Grav clinker, coal and y damp.	vel is				
				PID 1	1.50m 0.5ppm		1.50	45.96											-
							1.85	(0.35)		MADE GR angular to Slightly da	OUND: Loose o subrounded amp.	brown to yel Gravel of par	llowish brown s 't brick, coal, cli	andy fine to coarse nker and sandstone	e.	1.20 2.00	101	70	
							2.00	(0.15)		MADE GR is fine to r	OUND: Soft to medium. Grav	firm brown el is fine to c	stained black sa oarse very angu	andy gravelly CLAY. S Ilar to subrounded o	Sand of				
				PID 2	2.00m 5.4ppm	-	2.00	(0.30)	<u>******</u>	part brick from No recove	r, clinker, conci 1.90 to 2.00m ery	rete and sand n bgl - Freque	dstone. Dry. [LA ent confectiona	NDFILL MATERIAL] ry wrappers.					2-
	2.80 ES 1				2.50m 6.5ppm		2.30	45.16 (1.10)		MADE GR angular to concrete. Dry. [LANI	OUND: Black to subrounded Frequent clot DFILL MATERIA	to reddish br Gravel of par hing and grev AL]	own sandy clay 't brick, clinker, y ash. Rare glas	ey fine to coarse ve coal, sandstone and s and plastic fragme	ry d ents.	2.00 3.00	90	70	-
	2.80 ES 1				2.80m 1.4ppm	-	3.40	44.06		MADE GR	OUND: Soft to	firm black s	andy very grave	elly CLAY. Sand is fin	e to				- 3
				PID 3	3.50m 1.5ppm					coarse. Gi clinker, co from from angu	ravel is fine to bal, sandstone b 3.50 to 3.60n b 3.70 to 3.85n ular to subrour	coarse very ; Frequent w n bgl - Large n bgl - Becon nded Gravel o	angular to subro ood and sandsto wood fragment ning very brittly of sandstone.	ounded of part brick one cobbles. Dry. ts. fine to medium	k,	3.00 4.00	70	70	-
				PID 4	4.00m 0.9ppm	-	4.00	43.46		Fr	nd of works :	at 4.00m - 4	Achieved tern	nination denth					4-
												1. 1 . 0011 7							· · ·
										-				T			-		· 5 —
Remai	'KS: denth a	chieved										Borehol	e Diameter	Hammer In	formation Seria	on I No.	Sca	le 1:25	
No visu	ial evide	ence of co	ntamina	ation.								4.00	50		Seria		Logger(sj: ER	
m bgl =	meter	s below gr	ound le	vel.										Install Respo	nse Zone	es	Checked b	y: MH	
												Casing	Diameter	Ref From	(m) T	īo (m)	Pro	ject ID	

Ref

1

From (m)

1.00

To (m)

4.00

				Project	Title: Sta	irfoot G	ilasswo	orks					S	tatus:			Location	ID:	
F	8 A N	1 B Ø I		Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL			WS10	4	
	Pam	holl UK 1+4			Lient: Pol Me	ters Bal thod an	d Plant	.imited t		6	Groundwate	er	Location Typ	pe: Windo	w sample				
	1 Br The	road Gate, Headrow		From (m)	To (m)	Туре		Plant Us	sed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437	961E/4048	48N		Level: 47	′.88m	
	L	Leeds S1 8EQ		0.00	1.20	IP	ŀ	land To	ools				National Grid	vey Great E	sritain	Final De	epth:	3.00	m
ht	Tel: 01 tps://wv	.13 245 7552 ww.ramboll.c	<u>e</u> :om/	1.20	3.00	WLS	Da	indo le	errier				Orientatio	n:	90°	Inclir	nation:	0°	
	She	eet 1 of 1		_									Date Sta	rt: 10/1	0/2023	Dat	e End:	10/10/20	023
Inst/ Backfill	Water		Sar	nples & Test	ts		Strata	Level	Legend			Strata	Description			Wir	ndow Sam	pling	Depth (m)
Dackill	(m)	Depth (m)	Ref	Te	st/Results		(m)	(thick)	/Cover							(m)	(mm)	Recover (%)	y `´
								(0.25)		Reinforce	d concrete.								.
				PID 0).30m 45.7ppm		0.25	47.63 (0.40)		MADE GR	OUND: Soft bl	ack very gra	velly very silty C	lay. Gravel is	fine to	-			-
		0.40	ES 1	PID 0	1.50m 72.9ppm					coarse ve Moderate	ry angular to s hydrocarbon	ubrounded odour and b	of part brick, con black staining. Da	ncrete, and m amp.	udstone.				-
				PID 0.	.65m 106.3ppr	n -	0.65	47.23				growich brow	un clavou voru g		ravel is fina	_			-
				PID 0	0.85m 41.0ppm			(0.03)		Gravel is o and concr	coarse angular rete. Moderate	to subroun hydrocarbo	ded of part brick on odour. Slightly	, mudstone, damp.	siltstone				-
				1100															1-
																			-
				PID 1	.20m 10.2ppm		1.30	46.58		MADE GR	OUND: Soft da	ark brown sa	andy very gravel	v CLAY Sand	is fine to				
				RID :	1 50m 0 7nnm					medium. concrete,	Gravel is fine t sandstone and	o coarse vei d mudstone	ry angular to sub Frequent sands	rounded of p tone and brid	art brick, ck cobbles.				-
				FID.	1.30m 0.7ppm					Damp.						1.20 2.00	101	90	-
																			-
							2.00	AE 99											-
						-	2.00	(0.40)		No recove 2.00	ery m bgl - Fine Sc	and of red bi	rick.						2
																			-
				PID	2.40m 4.0ppm	-	2.40	45.48		MADE GR	OUND: Grev v	ery silty fine	to coarse angul	ar to subrour	nded	_			-
				PID 2	2.50m 52.7ppm		2.50	45.38 (0.45)		Gravel of	part brick, mu	dstone and	sandstone. Dam	p.		2.00 3.00	92	60	-
		2.70	ES 2							2.40 MADE GR	m bgl - Concre OUND: Greyis	<i>te cobble.</i> h black sligh	tly silty gravelly	Clay. Gravel i	s fine to	<i>,</i>			-
		2.90	ES 3	PID 2.	.80m 172.9ppr	n	2.05	44.02		hydrocart	on odour and	black staini	ng. Damp.	i chinkel. Wiot	lerate				-
				PID 2	2.95m 11.4ppm		3.00	(0.05) 44.88		Extremely odour. Dr	/ friable bluish y. [WEATHERE	grey very si D COAL MEA	lty MUDSTONE. ASURES]	Slight hydroc	arbon	┨────			- 3
											End of work	ks at 3.00n	n - Refusal on :	stiff bedroc	k				-
																			-
																			_
																			-
																			-
																			-
																			4-
																			-
																			-
																			-
																			-
																			5_
Rema	rks:											Boreho	le Diameter	Hamm	ner Inform	ation	Sca	ile 1:25	
Refusa	l on stif	ff bedrock.	010-11	wol								Depth (m) Diam (mm)	Energy Rati	o (%) S	erial No.	Logger(s): ER	
m bgl :	= meter	rs below gr	ound le	vel.								3.00	50				Checked b	y: MH	
												Casing] g Diameter	Install Ref	Response Z From (m)	To (m)	Pro	ject ID	•
														1	1.00	3.00	16200	15371-	002

				Project	Title: Sta	irfoot G	lasswo	orks					S	tatus:		l	ocation	ID:	
R	AN	1 B C I		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL			WS10	5	
	-	1 11 2 11 2 1 2			lient: Pot	ters Ball	lotini L d Plant	imited		6	iroundwat	-r	Location Typ	e: Windo	w sample				
	Ram 1 Bi The	poll UK Ltd road Gate, Headrow		From (m)	To (m)	Туре		Plant Us	ed	Strike	Time	Rose To	Coords: 437	885E/40497	8N		Level: 48	.15m	
	1110	Leeds		0.00	1.20	IP	F	land To	ols	(m)	(mins)	(11)	Ordnance Sur National Grid	vey Great B	ritain	Final De	pth:	2.00	m
ht	Tel: 01	13 245 7552	2	1.20	2.00	WLS	Da	indo Te	rrier				Orientatio	n: 9	0°	Inclin	ation:	0°	
	Sh	eet 1 of 1	Johny	-									Date Sta	rt: 09/10	0/2023	Date	e End:	09/10/20	023
Inst/	Water		Sar	nples & Test	ts		Strata	Level	Legend			Strata [Description			Win	dow Samp	oling	Depth
Backfill	Level (m)	Sample Depth (m)	Type/ Ref	Te	st/Results		Depth (m)	(m) (thick)	/Cover							WS Run (m)	Diam (mm)	Recovery	y ^(m)
								(0.25)		Reinforce	d concrete								
							0.25	47.90											
• • 🗆 •				PID (0.30m 0.2ppm		0.50	(0.25)		MADE GR to subrou part brick	OUND Cream nded Gravel of cobbles. Dry.	to brown silt f sandstone,	ty very sandy fin part brick and r	e to coarse ve nudstone. Fre	ery angular quent				-
				PID	0.60m 0.2ppm	-	0.50	(1.10)		MADE GR	0.25 to 0.30m OUND: Red ve	ry gravelly fi	ine to medium S	and. Gravel is	fine to	-			-
										from Sand	0.50 to 1.40m of brick dust of	bgl - Orang and ash.	e fine to mediu	n very gravell	У				-
		0.80	ES 1																-
																			1-
				PID	1.10m 0.2ppm														-
																			-
				PID *	1.60m 0.2ppm		1.60	46.55								1.20	101	90	-
								(0.40)	×	Very soft t angular to	o soft brown g subrounded o	gravelly silty of lithorelicts	CLAY. Gravel is f s. [WEATHERED	ine to coarse COAL MEASU	very RES]	2.00	-		
									×										-
						-	2.00	46.15	×		End of work	c at 2 00m	Pofusal on s	tiff bodrock					2
												5 at 2.0011	- Nelusal oli s	un beurock					-
																			-
																			-
																			-
																			-
																			-
																			3
																			-
																			-
																			-
																			-
																			-
																			4-
																			-
																			-
																			-
																			-
Demin						· ·						D ' '	la Dia	11-	or lef.	ation	~	1.25	5
кета Refusa	кs: I on stil	f bedrock.										воrehol Depth (m)	Diameter	Hamm Energy Ratio	er intorm	erial No.	Sca	ie 1:25	
No visu	ial or o	lfactory ev	idence (of contami	ination.							1.50	50				Checkod L		
m bgi =	- metei	s below gr	ound le	vei.										Install I	Response Z	ones			
												Casing	; Diameter	Ref	From (m) 0.40	To (m)	Pro	ject ID	
1														1	-		162001	15371-	002

				Project	Title: Sta	irfoot G	ilasswo	orks					S	tatus:		l	ocation	ID:	
R	2 A N	1 B Ø I		Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL			WS10	6	
		1 11 1 11 1 1 1 1			lient: Pot	ters Bal	lotini L d Plant	imited		6	iroundwat	≏r	Location Typ	e: Window sar	nple				
	Ram 1 Bi The	iboll UK Ltd road Gate, Headrow		From (m)	To (m)	Туре		Plant Us	sed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437	905E/404962N			Level: 48	8.14m	
	l	Leeds S1 8EQ		0.00	1.20	IP	H	land To	ools				National Grid	vey Great Britair	F	inal De	pth:	1.70	m
htt	Tel: 01 tps://w\	L13 245 7552 ww.ramboll.c	2 :om/	1.20	1.70	WLS	Da	indo le	errier				Orientatio	n: 90°		Inclin	ation:	0°	
	Sh	eet 1 of 1		-									Date Sta	rt: 09/10/202	23	Date	e End:	09/10/20)23
Inst/	Water		Sam	nples & Test	ts		Strata	Level	Legend		1	Strata	Description			Win	dow Sam	pling	Depth
Backfill	Level (m)	Sample Depth (m)	Type/ Ref	Te	st/Results		Depth (m)	(m) (thick)	/Cover						W	/S Run (m)	Diam (mm)	Recovery (%)	/
								(0.20)		Reinforce	d concrete								-
						-	0.20	47.94 (0.65)		MADE GR	OUND: Browr	silty very sa	andy fine to coar	se very angular to					-
				PID	0.30m 2.4ppm					subangula part brick	ar Gravel of cli cobbles. Dam	nker, part br p.	rick, sandstone a	nd concrete. Freque	ent				-
		0.60	ES 1							0.60	m hal - Becom	ing dark bro	wn veru candu f	ine to coarse					-
				PID	0.60m 0.3ppm					angı	lar Gravel of	brick and cli	nker.						-
· H ·						-	0.85	47.29 (0.85)		Soft to sti	ff grev friable	slightly grav	elly silty CLAY G	avel is fine to medi	um				-
				PIDI	J.90m U.2ppm				<u></u>	very angu	lar to subrour	ided of mud	stone and siltsto	ne. Dry.					1
									×_×_	-									-
									×_×_	-									
		1.40	FS 2	PID :	1.30m 0.2ppm				×										-
									×							1.20 1.70	101	90	_
							1 70	16.14	×	-									-
×//A×//						-	1.70	40.44			End of wor	ks at 1.70n	n - Refusal on :	stiff bedrock					
																			2 —
																			-
																			-
																			-
																			-
																			-
																			-
																			-
																			3 —
																			-
																			-
																			_
																			-
																			-
																			-
																			4-
																			-
																			-
																			-
																			5_
Remai	ks:											Boreho	le Diameter	Hammer In	formation	1	Sca	le 1:25	
Refusa	l on sti	ff bedrock.										Depth (m) Diam (mm)	Energy Ratio (%)	Serial N	lo.	Logger(s): ER	
No visu	ial or o	lfactory ev	idence c	of contami	ination.							0.85	50				Checked P	W. MH	
un ngi =	metel	in perow Bl	Junu Iel	v C I .								I			_		SHEEKEU L		

Install Response Zones

0.30

From (m) To (m)

0.85

Ref

1

Casing Diameter

Project ID

				Project	Title: Sta	irfoot G	lasswo	orks					S	tatus:			Location	ID:	
R	A۸	1 B Ø I		Loca	ation: For	mer Sta	irfoot	Brickw	vorks, Ba	rnsley, S	70 3NS		F	INAL			WS10	7	
				C	lient: Pot	ters Ball	lotini L	imited					Location Tyr	ve· Window sar	mple				
	Ram 1 Br	boll UK Ltd road Gate,		From (m)	Met To (m)	thod and Type	d Plant	Plant U	sed	Strike	Time	Rose To	Coords: 437	862E/404953N			Level: 47	7.88m	
	ine .	Leeds		0.00	1.20	IP	 	land To	ools	(m)	(mins)	(m)	Ordnance Sur	vey Great Britair	י [Final De	epth:	2.80	m
http	L Tel: 01	S1 8EQ 13 245 7552	2 om/	1.20	2.80	WLS	Da	indo Te	errier				Orientatio	n: 90°		Inclin	ation:	0°	
nup	She	eet 1 of 1	.0111/	-									Date Star	rt: 09/10/202	23	Dat	e End:	09/10/20)23
Inst/ N	Nater		San	nples & Test	ts		Strata	Level	Legend			Strata	Description			Wir	ndow Sam	pling	Depth
Backfill	Level (m)	Sample Depth (m)	Type/ Ref	Tes	st/Results		Depth (m)	(m) (thick)	/Cover						,	WS Run (m)	Diam (mm)	Recovery (%)	/ (***)
		0.20	ES				0.15	(0.15) 47.73 (0.15)		Reinforce MADE GR	d concrete OUND: Loose Gravel is fing t	soft dark br	rown sandy silty (Clay. Sand is fine to	ick				-
				PID C	0.20m 0.1ppm 0.40m 0.1ppm	-	0.30	47.58 (1.10)		clinker, co MADE GR fine to me	olaver is fille to al, concrete a OUND: Soft to edium angular	nd sandstor firm light b to subroun	ne. Slightly damp. prown slightly gra ded of part brick	velly silty Clay. Grav	vel is ie.				-
										Frequent	organic rootle	ts. Dry. [RE\	WORKED MATERI	AL]					-
				PID (0.90m 0.1ppm					0.80 Clay.	m bgl - Becom	ing light bro	own mottled ligh	t grey and orange					1-
				PID 1	1.40m 0.2ppm		1.40	46.48		-									
								(0.70)		fine to st fine to co damp. [W	iff light brown arse very angu EATHERED CC	thiniy lamir ilar to subro AL MEASUF	nated slightly gra bunded of lithore RES]	velly silty CLAY. Gra licts and coal. Sligh	tly	1.20 2.00	101	90	-
				PID 1	1.90m 0.1ppm										-				- 2
				PID 2	2.10m 0.1ppm		2.10	45.78	× ×	Soft to fir is fine to o [WEATHE	m light brown coarse angular RED COAL ME	very thinly to subangu ASURES]	laminated gravel Ilar of siltstone, r	ly very silty CLAY. G nudstone and coal.	ravel Dry.				-
				PID 2	2.60m 0.1ppm											2.80	92	90	_
							2.80	45.08	×_×	2.70	m bgl - Small µ	oocket of ve	ry soft light grey	wet CLAY.					
											End of work	s at 2.80n	n - Refusal on s	tiff bedrock.					3
																			-
																			-
																			4
																			-
																			.
																			- -
Remark	(5.											Borebo	le Diameter	Hammer Ini	formativ	on	Sca	ale 1.25	
Refusal	on stif	f bedrock.										Depth (m	n) Diam (mm)	Energy Ratio (%)	Seria	l No.	Logger(s): ER	
No visua m bgl = i	al or ol meter	lfactory evi	idence o ound le	of contami vel.	ination.							2.80	50				Checked h	y: MH	
		- 2010 W BI	- 4/10/10									Casin	g Diameter	Install Respo	onse Zone (m) T	es To (m)	Pro	ject ID	

1

1.40

2.80

				Project	Title: Sta	irfoot G	ilasswo	orks					S	tatus:				Location	ID:	
R	AN	1 B C I		Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL				WS10	8	
				C	lient: Pot Met	ters Bal	lotini L d Plani	imited.		6	Groundwate	er	Location Ty	pe: Wind	ow samp	le				
	Ram 1 Br The	road Gate, Headrow		From (m)	To (m)	Туре		Plant Us	sed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437	835E/4049	94N			Level: 48	8.14m	
	L	Leeds .S1 8EQ		0.00	1.20	IP	ŀ	land To	ools				Ordnance Su National Grid	rvey Great	Britain		Final De	epth:	4.00	m
ht	Tel: 01 ps://wv	.13 245 7552 vw.ramboll.c	2 :om/	1.20	4.00	WLS	Da	ando Te	errier				Orientatio	in:	90°		Inclir	ation:	0°	
	She	eet 1 of 1	,	-									Date Sta	rt: 11/1	10/2023		Dat	e End:	11/10/20	023
Inst/	Water		San	nples & Test	IS		Strata	Level	Legend			Strata D	Description				Wir	ndow Sam	pling	Depth (m)
васкпії	(m)	Sample Depth (m)	Type/ Ref	Tes	st/Results		(m)	(m) (thick)	/Cover							V	VS Run (m)	Diam (mm)	Recover (%)	y (,
								(0.23)		Reinforce	d concrete									-
						-	0.23	47.91	××××××	MADE GR	OUND: Orang	ish brown ve	ry sandy fine to	coarse angu	lar to	_				-
		0.30	ES	PID (0.30m 0.4ppm	-	0.40	47.74		subround medium.	ed Gravel of li Damp.	mestone, par	rt brick and san	dstone. Sand	l is fine to					-
								(0.40)		MADE GR subround	OUND: Loose ed Gravel of li	cream very s mestone and	andy fine to co I part brick. Dry	arse angular	to					-
				PID (0.60m 0.5ppm															-
				PID ().80m 0.8ppm	-	0.80	47.34		MADE GR		black and br	own verv sandy	fine to coar	se angular					-
										to subrou	nded Gravel o m. Drv.	f part brick, o	coal, clinker and	sandstone.	Sand is fir	ne				-
																				1-
				PID 1	1.20m 0.5ppm	-	1.20	46.94 (0.10)		from Soft brow	n 1.10 to 1.20n	n bgl - Sandst v sandv CLAY.	tone cobble. Sand is fine to	medium. Gra	avel is fine					
						-	1.30	46.84 (0.70)		to coarse	very angular t oon odour. Dry	o subrounde	d of sandstone	and limestor	ne. Slight					-
										No recove	ery									-
																	1.20 2.00	101	30	-
																				-
																				-
				PID 2	2.00m 0.8ppm	-	2.00	46.14 (2.00)	<u>.</u>	Stiff brow	n mottled ora	ngish brown	and light grey s	lightly silty g	ravelly					2
										CLAY. Grav mudstone	vel is fine to m e and siltstone	edium angul . Slightly dam	ar to subround np. [WEATHERE	ed of sandsto D COAL MEA	one, SURES]					
									· · · ·											-
									· · · · ·								2.00			-
				PID 2	2.50m 0.6ppm												3.00	92	90	-
									· · · ·											-
									· · · · ·											-
				PID 3	3.00m 0.5ppm				· · · · ·											3-
																				-
									· · · ·	from	a 3.20 to 4.00n	n bgl - Becom	ning stiff brown	mottled pur	olish					
		3.40	ES 1						<u>.</u>		in ciuji									-
				PID 3	3.50m 0.4ppm				· · · ·								3.00 4.00	79	90	-
									<u> </u>											
									· · · · ·											-
					1.00		4.00	44.14												
				2014						Er	nd of works a	at 4.00m - A	Achieved tern	nination de	pth.					4-
																				-
																				-
																				-
																				-
								I		I						I			I	₅ _
Remai	ks:											Borehol	e Diameter	Hamr	ner Infor	matio	'n	Sca	ale 1:25	
Target No visi	depth a Ial evid	achieved. lence of co	ntamina	ation.								Depth (m) 1.30	Diam (mm) 50	Energy Rat	io (%)	Serial	No.	Logger(s): ER	
m bgl =	meter	rs below gr	ound le	vel.										lunt-	Recomm	a Zana		Checked b	y: MH	
												Casing	Diameter	Ref	From (m) To	o (m)	Pro	ject ID	
														1	0.30	1	30	16200	15371-	002

				Project	Title: Sta	irfoot G	lasswo	orks					S	tatus:		L	ocation	ID:	
R	A N	1 B Ø I		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL			WS10	9	
				C	lient: Pot	ters Ball	otini L	imited											
	Ram 1 B	boll UK Ltd road Gate,		5 ()	Met	hod and	d Plant			G Strike	Froundwate	er Rose To	Location Typ	e: Inspection p	bit		Level: 48	12m	
	The	e Headrow Leeds		From (m)	10 (m)	Type		Plant Us	sea	(m)	(mins)	(m)	Ordnance Sur	vey Great Britain		Fired Dec		1 10	
	l Tel: 01	.S1 8EQ 13 245 7552	2	0.00	1.10	IP	+	land To	ools	0.80	5	-	National Grid Orientatio	n: 90°			ation:	0°	m
ht	tps://w	ww.ramboll.c	:om/	_														11/10/20	22
Inct/	Sh	eet 1 of 1		plac & Tast			Ctrata	Loval	Logond			Ctroto D	Date Star	rt: 11/10/202	23	Date	e End:	11/10/20	23 Denth
Backfill	Level (m)	Sample	Type/	Tes	st/Results		Depth (m)	(m)	/Cover			JUI did L	escription		V	VS Run	Diam (mm)	Recovery	(m)
Remai	▼.	0.40	ES1	PID C).30m 0.5ppm).80m 0.5ppm		1.10	(0.25) <u>47.87</u> (0.85) <u>47.02</u>		MADE GR subround and sands from from End c	OUND: Orang ed Gravel of si stone cobbles. 0.30 to 0.40m 0.50 to 0.80m of 0.50 to 1.10m of works at 1	e sandy claye andstone, pa Dry. n bgl - Occasi n bgl - Becom 10m - Con	y fine to coarse t brick and coa onal rebar. ing damp. ete obstruction. crete obstruction. crete obstruction.	very angular to I. Frequent part brid tion at base of pi	t.	n	Sca	le 1:10	
Retusa m. bol	l on co	ncrete obst rs below gr	ruction.	vel								Depth (m)	Diam (mm)	∟nergy Ratio (%)	Serial I	NO.	Logger(s): ER	
Ground	dwater	has oily sh	een and	hydrocarl	bon-like c	odour.						1.10					Checked b	y: MH	

Install Response Zones

0.50

Ref

1

Casing Diameter

From (m) To (m)

1.00

Project ID
				Project	Title: Sta	irfoot G	ilasswo	orks					S	tatus:			Location	ID:	
F	8 A N	1 B Ø I		Loca	ation: For	mer Sta	airfoot	Brickw	vorks, Ba	arnsley, S	70 3NS		F	INAL			WS11	0	
				C	lient: Pot	ters Bal	lotini L	imited.		~	roundwat	ar	Location Typ	be: Window s	ample				
	Ram 1 Bi The	boll UK Ltd road Gate, Headrow		From (m)	To (m)	Type		Plant U	sed	Strike	Time	Rose To	Coords: 437	822E/405042N			Level: 48	3.06m	
	L	Leeds S1 8EQ		0.00	1.20	IP	ŀ	land To	ools	(11)	(11113)	(11)	Ordnance Sur National Grid	vey Great Brita	ain	Final De	pth:	2.95	m
ht	Tel: 01 tps://wv	.13 245 7552 ww.ramboll.c	2 :om/	1.20	2.95	WLS	Da	ando Te	errier				Orientatio	n: 90°		Inclin	ation:	0°	
	Sh	eet 1 of 1											Date Star	rt: 11/10/2	023	Dat	e End:	11/10/20	023
Inst/ Backfill	Water	Commis	Sar	nples & Test	ts		Strata Depth	Level	Legend			Strata [Description			Wir	idow Sam	pling	Depth (m)
Dackilli	(m)	Depth (m)	Ref	Te	st/Results		(m)	(thick)	70000							(m)	(mm)	(%)	y · ·
							0.30	47.76		Reinforce	d concrete								-
		0.30	ES	PID (0.30m 0.7ppm	-		(0.30)		MADE GR fine to me Frequent	OUND: Soft bl edium. Gravel sandstone and	ack and crea is fine to coa d part brick c	m very sandy ve rse of part brick obbles. Wet.	ery gravelly Clay. , sandstone and	Sand is coal.				-
				PID (0.60m 0.7ppm	-	0.60	47.46 (0.20)		MADE GR	OUND: Soft to	firm greyish	brown slightly	gravelly Clay. Gra	vel is				-
				PID (0.90m 0.7ppm	-	0.80	47.26 (0.60)		MADE GR slightly sil	e angular to s al organics. Slip OUND: Soft to ty Clay. Grave oon odour. Slip	ghtly damp. [ghtly damp.] firm light gr l is fine angu htly damp. [REWORKED MA ey mottled orar lar to subrounde REWORKED MA	TERIAL] ge slightly gravel of concrete. SI TERIAL]	ly ight				-
														-					
• = •				PID :	1.30m 0.6ppm	-	1.40	46.66 (0.60)		Firm to sti to coarse	iff brown mot very angular t	tled grey and o subrounde	orange silty gra d of sandstone,	welly CLAY. Grave coal, mudstone a	l is fine and				-
				PID :	1.70m 0.6ppm					siltstone.	Slightly damp	. [WEATHERE	D COAL MEASU	RES]		1.20 2.00	101	90	-
																			-
				PID	2.00m 0.4ppm	-	2.00	46.06 (0.60)	· · · ·	Stiff brow	n mottled red gular to subro	dish brown s unded of sar	ilty gravelly CLA Idstone, coal an	Y. Gravel is fine to d mudstone. Dry)				2
									· · · · · ·	[WEATHEI from	RED COAL ME 2.00 to 2.30r	ASURES] n bgl - Stiff to	o very stiff Clay.						-
				PID 2	2.50m 0.3ppm	-	2.60	45.46		Futromoli	frichle light k		u voru siltu fino		Crowel	2.00 2.95	92	90	-
		2.70	ES 1	PID 2	2.70m 0.7ppm			(0.55)		is fine to c [WEATHEI	coarse angula RED COAL ME	to subround ASURES]	led of sandstone	e and mudstone.	Dry.				-
						-	2.95	45.11	× .		End of work	s at 2.95m	- Refusal on s	tiff bedrock.					3-
																			-
																			-
																			4-
																			-
																			-
																			-
																			5_
Rema	rks:											Borehol	e Diameter	Hammer	Informa	tion	Sca	ale 1:25	
Refusa	I on stil	ff bedrock.	idanca	of contami	ination							Depth (m)	Diam (mm)	Energy Ratio (%) Ser	ial No.	Logger(s): ER	
m bgl	aai or 0 = metei	rs below gr	ound le	vel.	niatiofi.							2.33	50				Checked b	by: MH	
												Casing	Diameter	Install Res	ponse Zo m (m)	nes To (m)	Pro	oject ID)
												Casing		1 1	.50	2.80	16200	15271	002

			Project	Title: Sta	irfoot G	lasswo	orks					S	tatus:		l	ocation	ID:	
RAN	1 B Ø I		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL			WS11	1	
			С	lient: Pot	ters Ball	lotini L	imited			roundwat		Location Typ	be: Window sar	mple				
Ran 1 B Th	iboll UK Ltd road Gate, e Headrow		From (m)	To (m)	Type		Plant Us	ed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437	861E/405083N			Level: 49	.59m	
	Leeds S1 8EQ		0.00	1.20	IP	 	land To	ols	()	. ,	()	Ordnance Sur National Grid	vey Great Britain	١	Final De	pth:	3.40	m
Tel: 0: https://w	13 245 7552 ww.ramboll.c	2 	1.20	3.40	WLS	Da	indo Te	errier				Orientatio	n: 90°		Inclin	ation:	0°	
Sh	eet 1 of 1	.0111/	-									Date Star	rt: 09/10/202	23	Date	e End:	09/10/20	23
Inst/ Water		Sam	nples & Test	S		Strata	Level	Legend			Strata	Description			Win	dow Sam	oling	Depth
Backfill Level (m)	Sample Depth (m)	Type/ Ref	Tes	st/Results		Depth (m)	(m) (thick)	/Cover							WS Run (m)	Diam (mm)	Recovery (%)	, (m)
			PID 0).10m 0.0ppm		0.10	(0.10) 49.49		MADE GR angular to	OUND: Soft to subrounded f	firm dark b ine to coars	orown slightly gra se of sandstone,	welly silty Clay. Grav mudstone and part	velis				
	0.30	ES 1	PID 0	0.30m 0.2ppm			(0.80)		brick. Slig MADE GR sandstone cobbles. [htly damp. OUND: Light b e, mudstone, s REWORKED M	rown clayey iltstone and ATERIAL]	y very sandy fine I coal. Rare sands	to coarse Gravel of stone and siltstone	ŗ/				
			PID 0	0.80m 0.1ppm	-	0.90	48.69 (1.90)		MADE GR to coarse siltstone a cobbles.	OUND: Firm to very angular to and part brick.	o stiff light b o subrounde Sand is fine	prown and brown ed Gravel of sanc to medium. Free	n clayey very sandy Istone, mudstone, quent part brick	fine				- - - 1
			PID 1	.20m 0.1ppm					1.80	m bgl - Becom	ing very gra	welly and brittle.		-	1.20 2.00	101	90	- - - - - - - - - - - - -
	2.20	ES 2	PID 2	2.20m 0.1ppm	_	2.80	<u>46.79</u> (0.40)		MADE GR	OUND: Firm to	o stiff greyis	h brown very gra	avelly Clay. Gravel is	fine	2.00 3.00	92	90	- 2
			PID 2	2.90m 0.1ppm	-	3.20	46.39 (0.20)		to coarse of yellow Stiff light angular to	angular to sub fine sand. [RE\ brown mottled o subrounded (rounded of WORKED M greyish bro GRAVEL of li	mudstone and s ATERIAL] own and black cla ithorelicts. Slight	andstone. Rare poc ayey fine to coarse ly damp. (WEATHEF	RED	3.00 3.40	79	90	- 3
						3.40	46.19		COALME	ASURES] End of work	s at 3.40n	n - Refusal on s	stiff bedrock					
Remarks:											Boreho	le Diameter	Hammer Inf	formati	on	Sca	le 1:25	
Refusal on sti	ff bedrock.	idanco o	of contam:	nation							Depth (m 2 50) Diam (mm)	Energy Ratio (%)	Seria	il No.	Logger(s): ER	
m bgl = mete	rs below gr	ound lev	/el.	nation.							2.30	50				Checked b	y: MH	
											Casing	g Diameter	Install Respo Ref From	mse Zone (m) T	es Fo (m)	Pro	ject ID	

Ref 1

0.50

2.50

				Project	Title: Sta	irfoot G	ilasswo	orks					S	tatus:		I	ocation	ID:	
F	RAN	1 B Ø I		Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	arnsley, S	70 3NS		F	INAL			WS11	2	
					Jient: Pot. Mei	ters Bal	iotini L d Plant	imited		C	iroundwat	-r	Location Typ	e: Window sar	nple				
	Ram 1 Bi The	boll UK Ltd road Gate, Headrow		From (m)	To (m)	Туре		Plant U:	sed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437	935E/405015N	<u> </u>		Level: 48	3.40m	
	L	Leeds S1 8EQ		0.00	1.20	IP	H	land To	ools				National Grid	vey Great Britair	1	Final De	pth:	2.00	m
ht	Tel: 01 tps://wv	13 245 7552 ww.ramboll.c	om/	1.20	2.00	VVL5			erner				Orientatio	n: 90°		Inclin	ation:	0°	
	Sh	eet 1 of 1		-									Date Star	t: 10/10/202	23	Date	e End:	10/10/20	023
Inst/	Water		Sam	nples & Test	ts		Strata	Level	Legend			Strata D	Description			Win	dow Sam	pling	Depth (m)
васкпії	(m)	Sample Depth (m)	Type/ Ref	Tes	st/Results		(m)	(m) (thick)	/Cover							WS Run (m)	Diam (mm)	Recovery (%)	y (,
								(0.20)		Bituminou	us tarmacadar	n.							-
		0.20	ES	PID (0.30m 0.8ppm	-	0.20	48.20 (0.20)		MADE GR subround	OUND: Black : ed Gravel of b	slightly silty v rick, clinker a	very ashy fine to and sandstone. V	coarse very angula Wet.	ır to				-
				PID (0.50m 0.6ppm	-	0.40	48.00 (0.20)		MADE GR slightly gr	OUND: Soft to avelly Clay. Gr	firm brown avel is fine to	mottled grey an coarse very an	d orangish brown gular to subrounde	d of				-
				PID (0.70m 0.7ppm	-	0.60	47.80 (0.30)		mudstone [REWORK MADE GR	e, siltstone and ED MATERIAL OUND: Firm g	l sandstone.] rey slightly g	Rare organic roo	otlets. Slightly dam	p/				-
							0.90	47.50		medium a [REWORK	ingular to sub ED MATERIAL	rounded of m]	nudstone and si	tstone. Dry.					-
				PID 1	1.00m 0.6ppm			(0.40)		MADE GR fine to me [REWORK	OUND: Soft to dium angular ED MATERIAL	firm orangis to subangula	sh brown slightly ar of lithorelicts	/ gravelly Clay. Grav . Slightly damp.	vel is				1
							1 20	47.10							-				
					1 40m 0 400m	-	1.30	(0.35)		Soft to fire	m orangish br	own mottled	grey gravelly ve	ry sandy CLAY. Sand	d is of				-
					1.40m 0.4ppm					mudstone from	and sandstor 1.40 to 1.50n	ne. Damp. [W n bgl - Becom	EATHERED COA	L MEASURES]	,	1.20	101	00	_
		1.70	ES 1	PID 1	1.70m 0.7ppm	-	1.65	46.75 (0.35)		Very friab fine to coa	le orangish br arse of sandst	own very gra	velly fine to me Istone. Dry. [WE	dium Sand. Gravel i ATHERED COAL	is	2.00	101	90	-
										MEASURE	S]								-
<u>• • – .</u>	1.70 E51 PID 1.70m 0.7ppm 0.20 E5 0.20 K5 PID 0.30m 0.8ppm 0.40 48.0 0.4											s at 2.00m	- Refusal on s	tiff bedrock.					2
																			-
																			-
																			-
																			-
																			3 —
																			-
																			-
																			-
																			-
																			-
																			1
																			-
																			-
																			-
																			-
																			₅ _
Rema	rks:											Borehol	e Diameter	Hammer In	formati	on	Sca	ale 1:25	
Refusa No visi	l on stii Jal or o	ff bedrock. Ifactorv evi	idence c	of contami	ination.							Depth (m) 2.00	Diam (mm) 50	Energy Ratio (%)	Seria	l No.	Logger(s): ER	
m bgl :	= meter	rs below gr	ound lev	vel.										Install Rospo	nse 7op		Checked b	by: MH	

Casing Diameter

Ref

1

From (m) To (m)

2.00

1.30

Project ID

				Project	Title: Sta	irfoot G	ilasswo	orks						Status	:		Locatio	n ID:	
R	AN	1 B Ø I		Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	rnsley, S	70 3NS			FINA	L		TP10	01	
	Ram	holl IIK Itd		C	lient: Pot Mei	ters Bal thod an	Iotini L d Plant	imited		G	iroundwate	er	Locatio	n Type: T	rial pit	_1			
	1 B The	road Gate, Headrow		From (m)	To (m)	Туре		Plant Us	ed	Strike	Time (mins)	Rose To	Coords:	: 437808E/	405100N		Level: 5	51.05m	
	l	Leeds S1 8EQ		0.00	3.50	TP		JCB		(11)	(111113)	(11)	Ordnanc National	e Survey G Grid	reat Britain	Fina	l Depth:	3.50	m
htt	Tel: 01 ps://wv	.13 245 7552 ww.ramboll.c	2 :om/										Orien	itation:	90°	Ir	nclination:	0°	
	Sh	eet 1 of 1		_									Date	e Start:	10/10/202	3	Date End:	10/10/2	023
Inst/ Backfill	Water Level	Sample	San Type/	nples & Test	ts .		Strata Depth	Level (m)	Legend /Cover				2	Strata Desc	ription				Depth (m)
	(m)	Depth (m)	Ref	Tes	st/Results		(m)	(thick) (1.50)		MADE GR	OUND: Firm to	o stiff greyisl	h to pale b	rown very gr	avelly Clay. G	ravel is fine to	o coarse subar	gular of	
		1.50	ES1	PID 1 PID 2 PID 3	1.00m 0.1ppm 2.70m 0.1ppm 3.00m 0.1ppm		3.00	49.55 (1.50) 48.05 (0.50) 47.55		MADE GR of siltston	OUND: Orangi e. OUND: Firm to r gravel of bri	ish brown fir o stiff grey v ck and siltstr End of wo	ne to coars	e and occasi y Clay with fi pockets of or 50m - Achi	ne to coarse ange mediun eved termin	and boulder and occasiona is sand.	sized subangu	lar Grav el td	
Remar	ks:			nilo an	vimatal	1 60					S1	Depth Rela tability	ited Explor	ratory Hole Shoring	Information Length (m) Width (m) S	cale 1:25	
Irial pit advanc	advar ed to 2	1ced into th 2.0 m bgl (t	ne stock otal exc	pile appro: avated dep	ximately pth of 3.5	1.50 m a 0 m). Ei	above ; nvironr	ground nental	ievel ai sample	nd taken	5	Stable		None	2.50	1.00	Logge	r(s): VG	
from th ground	ne stoc water	kpile mater encountere	rial and ed. No A	depth is re CMs or sig	eferencec gns of po	l as +1.5 tential c	50 - 0.0 contam	0 m. N inatior	o 1 record	ed.							Checked	by: MH	
J - 1.1.4				- 21 518	J -												Pr	oject ID)
																	16200)15371-	-002

	Project	Title: Sta	irfoot G	lasswo	orks						Status	:		Locatio	n ID:	
RAMBOLL	Loc	ation: For	mer Sta	airfoot	Brickw	orks, Ba	irnsley, S	70 3NS			FINAI	L		TP10)2	
Ramboll LIK Itd		lient: Pot Me	ters Bal thod an	lotini L d Plant	imited		G	iroundwate	er	Locatio	on Type: T	rial pit	1			
1 Broad Gate, The Headrow	From (m)	To (m)	Туре		Plant Us	sed	Strike	Time	Rose To	Coords	s: 437850E/-	405064N		Level: 4	19.08m	
Leeds	0.00	3.20	TP		JCB		(m)	(mins)	(11)	Ordnano Nationa	ce Survey G l Grid	reat Britain	Final I	Depth:	3.20	m
Tel: 0113 245 7552										Orie	ntation:	90°	Inc	lination:	0°	
Sheet 1 of 1	-									Dat	te Start:	10/10/2023	D	ate End:	10/10/2	023
Inst/ Water Sam Backfill Level Sample Tuno(nples & Test	ts		Strata Denth	Level	Legend					Strata Desc	ription				Depth (m)
(m) Depth (m) Ref	Te	st/Results		(m)	(thick)	700ver		0.000							c .	
2.20-2.40 E5 2	PID I	0.50m 0.1ppm 2.20m 0.1ppm		1.65	(1.65) (1.65) (0.80) (0.80) (0.80)		MADE GR coarse San MADE GR subangula 2.000 MADE GR	OUND: Moss, nd. Gravel is fi OUND: Soft or nr gravel of brid m bgl - Seepag OUND: Soft to	scarce vege he to bould ange and gr ck and sand ne firm grey vu	tation and er-sized su rey sandy istone. San	I brick over or Jbangular of v very gravelly nd is fine to co	ange brown si whole and half Clay with fine t barse.	ightly clayey v bricks and find o coarse and b	ery gravelly e grained sa poulder sized	fine to ndstone.	
	PID	3.00m 0.1ppm		3.20	45.88		siltstone,	brick and coal.	Rare siltsto	orks at 3.	.20m - Achie	eved termina	ation depth.			
Remarks: Trial pit completed at 3.20 m bg potential contamination noted.	. Seepage	e noted fro	om 2.0 r	m bgl.∣	No ACM	Us or si	gns of –	St	Depth Rela ability table	ited Explo	oratory Hole Shoring None	Length (m) 4.50	Width (m) 2.00	S Logge Checked Pr 16200	cale 1:25 r(s): VG by: MH oject ID)15371-	

				Project	Title: Sta	irfoot G	lasswo	orks						Status	5:		Locatio	n ID:	
R	AN	1 B Ø I		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	irnsley, S	70 3NS		_	FINA	L		TP10)3	
	Down	boll UK 1+4		C	lient: Pot Me	ters Bal	lotini L d Plani	imited.		(-	iroundwate	er	Locati	on Type:	Trial pit	1			
	Ram 1 Bi	road Gate,		From (m)	To (m)	Type		Plant Us	sed	Strike	Time	Rose To	Coords	s: 437806E	/405125N		Level: 5	50.88m	
	The	e Headrow Leeds		0.00	3.00	тр				(m)	(mins)	(m)	Ordnan	ce Survey (Great Britain	Final	Depth:	3.00	m
	L Tel: 01	.S1 8EQ .13 245 7552	2	0.00	5.00			100					Orie	ntation:	90°	In	clination:	0°	
htt	ps://wv	ww.ramboll.c	:om/	_									Da	to Start:	10/10/202	2 1	Date End:	10/10/2	023
Inst/	Sh	eet 1 of 1	Sar	nnles & Test	rs.		Strata		Legend				Da	Strata Des	ription	5 I	Date Enu:	10/10/2	Depth
Backfill	Level	Sample	Type/	Te	st/Results		Depth	(m)	/Cover					Strata Des	cription				(m)
	(m)	0.90	ES 3	PID 2	1.90m 0.2ppm		0.90 2.10	49.98 (1.20) (0.90) (1.20) (1.20) 47.88		MADE GR brick, san	Grass and scat ed to sub-ngui ED MATERIAL OUND: Orange dstone and silt	tered brick a ar of brick a] eish brown v istone.	very grave	eish grey ver and brick.	ilightly sandy g astic fragment	ravelly Clay. G s and metal ro ubrounded to	Sravel is fine is different of the second se	to coarse e to coarse.	
Remar	ks:	11.7		.1		0.00				_	St	Depth Rela ability	ated Explo	oratory Hole Shoring	Information Length (m)	Width (m)	s	cale 1:25	
Trial pit advanc	: advar ed to 🤉	nced into th 2.1 m bgl (t	ne stock otal exc	pile appro avated de	ximately pth of 3.0	0.90 m a)0 m). Fi	above nvironi	ground mental	level a sample	nd taken	S	table		None	2.40	1.00	Logge	r(s): VG	
from th	ie stoc	kpile mater	rial and	depth is re	eferenced	as +0.9	90 - 0.0)0 m. N	0								Checked	by: MH	
ground	water	encountere	ed. No A	ACMs or si	gns of po	tential c	ontam	ination	n record	ed.							Pr	oject IE)
																	16200	015371	-002

				Project	Title: Sta	irfoot G	lasswo	orks						Status	:		Locatior	ו ID:	
R	AN	1 B Ø I		Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	arnsley, S	70 3NS			FINA	L		TP10)4	
	-	1 11 2 11 2 1 2 1		C	lient: Pot	ters Ball	lotini L d Plant	imited		6	iroundwat	۶r	Locatio	on Type: T	rial pit	1			
	Ram 1 Br	boll UK Ltd oad Gate,		From (~)				Dant U	ed	Strike	Time	Rose To	Coords	: 437954E/	405133N		Level: 5	3.54m	
	The	Headrow Leeds		From (m)	10 (m)	Туре		Plant Us	sea	(m)	(mins)	(m)	Ordnand	ce Survey G	reat Britain	Final ()onth:	2 20	
	L Tel· 01	S1 8EQ 13 245 7552)	0.00	3.20	TP		JCB					Nationa	l Grid				5.20	m
htt	ps://wv	vw.ramboll.c	:om/										Orier	ntation:	90°	Incl	ination:	0°	
	She	eet 1 of 1							1				Dat	e Start:	10/10/2023	Da	ate End:	10/10/2	023
Inst/ Backfill	Water Level	Sample	San Type/	nples & Test	IS		Strata Depth	Level (m)	Legend /Cover					Strata Desc	ription				Depth (m)
	(m)	Depth (m)	Ref	Tes	st/Results		(m)	(thick) (0.90)		MADEGR	OLIND: Firm a	rev verv gra	avelly Clav	Gravel is fine	to coarse and	occasionally o	obble and b	oul der sized	
		0.90	ES	PID (PID 1).70m 0.1ppm 1.90m 0.1ppm		0.90	52.64 (0.60) 52.04 (1.00) 51.04 (0.70)		MADE GR of sub ang MADE GR of brick. MADE GR sandstone	OUND: Firm g gular to angula OUND: Firm lig OUND: Reddis e. Sand is fine f	rey very gra r mudstone ght brown v h brown fin to coarse.	avelly Clay e. [SOIL BU /ery gravell ne to cobbl	Gravel is fine ND MATERIA ly clayey Clay e sized sub at e sized sub at	to coarse and L] . Gravel is fine ngular very sam	to cobble sized idy Gravel of b	d angular to rick and occa	sub angular asiona Ily gu lar gravel	
				PID 2	2.90m 0.3ppm	_	3.20	50.34				End of w	orle at 2	20m Achi	avadtarmin	ation donth			3-
												END OF W	UIRS dE 3.	2011 - ACNI	eveu termina	adon deptn.			-
																			4
Remar	ks: advan	iced into th	ne stock	pile appro	ximately	0.90 m a	above	ground	llevela	nd	<u>51</u> 5	Depth Rela ability table	ated Explo	ratory Hole Shoring None	Information Length (m) 3.50	Width (m) 1.00	So	cale 1:25 -(s): VG	
advanc	ed to 2	.30 m bgl ((total ex	cavated de	epth of 3.	.20 m). I	Enviror	nmenta	al sampl	e ACMa	J				5.50	1.00	Charlad	hv∙ M⊔	
recorde	ed.	e stockpile	materia	a and dep	un is refei	enced a	as +0.9	U - U.U(u m. No	ACIVIS							Checked	uy: IVIH	
																	۲۲ ۱6305		002
																	10200	122/1-	002

				Project	Title: Sta	irfoot G	Glasswo	orks						Status	s:		Locatio	n ID:	
R	AN	180		Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	arnsley, S	70 3NS		-	FINA	L		TP10)5	
	Pam	boll UK Itd			Met: Pot	ters Ba thod an	d Plant	.imitea t		G	roundwat	er	Locatio	n Type:	Trial pit				
	1 Br	road Gate,		From (m)	To (m)	Туре		Plant II	sed	Strike	Time	Rose To	Coords:	437900E	/405128N		Level: 5	52.08m	
	The	e Headrow Leeds			2.00	тр	_		scu	(m)	(mins)	(m)	Ordnanc	e Survey (Great Britain	Final (Depth:	3,90	m
	L Tel: 01	.S1 8EQ .13 245 7552	2	0.00	5.90			JCB					National	Grid	0.0°	Inc	lination	0.50	
htt	ps://wv	ww.ramboll.c	:om/										Onen	lation.	30	IIIC		0	
	She	eet 1 of 1											Date	e Start:	10/10/2023	3 Di	ate End:	10/10/2	2023
Inst/ Backfill	Water Level	Sample	Sar Type/	nples & Test	is in the second s		Strata Depth	Level (m)	Legend /Cover				S	trata Des	cription				Depth (m)
	(m)	Depth (m)	Ref	le	st/Results		(m)	(thick) (1.30)		MADE GR	OUND: Firm g	rev verv gra	velly Clay (Gravel is fin	e to coarse and	l occasionally o	obble and b	oul der sizer	4
		1.30	ES	PID : PID : PID :	1.00m 0.1ppm 3.10m 0.1ppm 3.60m 0.2ppm		2.60	(1.30) 50.78 (1.30) 49.48 (1.30) 48.18		MADE GR of subang MADE GR of brick. R 1.30i	OUND: Firm Ii are subangula <i>n bgl - Seepay</i>	ght brown v r mudstone. I firm very d oncrete b ge End of we	velly Clay. G	ravel is fin D MATERIA r clayey Cla svelly Clay 1 lour.	e to coarse and AL] with fine to cob	to cobble sized oble sized angul	d angular to	subangular gul ar gravel	
																			₅ _
Remar	ks.											Depth Rela	ated Explor	atory Hole	Information		c	cale 1.25	
Trial pit	ہم. advan	nced into th	ne stock	pile appro	ximately	1.30 m	above	ground	l level a	nd	S	tability		Shoring	Length (m)	Width (m)		r(s). VG	
advanc	ed to 2	2.60 m bgl ((total ex	cavated d	epth of 3	.90 m).	Enviro	nmenta	al samp	e		otable		None	3.50	1.00	Lugge	(S). VG	
taken fi ground	om th water	e stockpile encountere	materia ed. No 4	al and dep	th is refer	renced tential (as +1.3	0 - 0.0 nination	0 m. No	led.							Checked	by: MH	
5. 5 anu			/		or po												Pr	oject II)
																	16200	015371	-002

				Project	Title: Sta	irfoot G	lasswo	orks						Status	:		Locatio	n ID:	
R	AN	1 B Ø		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		-	FINA	L		TP10	06	
	Pam	boll UK Itd			lient: Pot Mei	ters Ball	d Plant	.imited t		G	iroundwate	er	Locati	on Type:	Trial pit				
	1 Br	road Gate,		From (m)	To (m)	Type		- Plant I I	ed	Strike	Time	Rose To	Coords	s: 437972E/	/405079N		Level: 5	52.09m	
	The	e Headrow Leeds			2.40	тр			,cu	(m)	(mins)	(m)	Ordnan	ce Survey G	Great Britain	Final	Denth:	3 40	m
	L Tel: 01	.S1 8EQ .13 245 7552	2	0.00	5.40	117		JCB					Nationa	Il Grid	00°		lination	0°	
htt	ps://wv	vw.ramboll.c	:om/																
(She	eet 1 of 1	6				<u> </u>						Da	te Start:	10/10/2023	D	ate End:	10/10/2	2023
Inst/ Backfill	water Level	Sample	Sar Type/	npies & iest	st/Poculto		Strata Depth	(m)	/Cover					Strata Desc	cription				(m)
Inst Backfill	vale (m)	Sample Depth (m)	ES	PID 3	1.00m 0.3ppm		1.40 2.70	50.69 (1.40) (1.40) (1.30) (1.30) (0.70) 48.69	/Cover	MADE GR sized of su	OUND: Firm g ibangular to a OUND: Orangi ingular of silts	rrey very grangular muds ish and pale tone and br h brown fin to coarse.	e brown ve ick.	rry gravelly Si ie sized subar	e to coarse and TERIAL]	to coarse and dy Gravel of b	cobble and b	cob ble	(m) (m) (m)
								I	I	I									ا ₅ _
Remar	ks:										~	Depth Rela	ated Explo	oratory Hole	Information	(مر ما دام (۱۹۰	S	cale 1:25	
Trial pit	advan	nced into th	ne stock	pile appro	ximately	1.40 m a	above	ground	l level a	nd –	SI	ability Stable		Snoring None	Length (m) 3.00	Width (m) 1.30	Logge	r(s): VG	
advanc taken fi	ea to 2 rom th	2.00 m bgl i e stockpile	(total ex materia	cavated de al and dep	epth of 3. th is refei	.40 m). E renced a	Enviroi as +1.4	nmenta 0 - 0.0	ai sampl 0 m. No	e							Checked	by: MH	
ground	water	encounter	ed. No A	ACMs or si	gns of po	tential c	ontam	inatior	n record	ed.							Dr)
																		SJEELIL	-

				Project	Title: Sta	irfoot G	lasswo	orks						Status	:		Locatio	n ID:	
R	AN	1 B Ø I		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS			FINA	L		TP1	07	
	_			0	lient: Pot	ters Ball	otini L 1 Plant	imited		6	roundwate	or	Location	Type:	Trial pit				
	Ram 1 Br The	boll UK Ltd road Gate, Headrow		From (m)	To (m)	Type		Plant Us	ed	Strike	Time (mins)	Rose To	Coords:	437954E/	404886N		Level:	47.56m	
		Leeds		0.00	1.44	TP		JCB		(11)	(111113)	(11)	Ordnance National (Survey G Grid	Great Britain	Final	Depth:	1.44	m
b#	Tel: 01	13 245 7552	2										Orient	ation:	90°	Inc	lination:	0°	
	She	eet 1 of 1	.0117										Date	Start:	10/10/202	3 D	ate End:	10/10/2	023
Inst/	Water		Sar	nples & Test	is.		Strata	Level	Legend				St	rata Deso	ription				Depth
Backfill	Level (m)	Sample Depth (m)	Type/ Ref	Te	st/Results		Depth (m)	(m) (thick)	/Cover										(m)
Backfill	Level (m)	Sample Depth (m)	Type/ Ref	PID 0	5.10m 0.7ppm		0.40 0.60 0.70	(m) (thick) (0.15) 47.42 (0.25) 47.16 (0.20) 46.86 (0.10) 46.86 (0.74) 46.82	/Cover	MADE GR fine to coa MADE GR gravel of co manual from MADE GR tin. from MADE GR tin. from from from from from	OUND: Moss is irse subround OUND: Grey s concrete and b OUND: Very d Ily cobble size gments. 0.40 to 0.70n OUND: Firm to OUND: Dome: 0.70 to 1.44n	and scattere ed to suban lightly claye rrick. ark brown s d subangula n bgl - Slight stic waste of n bgl - Landj stic waste of n bgl - Landj	ed vegetation ngular or brid ey gravelly fir slightly claye ar to angular t hydrocarbo dark brown C of plastic wra Ifill waste and	y very grav of brick, c n odour.	E brown very gr ncrete and mu e Sand with fin elly fine to coa oal, concrete a NTIALLY CAPPI I, textile, paper ng putrid odou	e to coarse sul rrse Sand. Grav nd occasional p , cardboard, gl r.	el is fine to glass, texti la ass bottles,	Gravel is	(m)
																			2-
Remar	ks:										C:	Depth Rela	ated Explora	tory Hole	Information	Width (m)		Scale 1:10	
Trial pit	termi	nated at 1. te in the lo	44 m bą cation	gl due to st No groupe	rong puti water en	rid odou counter	ir and ed.	encour	ntered	F	5	stable		None	2.00	0.75	Logge	er(s): VG	
3011030	was		541011.	. to ground		Sound											Checked	d by: MH	
																	Pi	roject ID)
																	1620	015371	-002

				Project	Title: Sta	irfoot G	lasswo	orks						Status	:		Locatio	on ID:	
R	AN	1 B Ø I		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS]	FINA	L		TP1	08	
				C	lient: Pot	ters Bal	lotini l	_imited					Locatio	on Type· 1	rial nit				
	Ram 1 Br	boll UK Ltd road Gate.			Met	thod an	d Plan	t		Strike	Time	Bose To	Coord	. 4270005/				40.02	
	The	e Headrow		From (m)	To (m)	Туре		Plant U	sed	(m)	(mins)	(m)	Ordnan	ce Survey G	reat Britain		Level:	48.950	
	L	S1 8EQ		0.00	3.00	TP		JCB					Nationa	l Grid		Final [Depth:	3.00	m
htt	Tel: 01 ps://wv	.13 245 7552 ww.ramboll.c	2 :om/										Orie	ntation:	90°	Incl	ination:	0°	
	She	eet 1 of 1		-									Dat	te Start:	10/10/2023	Da	ate End:	10/10/2	023
Inst/	Water		Sai	nples & Test	ts		Strata	Level	Legend		1			Strata Desc	ription				Depth
Backfill	Level (m)	Sample Depth (m)	Type/ Ref	Te	st/Results		Depth (m)	(m) (thick)	/Cover										(m)
Backfill	Level (m)	Sample Depth (m) 0.30 - 0.60	Type/ Ref	PID (st/Results 0.30m 0.1ppm 2.80m 0.1ppm		2.70 3.00	(m) (thick) (0.60) 48.33 (2.10) 46.23 (0.30) 45.93	/Cover	MADE GR occasiona	OUND: Grass (Ily cobble size iff light orange ted siltstone. [ey SILTSTOP (WEATHERI End of wo	ey and bla EWORKED	red as slightly red as slightly (VEASURES]	y fine to coars concrete and p avelly sandy Cla	e Sand. Gravel plastic wrap.	e to coarse	e subangular	(m) (m) (m)
									I										₅ _
Remar	ks:											Depth Rela	ted Explo	oratory Hole	Information			Scale 1:25	
Trial pit	comp	leted at 3.0	00 m bg	gl. No grou	ndwater e	encount	ered.	No ACN	As or sig	gns of 🗧	St	ability table		Shoring None	Length (m) 4.00	Width (m) 0.75	Logge	er(s): VG	
potenti	al cont	tamination	noted.								J				4.00	5.75	Checke	d by: MH	
																	спеске	u by: IVIH	
																	P	roject IE)
																	1620	U15371	-002

				Project	Title: Sta	irfoot G	lasswo	orks						Status	:		Locatio	n ID:	-
F	RAN	1 B Ø		Loca	ation: For	mer Sta	irfoot	Brickwo	orks, Ba	arnsley, S	70 3NS			FINAI	<u>_</u>		HD	1	
				C	lient: Pot	ters Bal	lotini L	imited			roundwat	or	Location Tv	/pe: Ir	nspection pit				
	Ram 1 Bi The	boll UK Ltd road Gate, Headrow		From (m)	To (m)	Type		Plant Us	ed	Strike (m)	Time	Rose To	Coords: 43	7848E/-	405116N		Level: 5	51.35m	
		Leeds S1 8EO		0.00	0.30	IP	ŀ	land To	ols	(,	((,	Ordnance Su National Gri	urvey G d	reat Britain	Final I	Depth:	0.30	m
ht	Tel: 01	13 245 755	2										Orientati	on:	90°	Inc	lination:	0°	
	sh		LOIN/	_									Date St	art:	09/10/2023	D	ate End:	09/10/2	2023
Inst/	Water		Sar	nples & Test	IS		Strata	Level	Legend				Strat	a Desc	ription				Depth
Backfill	Level (m)	Sample	Type/	Tes	st/Results		Depth (m)	(m) (thick)	/Cover										(m)
0.25 · 0.30 E5 5 PID 0.25m 0.0ppm 0.30 51.05 0.31 1.31 1.31 1.31 1.31 0.31 1.31 1.31 1.31 1.31 0.32 1.31 1.31 1.31 1.31 0.32 1.31 1.31 1.31 1.31 0.32 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.32 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.31 1.32 1.31 1.31 1.31 1.31 1.33 1.31 1.31 1.31 1.31 1.32 1.31 1.31 1.31 1.31 1.33 1.31 1.31 1.31 1.31 1.34 1.31 1.31 1.31 1.31 1.33 1.31 1.31 1.31 1.31 1.34 1.31 1.31 1.31 1.31						/Cover	Unkempt rootlets. (from	grass and veg Gravel is fine t	etation over o coarse sub n bgl - Slight	rlying brown sli bangular of fine t organic odour	ghtly gra grained	velly clayey fin sandstone [TC	e to coarse SA PSOIL]	ND with ocd	casional	(m) 			
Rema	rks:											Depth Rela	ated Explorato	ry Hole	Information		s	cale 1:10	
Inspec	tion pit	complete	d at 0.30	0 m bgl. No	o ground	water er	ncount	ered. Tl	he insp	ection	S	tability Stable	Sh	oring Ione	Length (m) 0.30	Width (m) 0.30	Logge	r(s): VG	
pit wa contar	s advan ninatioi	ced on the n noted.	e retaine	ed soft land	dscaping.	No ACM	1s or s	igns of p	ootenti	al							Checked	by: MH	
													1		1	1			

				Project	Title: Sta	irfoot G	ilasswo	orks						Status	:		Locatio	n ID:	
R	AN	1 B Ø		Loca	ation: For	mer Sta	airfoot	Brickw	orks, Ba	arnsley, S	70 3NS		_	FINA	<u> </u>		HD	2	
	5	h - 11 + 17 + 1 + 1			Ilent: Pot	ters Bal	lotini L d Plant	imited		C.	iroundwat	er	Location	Type: Ir	nspection pit				
	Ram 1 Br The	boll UK Ltd road Gate, Headrow		From (m)	To (m)	Type		Plant Us	sed	Strike (m)	Time (mins)	Rose To (m)	Coords: 4	437777E/-	405127N		Level: !	52.94m	
	L	Leeds .S1 8EQ		0.00	0.30	IP	ŀ	land To	ools	. ,			Ordnance National G	Survey G Grid	reat Britain	Final I	Depth:	0.30	m
ht	Tel: 01	.13 245 755	2										Orienta	ation:	90°	Inc	ination:	0°	
	Shi	eet 1 of 1	.0117	-									Date	Start:	09/10/2023	D	ate End:	09/10/2	023
Inst/	Water		Sar	nples & Test	s		Strata	Level	Legend				St	rata Desci	ription				Depth
Backfill	Level (m)	Sample	Type/	Tes	st/Results		Depth (m)	(m) (thick)	/Cover										(m)
Inst/ Backfill	Water Level (m)	Sample Depth (m) 0.20 - 0.30	ES 6	PID C	s tt/Results		0.30	Level (m) (thick) (0.30)	Legend	MADE GR mudstone	OUND: Grey s	End of w	vorks at 0.30	rata Desci	ription rise and occasi ne to coarse.	ation depth.	iized highly	weathered	Deptn (m)
																			2
Remai	'ks:											Depth Rela	ated Explora	tory Hole	Information		5	cale 1:10	
Inspect	ion pit	complete	d at 0.30) m bgl. No	o ground	water er	ncount	ered. T	he insp	ection	S	tability Stable		Shoring	Length (m)	Width (m)	Logge	r(s): VG	
pit was	advan	ced on the	stockpi	iled materi	al (appro	ximatel	y 1.20	m in he	eight). N	10					0.50	0.50	Chacker	by: MU	
ACIVIS (signs	s or potent		anniarion	noted										1			uoy. IVI⊟	

				Project	Title: Sta	irfoot G	lasswo	orks					Statu	IS:		Locatio	n ID:	
R	AN	1 B C I		Loc	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		FIN	AL .		HD	3	
	_	1 11 1 1 1 1 1			lient: Pot	ters Ball	otini L	imited		-	iroundwa+	or .	Location Type:	Inspection pit	:			
	Ram 1 Bi The	iboll UK Ltd road Gate, e Headrow		From (m)	To (m)	Type		Plant Us	ed	Strike	Time	Rose To	Coords: 437814	E/405067N		Level: !	51.02m	
		Leeds		0.00	0.30	IP	F	land To	ols	(111)	(11113)	(,	Ordnance Survey National Grid	Great Britain	Final	Depth:	0.30	m
	Tel: 01	13 245 7552	2										Orientation:	90°	Inc	lination:	0°	
hti	tps://ww	ww.ramboll.c	:om/	_									Date Start:	09/10/2023	B D	ate End:	09/10/2	023
Inst/	Water		Sar	mples & Test	ts		Strata	Level	Legend				Strata De	scription			,,-	Depth
Backfill	Level	Sample	Type/	Te	st/Results		Depth	(m)	/Cover									(m)
Inst/ Backfill	Water Level (m)	Sample Depth (m) 0.20 - 0.30	ES 7	PID 4	st/Results 0.20m 0.1ppm		0.30	50.72	Legend /Cover	Brown slig angular to	ghtly clayey ve o sub-angular d	ry gravelly f of brick (85	Strata De	Scription Gravel is fine to c mudstone and s	oarse and frec andstone (10	Juently cob I	Die-sized SOIL]	Deptin (m)
				ı 				ı 	ı 	·								2
Remar	·ks:										C+	Depth Rela	ated Exploratory Ho	e Information	Width (m)	S	cale 1:10	
Inspect	tion pit	completed	at 0.3	0 mbgl. No	o groundw	vater en	counte	ered. T	ne inspe	ection	51	Stable	None	0.30	0.30	Logge	r(s): VG	
contar	ninatio	n noted	retaine	eu sort Ian(uscaping.	NU ACIV	is ur si	guis of	μοιεητι	aı						Checkec	by: MH	
1																Pr	oject ID)

				Project	Title: Sta	irfoot G	lasswo	orks					State	ls:		Locatio	n ID:	
R	AM	1 B Ø I		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		FIN	41		HD	4	
				C	lient: Pot	ters Ball	lotini L	imited]				•	
	Ram	boll UK Ltd			Met	hod and	d Plant	t		6	roundwat	er	Location Type:	Inspection pi	t			
	1 Br The	oad Gate, Headrow		From (m)	To (m)	Туре		Plant Us	ed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437790	E/405038N		Level:	51.01m	
	L	Leeds S1 8EQ		0.00	0.30	IP	F	land To	ols				National Grid	Great Britain	Final	Depth:	0.30	m
	Tel: 01	13 245 7552	2										Orientation:	90°	Inc	lination:	0°	
htt	:ps://ww	/w.ramboll.c	:om/	_									Data Start	00/10/2022		ata Endi	00/10/2	022
/	She	eet 1 of 1	C												, ,	ate Liiu.	03/10/2	Denth
Inst/ Backfill	Water Level	Sample	San Type/	npies & lesi	IS .		Strata Depth	(m)	Legend /Cover				Strata De	scription				(m)
	(m)	Depth (m)	Ref	Te	st/Results		(m)	(thick)										
								(0.30)		Creamy w occasiona	hite and light Ily cobble size	grey and br d subangula	rown very gravelly fin ar of brick, marble ar	e to coarse SAND d rare basalt and). Gravel is fine I clinker. [TOPS	to coarse a OIL]	nd	
		0.10 - 0.30	ES 8	PID (0.10m 0.0ppm													
						-	0.30	50.71				End of w	orks at 0 30m - Ar	hieved termin	ation denth			
														ineved termin	ation depth.			
																		_
																		1-
																		-
																		· ·
						I		I	I	I								2
Remar	ks:											Depth Rela	ated Exploratory Ho	le Information		S	cale 1:10	
Inspect	ion pit	completed	d at 0.30) m bgl. No	o groundv	vater er	ncount	ered. T	he insp	ection	S	tability Stable	Shoring	Length (m)	Width (m) 0.30	Logge	r(s): VG	
pit was	advan	ced on the	retaine	d soft land	dscaping.	No ACN	1s or si	igns of	potenti	al				0.50		Ch - I	Linux Mill	
contam	imation	i noted.														Checked	i by: IVIH	

				Project	Title: Sta	irfoot G	lasswo	orks						Status:			Locatio	n ID:	
R	AN	1 B 🕑	LL	Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS			FINAL			HD	5	
				C	lient: Pot	ters Bal	lotini L	imited		1				n Turnos - In					
	Ram	boll UK Ltd			Me	thod and	d Plant			G	Froundwate	er	Locatio	n Type: Tr	spection pit				
	1 Br The	oad Gate, Headrow		From (m)	To (m)	Туре		Plant Us	sed	Strike (m)	Time (mins)	Rose To (m)	Coords:	437819E/4	104984N		Level: 4	18.90m	
		Leeds		0.00	0.30	IP	F	land To	ools	()	(()	Ordnanc National	e Survey Gr Grid	eat Britain	Final (Depth:	0.30	m
	Tel: 01	.13 245 7552	2										Orien	tation:	90°	Inc	ination:	0°	
ht	:ps://wv	vw.ramboll.o	com/	_									Det	- Chaut	00/10/2022		the Final	00/10/2	022
	Sh	eet 1 of 1	C				<u> </u>						Date	e Start:		Da	ate End:	09/10/2	UZ3
Backfill	water Level	Sample	San Type/		.5		Strata Depth	(m)	/Cover				2	strata Descr	iption				(m)
	(m)	Depth (m)	Ref	les	st/Results		(m)	(thick)		Eallon loa	voc and branc	has over ligh	ht brown cli	ightly grouply			Gravel is fi	no to coarco	
		0.00 0.20	200	PID (0.00m 0.0ppm			(0.50)		subangula	ar of sandston	e and mudst	tone. [TOPS	SOIL]	SILI WILLING	quent rootiets	Glaveris II		
							0.30	48.60											
												End of w	orks at 0.	30m - Achie	eved termina	ition depth.			
																			-
																			1
																			-
																			.
																			.
																			<u>_</u>
																			2-
Remai	ks:	oom1	4 .+ 0 21) ma l l . M	'	vot			"h o :		S	Depth Rela tability	ated Explor	atory Hole I Shoring	ntormation Length (m)	Width (m)	S	cale 1:10	
pit was	uon pit. advan	completed ced on the	u at 0.30 e retaine	o m bgi. No ed soft land	s ground scaping.	vater er No ACN	icount 1s or si	ered. I igns of	ne insp potenti	al		Stable	_	None	0.30	0.30	Logge	r(s): VG	
contan	nination	dvanced on the retained soft landscaping. No ACMs or signs of potent ation noted															Checked	by: MH	

				Project	Title: Sta	irfoot G	lasswo	orks						Status	5:		Locatio	n ID:	
F	RAN	1 B Ø		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS			FINA	L		HD	6	
				C	lient: Pot	ters Bal	lotini L	imited			rounderst	or	Location	n Type: I	Inspection pit	I			
	Ram 1 Br The	boll UK Ltd road Gate, Headrow		From (m)	To (m)	Type		Plant Us	sed	Strike	Time	Rose To	Coords:	437851E/	/404939N		Level:	48.50m	
		Leeds		0.00	0.30	IP	F	land To	ools	(111)	(mins)	(11)	Ordnance National (e Survey G Grid	Great Britain	Final	Depth:	0.30	m
	Tel: 01	.13 245 7552	2										Orient	ation:	90°	Inc	lination:	0°	-
ht	tps://wv	vw.ramboll.c	com/	_									Date	Start	09/10/2023	D	ate End:	09/10/2	2023
Inst/	She Water	eet 1 of 1	San	nples & Test	IS .		Strata	Level	Legend				St	trata Desc	rintion		ate End.	05/10/2	Depth
Backfill	Level	Sample	Type/	Tes	st/Results		Depth	(m)	/Cover				5						(m)
Inst/ Backfill	Water Level (m)	Sample Depth (m) 0.15 - 0.30	San Type/ Ref ES 10	piles & Test	st/Results		0.30	Level (m) (thick) (0.30) 48.20	Legend	Fallen lea coarse su	ves and branc	hes over ligh rick, sandsto	fit brown slig one and mud	om - Ach	IV SILT with free SOL]	ation depth.	tlets. Grave	l is fine to	Depth (m)
	I	I	ı			ļ		I	I	I									2
Rema	rks:										c	Depth Rela	ated Explora	atory Hole	Information	Width (m)		icale 1:10	
Inspec	tion pit	completed	d at 0.30) m bgl. No	o ground	water er	ncount	ered. T	he insp	ection	3	Stable		None	0.30	0.30	Logge	er(s): VG	
contan	nination	n noted.	retaine	a suit Idfi(тэсаршу.	NU AUN	na UES	gus Ul	ροτεπτ	ai							Checked	d by: MH	_

				Project	Title: Sta	irfoot G	lasswo	orks						Status	:		Locatio	n ID:	
R	AN	1 B Ø		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		_	FINA	L		HD	7	
				C	lient: Pot	ters Bal	lotini L	imited			roundwat	or	Location	Type: I	nspection pit				
	Ram 1 Br The	boll UK Ltd road Gate, Headrow		From (m)	To (m)	Type		Plant Us	sed	Strike	Time	Rose To	Coords: 4	37874E/	404905N		Level: ·	48.20m	
	1	Leeds		0.00	0.30	IP		land To	ools	(111)	(11115)	(11)	Ordnance National G	Survey G irid	reat Britain	Final	Depth:	0.30	m
	Tel: 01	13 245 7552	2										Orienta	ation:	90°	Inc	lination:	0°	
ht	tps://wv	vw.ramboll.c	com/	_									Date	Start:	09/10/2023	B D	ate End:	09/10/2	023
Inst/	Water		San	nples & Test	s		Strata	Level	Legend				Sti	rata Desc	ription				Depth
Backfill	Level	Sample	Type/	Tes	st/Results		Depth (m)	(m) (thick)	/Cover										(m)
Backfill	Level (m)	Sample Depth (m) 0.15 - 0.30	Type/ Ref	PID C	st/Results		0.30	(m) (thick) (0.30) 47.90	Cover	Light brow subround occasiona <i>from</i>	vn and orangi el to subangu i fine rootlets <i>0.00 to 0.30r</i>	sh brown sli lar of concr (TOPSOIL) n bgl - Slight	iightly clayey g rete, brick, sau nt organic odo	gravelly fin ndstone ar ur.	e to coarse SAI nd mudstone. F	ND. Gravel is fi	ne to coars	e hents , and	(m) (m)
												Dorth D.	ated Further	ton: U-1	Informat's				2-
Remai	'KS: top pit	complete	d at 0 ar) m hat N	around	Nator of	100110+	orod T	ho inco	action	S	Depth Rela tability	ateo Explora	Shoring	Length (m)	Width (m)	<u>S</u>	cale 1:10	
pit was	advan	ced on the	retaine	d soft land	scaping.	No ACN	As or si	gns of	potenti	al	:	Stable		None	0.30	0.30	Logge	r(s): VG	
contan	ninatior	n noted.															Checked	d by: MH	

				Project	Title: Sta	irfoot G	lasswo	orks					Sta	atus:			Locatio	n ID:	
R	AN	1 B Ø I		Loc	ation: For	rmer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		FI	NAL			HD	8	
					lient: Pot	tters Ball	otini L	imited			rounderst	or	Location Type	e: Insp	ection pit				
	Ram 1 Br	boll UK Ltd road Gate,		F ₂ ()				Dia 111		Strike	Time	Rose To	Coords: 4379	14F/40	4868N		evel· 1	50.06m	
	The	e Headrow Leeds		From (m)	IO (m)	Type		Plant Us	ea	(m)	(mins)	(m)	Ordnance Surv	ey Grea	t Britain	Final	Donth.	0.20	
	L Tel· 01	.S1 8EQ	, ,	0.00	0.30	IP	+	land To	ols				National Grid			FINAL	Jeptn:	0.30	m
htt	:ps://wv	vw.ramboll.c	:om/										Orientation	:	90°	Inc	lination:	0°	
	She	eet 1 of 1							1				Date Start	: 09	9/10/2023	D	ate End:	09/10/2	023
Inst/ Backfill	Water Level	Sample	Sar Type/	mples & Test	ts		Strata Depth	Level (m)	Legend /Cover				Strata	Descript	tion				Depth (m)
Inst/ Backfill	Water Level (m)	0.20 - 0.30	Sar Type/ Ref	pipes & Tesi	Ls st/Results 0.20m 0.2ppm		0.15 0.30	Level (m) (thick) (0.15) 49.91 (0.15) 49.76	Legend /Cover	Grass ove coarse sul	r brown to da b-rounded to : Very light brow	rk brown slig sub-angular wn to pale b End of wi	Strata ghtly clayey gravel of brick, concrete prown SILT with oc orks at 0.30m -	ly fine to , sandsto casional Achieve	roots.	ND with fine ro fine coal [TO ation depth.	potlets. Grav	rel is fine to	Depth (m)
																			.
																			.
		I	I	I				I 	I	I									2
Remar	ks:											Depth Rela tability	ated Exploratory	Hole Info	ormation ength (m)	Width (m)	S	cale 1:10	
Inspect	ion pit	completed	d at 0.3	0 m bgl. No	o groundv decening	water er	icount	ered. T	he insp	ection	5	Stable	Nor	ne le	0.30	0.30	Logge	r(s): VG	
contar	nination	n noted.	retaille	Lu SUIL Idíl(ascahilik.	NU AUIV	13 UT SI	ISI IS UI	μοτειπι	al							Checked	by: MH	
																	Pr	oject ID)

				Project	Title: Sta	irfoot G	lasswo	orks					Stat	us:		Locatio	n ID:	
R	AN	1 B Ø I		Loca	ation: For	mer Sta	irfoot	Brickw	orks, Ba	arnsley, S	70 3NS		FIN	ΔI		HD	9	
				C	lient: Pot	ters Ball	otini L	imited]				<i>.</i>	
	Ram	boll UK Ltd			Met	thod and	d Plant			G	iroundwate	er	Location Type:	Inspection pi				
	1 Br The	oad Gate, Headrow		From (m)	To (m)	Туре		Plant Us	ed	Strike (m)	Time (mins)	Rose To (m)	Coords: 437948	BE/404873N		Level: 4	48.93m	
	L	Leeds S1 8EQ		0.00	0.30	IP	F	land To	ols				National Grid	y Great Britain	Final	Depth:	0.30	m
	Tel: 01	13 245 7552	2										Orientation:	90°	Inc	lination:	0°	-
ht	tps://wv	ww.ramboll.c	com/	_									Data Start	00/10/2022		ata Endi	00/10/2	022
	She	eet 1 of 1											Date Start:	09/10/2023	5 D	ate enu:	09/10/2	
Inst/ Backfill	Water Level	Sample	Sar Tupe/	nples & Test	ts		Strata Depth	Level (m)	Legend /Cover				Strata De	escription				Depth (m)
buokini	(m)	Depth (m)	Ref	Te	st/Results		(m)	(thick)	,									
		0.10 0.35	56.12					(0.30)		to coarse and glass	getation and g subangular of fragments rec	rass over lig sandstone, orded [TOP:	ght brown gravelly fi mudstone and brick SOIL]	ne to coarse SANL Rare whole bric) with frequen < present. Frec	t rootlets. G Juent plastic	r avel is fine , foil, wood	
		0.10 0.25	23 13	PID (0.10m 0.2ppm													
						-	0.30	48.63				End of w	orks at 0.30m - A	chieved termina	ation depth.			
																		-
																		1
																		2
Derei	dia :											Denth Polo	ated Exploratory 44				0010 1:10	
Inspect	KS: ton nit	completer	d at ∩ ⊃r	Դարեգլ տե	n ground	water or	icoun+	ered T	he inco	ection	St	ability	Shorin	g Length (m)	Width (m)	<u> </u>	())) ()	
pit was	advan	ced on the	retaine	ed soft land	dscaping.	No ACM	ls or si	igns of	potenti	al	9	stable	None	0.30	0.30	Logge	r(s): VG	
contarr	ninatior	n noted.														Checked	by: MH	

Groundwater Monitoring Site Visit Record

Site:	Stairfoot, Barnsley	_ Equipment:	Interface Probe
Order Number:	1620015371-002	_	YSI Pro Plus
Weather:	Cloudy with intermittent showers.	_	
Date:	13 October 2023	_	
Sampler ID:	E Riddle		
		_	

Groundwater Monitoring Parameters

Monitoring Well	Response Zone (Strata)	Repsonse Zone (m bgl)	Level (m AOD)	Depth to Water (m bgl)	Depth to Base (m bgl)	Depth to Water (m AOD)	Volume Purged (litres)	Observations	Time (GMT)	Temp (°C)	DO (%)	DO (mg/l)	SPC (µS/cm)	pH (pH units)	ORP (mV)
WS109	Made Ground	0.5 - 1.1	48.12	0.589	1.10	47.532	4.0	Silty light brown. No odour or sheen. All samples collected.	12:10	16.2	14.8	1.38	609	7.91	191.2
WS112	Sand / Clay	1.3 - 2.0	48.40	1.482	2.06	46.919	1.3	Slightly silty light brown. No odour or sheen. All samples collected. Grab sample.	11:31	15.8	57.5	5.86	1700	6.43	209.7
CP7	Made Ground / Clay / Siltstone	0.5 - 3.0	48.10	1.522	2.93	46.581	2.0	Slightly silty light brown. Slight sheen. No odour. All samples collected. Grab sample.	10:42	15.8	71.2	7.06	414	6.67	203.9
WS8	Made Ground	1.0 - 6.5	51.31	3.177	5.95	48.133	4.0	Slightly slightly brown. Slight sulphurous smell. No sheen. All samples collected.	14:53	13.2	5.3	0.54	2315	6.75	-32.2
WS9	Made Ground / Clay / Siltstone	1.0 - 3.5	50.58	0.410	3.28	50.170	4.5	Slightly silty very slightly brown. No odour or sheen. All samples collected. Water level consistent with saturated ground.	13:53	13.6	67.8	7.03	439	7.40	185.4
WS104	Made Ground	1.0 - 3.0	47.883	2.474	3.00	45.409	0.5	Slightly slity slightly brown. Hydrocarbon-like odour and oily sheen. All samples collected. Grab sample.	15:34	15.5	8.3	0.83	1206	6.69	67.9

AOD = Above Ordnance Datum bcl = below ground level

DO = Dissolved Oxygen SPC = Specific Conductivity ORP = Oxygen Redox Potential

Site:	Former Stairfoot Brickworks,	Barnsley
Project Number:	1620015371-002	
Date:	12-Oct-2023	
Sampler ID:	ER	
		Calibration Checks/ Notes
	GFM430-1 (10153)	21/03/2023
Equipment (& Serial	MiniRae Lite (595-003363)	24/08/2023
Number).	Interface Probe (SO/148634)	N/A
Local Weather	Sunny with slight breeze. Cold. 8	3 to degrees Celcius.
Surface Conditions:	Concrete landscaping, dry; grass	s, slightly wet. Brick gravel, dry.

Meteorologic	al Cond	ditions		
Data	Time		Barometric Pressure	Weather (temp, wind, cloud, rain)
Date	(Days)	(mBar)	Trend	
10.10.2023	-2	1011	Falling	19°C, sunny
11.10.2023	-1	1009	Slowly rising	11°C, sunny with intermittent sho
12.10.2023	0	1012	Falling	12°C, mostly sunny
13.10.2023	1	997	Slowly rising	11°C, sunny with intermittent sho
14.10.2023	2	1017	Rising	11°C, sunny with intermittent clou

Note atmospheric pressure data and trends for the days prior to, on and following the monitoring event were taken from www.wunderground.com for Barnsley, United Kingdom weather station, located approximately 300m north of the site.

				-			Gas Co					as Conc	entrat	ion						Static /					Monito	oring Wel	I	Cor
Location	Location	Time	Temp	F	low				Peak						S	teady sta	ate			Atmosphe	Relative	Depth to Water	Depth to Base	Water	Dama		Internal	
10	Level			Peak	Steady	0	CH4	CO ₂	0 ₂ *	со	H ₂ S	PID	c	:H₄	CO2	02	со	H ₂ S	PID	Pressure	riessure	water	Dase	Level	керо	nse Zone	Diameter	
	(m AOD)		(°C)	(l/h)	(l/h)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(mBar)	(Pa)	(m bgl)	(m bgl)	(m AOD)	(n	n bgl)	(mm)	
Start	-	08:31		0.0	0.0	0	0	0	22	0	0	-	0	0	0	22	0	0	-	1011	-	-	-	-	-		-	-
WS101A	47.52	09:13		0.2	0.2	0	0	1.1	18.1	0	0	1.1	0	0	0.8	18.2	0	0	1.1	1012	-	1.101	1.15	46.42	0.5	- 1.2	50	
WS102	47.42	08:47		0.0	0.0	0	0	13.3	2.9	1	0	1.1	0	0	13.3	2.9	1	0	1.1	1011		DRY	3.24	-	1.0	- 3.3	50	
WS103	47.46	09:54		0.0	0.0	36.7	>>>	22.9	0	0	0	0.4	36.1	100	22.9	0.0	0	0	0.4	1012		DRY	4.00	-	1.0	- 4.0	50	
WS104	47.88	09:31		0.0	0.0	0	7.7	7.3	7.7	0	0	1.2	0	0	7.3	7.7	0	0	1.2	1012		2.495	3.00	45.39	1.0	- 3.0	50	Mod
WS105	48.15	11:44		0.0	0.0	0	0	0	20.6	11	4	1.3	0	0	0.0	21.5	0	1	1.3	1010		DRY	1.53	-	0.4	- 1.5	50	
WS106	48.14	10:58		0.0	0.0	0	0	0.8	17.3	0	0	1.9	0	0	0.8	17.4	0	0	1.9	1010		DRY	0.86	-	0.3	- 0.9	50	
WS107	47.88	12:12		0.0	0.0	0.0	0	3.5	14.5	1	0	2.8	0	0	3.5	14.5	0	0	2.8	1009		DRY	2.85	-	1.4	- 2.8	50	
WS108	48.14	13:21		0.0	0.0	0.0	0	2.1	8.6	3	1	1.5	0	0	1.5	9.5	1	1	1.5	1008		1.258	1.34	46.89	0.3	- 1.3	50	
WS109	48.12	13:34		0.0	0.0	0.0	0.5	0.5	17.8	1	1	1.3	0	0.5	0.0	21.5	0	1	1.3	1007		0.719	1.10	47.40	0.5	- 1.1	50	Oily
WS110	48.06	13:51		0.0	0.0	0.1	3.1	1.4	19.1	31	7	2.0	0	1.4	1.4	19.1	31	6	2.0	1007		2.810	2.95	45.25	1.5	- 3.0	50	
WS111	49.59	14:07		0.0	0.0	0.0	0.9	3.7	14.8	7	4	1.8	0	0	3.2	15.4	1	0	1.8	1006		1.690	2.68	47.90	0.5	- 2.5	50	
WS112	48.40	11:18		0.0	0.0	0.0	0	2.2	16.4	47	8	1.3	0	0	0.8	16.9	43	6	1.3	1010		1.421	2.05	46.98	1.3	- 2.0	50	
CP1	50.48	10:13		1.0	1.0	23.6	>>>	18.9	0.0	1	2	0.5	24	100	18.9	0.0	1	2	0.5	1010		7.822	9.18	42.66	1.0	- 7.0	50	Acri
CP2	49.77	10:35		0.0	0.0	1.0	10.5	2.3	17.9	0	0	1.6	0	0	2.3	18.3	0	0	1.1	1010		DRY	7.15	-	1.0	- 9.0	50	
CP7	48.10	11:59		0.0	0.0	0.0	0	0.0	19.9	0	0	0.7	0	0	0.0	19.9	0	0	0.6	1009		0.928	2.94	47.18	0.5	- 3.0	50	
CP11	50.33	15:25		0.0	0.0	0.0	0.8	0.0	21.8	1	1	0.7	0	0.7	0.0	21.8	0	1	0.7	1005		1.220	3.13	49.11	0.5	- 3.0	50	Whi
WS6	52.03	14:24		0.0	0.0	0.0	1	0.4	21.3	1	0	0.8	0	0.7	0.3	21.5	0	0	0.7	1006		DRY	2.83	-	1.0	- 3.0	50	
WS7	52.19	14:41		0.0	0.0	0.1	2.7	0.0	21.8	1	1	0.6	0	2.7	0.0	21.8	0	0	0.5	1005		1.912	1.99	50.28	1.0	- 2.0	50	
WS8	51.31	14:55		0.0	0.0	0.1	2.8	1.3	17.4	1	1	0.6	0	2.1	1.3	17.4	1	1	0.5	1006		3.123	5.60	48.19	1.0	- 6.5	50	
WS9	50.58	15:11		0.0	0.0	0	1.7	0.3	21.3	0	2	0.6	0	1.7	0.3	21.4	0	0	0.6	1005		2.664	3.28	47.92	1.0	- 3.5	50	
WS12	47.82	15:50		0.0	0.0	0	0	0.2	21.2	1	0	0.4	0	0	0.2	21.2	0	0	0.4	1005		0.627	1.01	47.19	0.6	- 1.3	50	Τ
End	_		1			0	0	0	20.9	0	0		0	- I	l .	20.9	0	0	- I	1005		_	_	-	- I		1 <u>-</u>	-

1

Notes:

DP = Differential Pressure

LEL = Lower Explosive Limit

* O2 Peak concentration recorded as a minimum

- Denotes where data was not recorded

Ground gas was measured for at least 180 seconds before taking final readings.

owers

owers uds

mments

derate hydrocarbon odour noted on tape.

sheen noted on dip tape

d smell. Black staining on dip tape with slight hydrocarbon odour.

te bugs on dip tape

Site:	Former Stairfoot Brickworks, Barnsley									
Project Number:	1620015371-002									
Date:	26-Oct-2023									
Sampler ID:	ER									
	-	Calibration Checks/ Notes								
Faultament (8 Carial	GFM430-1 (10153)	21/03/2023								
Equipment (& Serial	MiniRae Lite (595-003363)	24/08/2023								
Number).	Interface Probe (SO/148634)	N/A								
Local Weather	Cloudy with frequent showers. 1	0 degrees Celcius.								
Surface Conditions:	Concrete landscaping, wet; gras	s, wet. Brick gravel, wet.								

Data	Time		Barometric Pressure	Weather (temp, wind, cloud, rain)
Date	(Days)	(mBar)	Trend	
24.10.2023	-2	1001	Slowly falling	10°C, light rain with scattered clouds.
25.10.2023	-1	994	Falling	12°C, overcast with light rain and sun
26.10.2023	0	987	Falling	10°C, overcast with frequent light rain
27.10.2023	1	989	Steady	9°C, cloudy with fog
28.10.2023	2	987	Falling	9°C, cloudy with drizzle

wunderground.com for Barnsley, United Kingdom weather station, located approximately Note atmospheric pressure data and trends for the days prior to, on and following the me 300m north of the site.

				-							Ga	as Cond	centrat	ion						Static /			_		Monito	oring Wel	I	Con
Location	Location Level	Time	Temp	F F	low				Peak						S	teady sta	ate			Atmosphe ric	Relative Pressure	Depth to Water	Depth to Base	Water Level	Panor	nse Zone	Internal	
				Peak	Steady	C	H₄	CO2	0 ₂ *	со	H ₂ S	PID	0	H ₄	CO2	O ₂	со	H ₂ S	PID	Pressure					Repor	ISC ZOIIC	Diameter	
	(m AOD)		(°C)	(l/h)	(l/h)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(mBar)	(Pa)	(m bgl)	(m bgl)	(m AOD)	(n	n bgl)	(mm)	
Start	-	08:30		0.0	0.0	0	0	0	21	0	0	-	0	0	0	21	0	0	-	988	-	-	-	-	-		-	-
WS101A	47.52	08:38		0.0	0.0	0	0	0.4	14	0	0	0.4	0	0	0.3	14.0	0	0	0.4	987	-	1.060	1.17	46.46	0.5	- 1.2	50	
WS102	47.42	09:04		0.0	0.0	0	0	11.4	1.8	1	0	0.4	0	0	12.2	1.8	0	0	0.4	987		DRY	3.24	-	1.0	- 3.3	50	
WS103	47.46	09:23		0.8	0.5	42.2	>>>	24.1	0	0	9	0.2	42.2	100	24.1	0	0	9	0.2	987		DRY	4.00	-	1.0	- 4.0	50	
WS104	47.88	09:41		0.0	0.0	0	0	8.9	2.4	0	0	1.1	0	0	8.9	2.4	0	0	0.9	988		2.513	3.00	45.37	1.0	- 3.0	50	Mod
WS105	48.15	10:34		0.0	0.0	0	0	0.5	17	0	0	0.3	0	0	0.5	17.1	0	0	0.3	988		1.369	1.55	46.79	0.4	- 1.5	50	
WS106	48.14	11:12		-1.8	-0.8	0	0	0.5	17	0	0	-	0	0	0.5	17	0	0	-	988		0.395	0.86	47.75	0.3	- 0.9	50	Tern
WS107	47.88	10:53		0.0	0.0	0.0	0	3.9	12.2	0	0	1.2	0	0	4.0	12.2	0	0	1.2	988		1.486	2.85	46.39	1.4	- 2.8	50	
WS108	48.14	12:31		0.0	0.0	0.0	0	0.9	6.9	0	0	0.5	0	0	0.9	7.2	0	0	0.5	987		1.130	1.35	47.01	0.3	- 1.3	50	
WS109	48.12	12:46		-1.4	0.0	0.0	0	0.0	18.8	0	0	0.3	0	0	0.0	21.2	0	0	0.3	987		0.465	1.10	47.66	0.5	- 1.1	50	Oily
WS110	48.06	13:06		0.0	0.0	0.1	0	2.2	16.1	7	2	0.6	0	1.4	1.6	17.3	3	0	0.6	986		0.432	2.95	47.62	1.5	- 3.0	50	
WS111	49.59	13:24		0.0	0.0	0.0	0	9.1	3.0	0	0	0.5	0	0	9.1	3.0	0	0	0.5	986		1.680	2.68	47.91	0.5	- 2.5	50	
WS112	48.40	10:16		0.0	0.0	0.0	0	1.8	8.5	0	0	0.4	0	0	0.5	11.9	0	0	0.3	986		0.448	2.05	47.95	1.3	- 2.0	50	
CP1	50.48	15:16		0.5	0.0	21.6	>>>	18.2	0.0	0	1	0.0	21.6	100	18.2	0.0	0	0	0.0	986		7.640	9.14	42.84	1.0	- 7.0	50	Acrio
CP2	49.77	14:59		0.0	0.0	6.2	>>>	16.9	2.1	0	0	0.1	6.2	100	16.9	2.1	0	0	0.0	986		DRY	7.15	-	1.0	- 9.0	50	Saw
CP7	48.10	12:14		0.0	0.0	0.0	0	0.2	20.9	0	0	0.2	0	0	0.0	21.3	0	0	0.2	988		0.374	2.94	47.73	0.5	- 3.0	50	
CP11	50.33	14:39		0.0	0.0	0.0	0	1.5	11.6	0	0	0.2	0	0	1.5	11.6	0	0	0.1	986		1.150	3.13	49.18	0.5	- 3.0	50	Stro
WS6	52.03	13:39		0.0	0.0	0.0	0	0.6	19.7	0	0	0.2	0	0	0.6	19.7	0	0	0.2	986		2.492	2.81	49.54	1.0	- 3.0	50	
WS7	52.19	13:56		0.0	0.0	0.0	0	0.5	19.6	0	1	0.1	0	0	0.3	20.4	0	0	0.1	986		1.867	1.99	50.32	1.0	- 2.0	50	Sligh
WS8	51.31	14:11		0.0	0.0	0.0	0	9.2	0.5	0	0	0.3	0	0	9.2	0.0	0	0	0.2	986		2.670	5.92	48.64	1.0	- 6.5	50	
WS9	50.58	14:25		0.2	0.0	0	0	0.0	20.5	0	0	0.1	0	0	0.0	21.1	0	0	0.1	986		0.382	3.36	50.20	1.0	- 3.5	50	
WS12	47.82	10:00		0.0	0.0	0	0	0.0	20.6	0	0	0.4	0	0	0.0	21.0	0	0	0.3	988		0.495	1.00	47.33	0.6	- 1.3	50	
End	-	15:35				0	0	0	20.9	0	0	-	0	-	-	20.9	0	0	-	986		-	-	-	-		-	-

Notes:

DP = Differential Pressure

LEL = Lower Explosive Limit

 $\,\,^{*}$ O_{2} Peak concentration recorded as a minimum

- Denotes where data was not recorded

Ground gas was measured for at least 180 seconds before taking final readings.

nny spells.

nments

derate hydrocarbon-like odour noted on tape.

ninated after 60 seconds due to water ingress into tubing. PID not taken

sheen noted on dip tape

d smell. Black staining on dip tape with slight hydrocarbon odour. dust like material on interface probe.

ng faeces-like odour.

nt hydrocarbon-like odour.

Site:	Former Stairfoot Brickworks,	t Brickworks, Barnsley							
Project Number:	1620015371-002								
Date:	02-Nov-2023								
Sampler ID:	ER								
		Calibration Checks/ Notes							
	GFM430-1 (10153)	21/03/2023							
Equipment (& Serial	MiniRae Lite (595-003363)	24/08/2023							
Number).	Interface Probe (SO/148634)	N/A							
Local Weather	Overcast with frequent showers. 10 degrees Celcius.								
Surface Conditions:	Concrete landscaping, wet; grass	s, wet. Brick gravel, wet.							

Data	Time		Barometric Pressure	Weather (temp, wind, cloud, rain)
Date	(Days)	(mBar)	Trend	
31.10.2023	-2	1000	Steady	7°C, cloudy with drizzle
01.11.2023	-1	983	Falling	12°C, sunny with intermittent clouds
02.11.2023	0	960	Rapidly falling then rising	10°C, overcast with frequent rain
03.11.2023	1	978	Rising	10°C, sunny with scattered clouds
04.11.2023	2	966	Falling	7°C, cloudy with drizzle

Note atmospheric pressure data and trends for the days prior to, on and following the monitoring event were taken from www.wundergro north of the site.

											Ga	as Cond	entrat	ion						Static /					Monito	oring We	II	Comments
Location	Location	Time	Temp	F	IOW				Peak						S	teady sta	ate			Atmosphe	Relative Pressure	Depth to Water	Depth to Base	Water	Donor		Internal	
	Level			Peak	Steady	0	CH4	CO2	O ₂ *	со	H ₂ S	PID	C	H₄	CO2	02	со	H ₂ S	PID	Pressure	Tressure	Water	Duse	Level	керо	ise zone	Diameter	
	(m AOD)		(°C)	(l/h)	(l/h)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(mBar)	(Pa)	(m bgl)	(m bgl)	(m AOD)	(n	n bgl)	(mm)	
Start	-	08:05		0.0	0.0	0	0	0	21.2	0	0	-	0	0	0	21	0	0	-	961	-	-	-	-	-		-	-
WS101A	47.52	08:08		0.0	0.0	0	0	0.4	14.1	3	1	0.1	0	0	0.4	14.1	3	1	0.1	959	-	1.048	1.17	46.47	0.5	- 1.2	50	
WS102	47.42	08:23		0.0	0.0	0	0	11.3	1.2	1	1	0.1	0	0	11.9	1.2	1	0	0.1	959		DRY	3.24	-	1.0	- 3.3	50	
WS103	47.46	08:35		1.3	1.0	45.4	>>>	23.8	0	3	24	0.3	45.4	>>>	23.5	0	1	24	0.3	958		DRY	4.00	-	1.0	- 4.0	50	
WS104	47.88	08:54		0.0	0.0	0	0	9	0.5	1	1	1.2	0	0	9.0	0.5	0	0	0.9	958		2.406	3.00	45.48	1.0	- 3.0	50	Moderate hydro
WS105	48.15	09:52		0.2	0.0	0	0	1	15	0	0	0.3	0	0	1.0	15.2	0	0	0.2	959		1.097	1.54	47.06	0.4	- 1.5	50	
WS106	48.14	11:12		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.285	0.86	47.86	0.3	- 0.9	50	Not sampled du
WS107	47.88	10:08		0.0	0.0	0.0	0	1.0	16.3	0	1	0.7	0	0	1.0	16.4	0	0	0.7	959		1.474	2.85	46.41	1.4	- 2.8	50	
WS108	48.14	10:38		0.0	0.0	0.0	0	1.1	17.3	0	1	0.4	0	0	1.1	17.4	0	0	0.3	960		1.084	1.35	47.06	0.3	- 1.3	50	
WS109	48.12	11:40		0.0	0.0	0.0	0	1.2	18.4	3	0	0.7	0	0	1.2	18.4	0	0	NS	961		0.413	1.10	47.71	0.5	- 1.1	50	PID reading abo
WS110	48.06	13:17		0.0	0.0	0.0	0	2.5	1.7	3	0	NS	0	0	2.5	1.7	3	0	NS	960		0.375	2.95	47.68	1.5	- 3.0	50	
WS111	49.59	12:19		0.2	0.0	0.0	0	4.8	4.3	4	0	NS	0	0	4.8	4.3	0	0	NS	960		1.711	2.68	47.88	0.5	- 2.5	50	
WS112	48.40	09:25		1.7	0.0	0.0	0	4.1	10.7	1	1	0.3	0	0	0.9	15.1	0	0	NS	960		0.359	2.05	48.04	1.3	- 2.0	50	Terminated due
CP1	50.48	14:43		0.0	0.0	21.0	>>>	10.1	0.6	1	1	NS	21.0	>>>	10.1	0.6	1	0	NS	961		7.360	9.17	43.12	1.0	- 7.0	50	Acrid smell. Bla
CP2	49.77	14:30		0.0	0.0	11.2	>>>	15.2	0.0	1	0	NS	21.0	>>>	10.1	0.6	1	0	NS	961		DRY	7.15	-	1.0	- 9.0	50	Sawdust like ma
CP7	48.10	10:27		0.4	0.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.000	2.94	48.10	0.5	- 3.0	50	Borehole floode
CP11	50.33	14:01		0.0	0.0	0.0	0	0.0	24.1	1	0	NS	0	0	0.0	24.4	0	0	NS	960		0.932	3.13	49.40	0.5	- 3.0	50	Strong faeces-li
WS6	52.03	11:56		0.0	0.0	0.0	0	1.2	18.4	0	0	NS	0	0	1.2	18.4	0	0	NS	960		2.334	2.84	49.70	1.0	- 3.0	50	
WS7	52.19	13:29		-0.6	-0.6	0.0	0	0.0	23.5	1	0	NS	0	0	0.0	24.5	1	0	NS	960		1.880	1.99	50.31	1.0	- 2.0	50	
WS8	51.31	13:42		0.0	0.0	0.0	0	5.5	0.4	3	0	NS	0	0	5.5	1.4	0	0	NS	960		2.380	5.99	48.93	1.0	- 6.5	50	
WS9	50.58	13:53		NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.383	3.35	50.20	1.0	- 3.5	50	Not sampled du
WS12	47.82	09:10		0.0	0.0	0	0	0.0	20.2	0	0	0.4	0	0	0.0	21.0	0	0	0.3	958		0.495	1.00	47.33	0.6	- 1.3	50	
End	-	15:35				0	0	0	20.9	0	0	-	0	-	-	20.9	0	0	-	986		-	-	-	-		-	-

Notes:

DP = Differential Pressure

LEL = Lower Explosive Limit

 * O_2 Peak concentration recorded as a minimum

- Denotes where data was not recorded

Ground gas was measured for at least 180 seconds before taking final readings.

NS = Not sampled

round.com for Barnsley, United Kingdom weather station, located approximately 300m
carbon-like odour noted on tape.
e to flooded horehole
rted. Slight hydrocarbon-like odour.
to water ingress in gas analyser tubing.
ck staining on dip tape with slight hydrocarbon odour.
iterial on interface probe.
d above pipe level.
ke odour and frequent hairs.
e to flooded borehole.

Site:	Former Stairfoot Brickworks, Barnsley										
Project Number:	16200	15371-0	02								
Date:	09-No\	/-2023									
Sampler ID:	ER										
				Calibration Checks/ Notes							
	GFM430)-1 (101	53)	21/03/2023							
Equipment (& Serial	MiniRae	Lite (59	5-00336	24/08/2023							
Number).				N/A							
Local Weather	Overcas	st with su	unny spe	ells. 10 degrees Celcius.							
Surface Conditions:	Concret	e landsc	aping, w	et; grass, wet. Brick gravel, wet.							

Meteorologic	al Conc	ditions		
Data	Time		Barometric Pressure	Weather (temp, wind, cloud, rain)
Date	(Days)	(mBar)	Trend	
07.11.2023	-2	1004	Rising	10°C, sunny with intermittent light rain
08.11.2023	-1	998	Falling then rising	9°C, light rain
09.11.2023	0	990	Falling	10°C, overcast
10.11.2023	1	988	Rising	8°C, sunny with intermittent clouds
11.11.2023	2	1007	Rising	9°C, sunny with intermittent clouds

Note atmospheric pressure data and trends for the days prior to, on and following the monitoring event were taken from www.wunderground. of the site.

4

			Flc	low						Ga	as Cond	entrat	ion						Static /					Monito	oring Wel	I	Comments
Location	Location	Time	F	low				Peak						S	teady sta	ate			Atmosphe	Relative	Depth to Water	Depth to Base	Water	Dames		Internal	
	Level		Peak	Steady	C	H ₄	CO ₂	0 ₂ *	со	H ₂ S	PID	0	CH4	CO ₂	02	со	H ₂ S	PID	Pressure	riessure	water	Dase	Level	Repor	ise zone	Diameter	
	(m AOD)		(l/h)	(l/h)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(mBar)	(Pa)	(m bgl)	(m bgl)	(m AOD)	(n	n bgl)	(mm)	
Start	-	08:05	0.0	0.0	0	0	0	21	0	0	-	0	0	0	21	0	0	-	991	-	-	-	-	-		-	-
WS101A	47.52	08:24	0.0	0.0	0	0	0	16	1	0	0.1	0	0	0.0	16.0	1	0	0.1	991	-	1.118	1.17	46.40	0.5	- 1.2	50	
WS102	47.42	08:57	0.2	0.0	0	0	7.8	2.5	1	0	0.2	0	0	7.8	2.5	1	0	0.2	991		DRY	3.25	-	1.0	- 3.3	50	
WS103	47.46	09:09	1.1	0.7	37.4	>>>	18.9	0	3	10	0.0	37	>>>	18.9	0	3	10	0.0	991		DRY	4.00	-	1.0	- 4.0	50	
WS104	47.88	09:21	0.3	0.0	0	0	5	8.4	1	0	3.3	0	0	5.0	8.4	1	0	2.3	991		2.513	3.00	45.37	1.0	- 3.0	50	Moderate hydroca
WS105	48.15	10:22	0.0	0.0	0	0	0	18	1	0	0.7	0	0	0.0	18.0	1	0	0.5	991		1.165	1.55	46.99	0.4	- 1.5	50	
WS106	48.14	10:10	0.3	0.2	0	0	0	23.4	1	0	1.1	0	0	0	24.4	1	0	0.9	991		0.652	0.85	47.49	0.3	- 0.9	50	Not sampled due
WS107	47.88	10:35	0.0	0.0	0.0	0	2.4	12.0	1	0	0.9	0	0	2.4	12.0	0	0	0.9	991		1.537	2.87	46.34	1.4	- 2.8	50	
WS108	48.14	11:01	0.0	0.0	0.0	0	0.6	8.4	1	0	0.4	0	0	0.6	7.9	1	0	0.4	990		1.280	1.35	46.86	0.3	- 1.3	50	
WS109	48.12	11:16	0.0	0.0	0.0	0	0.0	21.7	4	1	0.2	0	0	0.0	22.3	3	1	0.2	990		0.627	1.10	47.49	0.5	- 1.1	50	
WS110	48.06	11:30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.378	2.95	47.68	1.5	- 3.0	50	Not sampled due
WS111	49.59	12:10	0.0	0.0	0	0	5.7	3.0	0	0	0.3	0	0	5.7	3.0	0	0	0.3	989		1.820	2.68	47.77	0.5	- 2.5	50	
WS112	48.40	09:25	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.150	2.05	48.25	1.3	- 2.0	50	Not sampled due
CP1	50.48	14:11	0.0	0.0	19.1	>>>	14.0	0.0	3	14	0.0	19.1	>>>	14.0	0.0	3	13	0.0	988		7.240	9.17	43.24	1.0	- 7.0	50	Acrid smell. Black
CP2	49.77	13:58	0.0	0.0	0.0	0	6.6	9.7	1	0	0.0	0.0	0	6.6	9.7	0	0	0.0	988		DRY	7.15	-	1.0	- 9.0	50	Sawdust like mate
CP7	48.10	10:27	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.492	2.93	47.61	0.5	- 3.0	50	Not sampled due
CP11	50.33	13:38	0.0	0.0	0.0	0	0.0	24.1	3	0	0.0	0	0	0.0	24.5	0	0	0.0	988		0.914	3.10	49.41	0.5	- 3.0	50	Hair on interface
WS6	52.03	12:24	0.0	0.0	0.0	0	0.0	23.7	1	0	0.1	0	0	0.0	24.5	1	0	0.1	988		2.453	2.82	49.58	1.0	- 3.0	50	
WS7	52.19	12:41	0.0	0.0	0.0	0	0.0	24.6	3	0	0.1	0	0	0.0	24.6	1	0	0.0	988		1.886	1.99	50.30	1.0	- 2.0	50	
WS8	51.31	12:56	0.0	0.0	0.0	0	2.5	9.8	1	0	0.1	0	0	2.5	9.8	1	0	0.1	988		2.250	5.92	49.06	1.0	- 6.5	50	
WS9	50.58	13:53	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.393	3.33	50.19	1.0	- 3.5	50	Not sampled due
WS12	47.82	09:10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.510	1.00	47.31	0.6	- 1.3	50	Not sampled due
End	-	14:32	-	-	0	0	0	21.1	0	0	-	0	-	-	21.1	0	0	-	988		-	-	-	-		-	-

Notes:

DP = Differential Pressure

LEL = Lower Explosive Limit

 * O_2 Peak concentration recorded as a minimum

- Denotes where data was not recorded

Ground gas was measured for at least 180 seconds before taking final readings.

NS = Not sampled

nd.com for Barnsley, United Kingdom weather station, located approximately 300m north
carbon-like odour noted.
e to flooded borehole.
e to flooded borehole.
e to flooded borehole. Oily sheen observed.
k staining on dip tape with slight hydrocarbon odour.
terial on interrace probe.
probe.
e to flooded borehole.
e to flooded borehole.

Site:	Former	Stairfo	ot Brick	works, Barnsley
Project Number:	162001	15371-0	02	
Date:	23-Nov	/-2023		
Sampler ID:	ER			
				Calibration Checks/ Notes
	GFM430)-1 (101	53)	21/03/2023
Equipment (& Serial	MiniRae	Lite (59	5-00336	24/08/2023
Number).				N/A
Local Weather	Overcas	st with su	unny spe	ells. 10 degrees Celcius.
Surface Conditions:	Concret	e landsc	aping, w	et; grass, wet. Brick gravel, wet.

Meteorologic	al Cond	ditions		
Data	Time		Barometric Pressure	Weather (temp, wind, cloud, rain)
Date	(Days)	(mBar)	Trend	
21.11.2023	-2	1028	Rising	8°C, sunny with intermittent showers
22.11.2023	-1	1023	Falling	11°C, cloudy with light rain
24.11.2023	0	1017	Falling	12°C, overcast
25.11.2023	1	1020	Steady	4°C, sunny with slight breeze
26.11.2023	2	1011	Falling	5°C, sunny with intermittent clouds

Note atmospheric pressure data and trends for the days prior to, on and following the monitoring event were taken from www.wunderground the site.

			F	low						Ga	as Cond	centrat	ion						Static /					Monitor	ing Well		Comments
Location ID	Location	Time	'					Peak						S	teady sta	ate			Atmosphe ric	Relative Pressure	Depth to Water	Depth to Base	Water Level	Renon	se 7one	Internal	
			Peak	Steady	c	H ₄	CO2	0 ₂ *	со	H ₂ S	PID	0	H₄	CO2	0 ₂	со	H ₂ S	PID	Pressure					Report	Se Lone	Diameter	
	(m AOD)		(l/h)	(l/h)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(mBar)	(Pa)	(m bgl)	(m bgl)	(m AOD)	(m	bgl)	(mm)	
Start	-	08:28	0.0	0.0	0	0	0	21	0	0	-	0	0	0	21	0	0	-	1018	-	-	-	-			-	-
WS101A	47.52	08:34	0.0	0.0	0	0	0	17.1	1	0	0.0	0	0	0.0	17.3	1	0	0.0	1018	-	DRY	1.17	-	0.5 ·	- 1.2	50	
WS102	47.42	08:47	0.0	0.0	0	0	6.5	6.9	4	0	0.0	0	0	6.8	6.1	3	0	0.0	1017		DRY	3.25	-	1.0 ·	- 3.3	50	
WS103	47.46	09:06	3.7	3.1	29.2	>>>	15.8	0	4	0	2.0	27.6	>>>	15.4	0	3	0	2.0	1017		DRY	4.00	-	1.0 ·	- 4.0	50	
WS104	47.88	09:26	0.0	0.0	0	0	3.3	12.7	1	0	2.1	0	0	4.0	11.3	1	0	2.1	1017		2.507	3.00	45.38	1.0 ·	- 3.0	50	Slight hydrocar
WS105	48.15	10:24	0.5	0.0	0	0	0	20.4	1	0	0.0	0	0	0.0	20.7	1	0	0.0	1017		1.031	1.54	47.12	0.4	1.5	50	
WS106	48.14	09:52	0.0	0.0	0	0	0	19.8	1	0	0.9	0	0	0	19.8	0	0	0.9	1017		0.690	0.85	47.45	0.3	0.9	50	
WS107	47.88	10:57	0.0	0.0	0.0	0	2.5	16.3	1	0	1.1	0	0	2.7	16.3	0	0	1.1	1017		1.941	2.87	45.94	1.4	2.8	50	
WS108	48.14	11:14	1.4	0.0	0.0	0	0.8	7.6	1	0	0.4	0	0	0.8	7.6	0	0	0.4	1017		1.278	1.34	46.87	0.3	1.3	50	
WS109	48.12	11:36	0.5	0.0	0.0	0	0.0	22.5	3	0	0.0	0	0	0.0	22.5	3	0	0.0	1017		0.647	1.10	47.47	0.5	- 1.1	50	Very slight hyd
WS110	48.06	11:30	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.392	2.95	47.66	1.5	3.0	50	Not sampled de
WS111	49.59	12:27	1.1	0.0	0	0	4.2	9.0	1	0	1.8	0	0	4.2	9.0	0	0	0.3	1017		1.841	2.68	47.75	0.5	2.5	50	
WS112	48.40	09:43	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.240	2.05	48.16	1.3	2.0	50	Not sampled de
CP1	50.48	14:19	3.5	3.5	26.6	>>>	13.8	3.5	3	0	0.0	26.6	>>>	13.8	3.5	0	0	0.0	1015		7.032	9.06	43.45	1.0	- 7.0	50	Acrid smell. Bla
CP2	49.77	14:01	0.0	0.0	0.0	0	4.7	15.9	1	0	0.0	0.0	0	4.7	16.2	0	0	0.0	1015		DRY	7.15	-	1.0	9.0	50	Sawdust like m
CP7	48.10	10:41	0.0	0.0	0	0	0	24.7	1	0	0.0	0	0	0	24.8	1	0	0.0	1017		0.652	2.82	47.45	0.5	- 3.0	50	
CP11	50.33	13:29	0.8	0.0	0.0	0	0.0	20.0	3	0	0.0	0	0	0.0	20.4	0	0	0.0	1015		0.947	3.11	49.38	0.5	- 3.0	50	Hair on interfac
WS6	52.03	12:43	0.2	0.0	0.0	0	0.0	24.3	1	0	0.0	0	0	0.0	24.8	0	0	0.0	1016		2.552	2.82	49.48	1.0	- 3.0	50	
WS7	52.19	12:56	0.0	0.0	0.0	0	0.0	24.8	0	0	0.0	0	0	0.0	24.8	0	0	0.0	1016		1.887	1.99	50.30	1.0	- 2.0	50	
WS8	51.31	13:09	0.4	0.0	0.0	0	0.0	24.2	1	0	0.0	0	0	0.0	24.2	1	0	0.0	1015		2.403	5.93	48.91	1.0	- 6.5	50	
WS9	50.58	13:22	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.706	3.36	49.87	1.0	- 3.5	50	Not sampled du
WS12	47.82	09:41	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	İ	0.530	1.00	47.29	0.6	- 1.3	50	Not sampled du
End	-	14:24	-	-	0	0	0	21.3	0	0	-	0	-	-	21.3	0	0	-	1015		-	-	-			-	-
								24.8																			

Notes:

DP = Differential Pressure

LEL = Lower Explosive Limit

 * O_2 Peak concentration recorded as a minimum

- Denotes where data was not recorded

Ground gas was measured for at least 180 seconds before taking final readings.

NS = Not sampled

d.com for Barnsley, United Kingdom weather station, located approximately 300m north of
oon-like odour noted.
ocarbon-like odour.
e to flooded borehole. Oily sheen observed.
ck staining on dip tape with slight hydrocarbon odour.
aterial on interface probe.
e probe.
e to flooded borebole
e to flooded borehole.

Site:	Former	Stairfo	ot Brick	works, Barnsley
Project Number:	162007	15371-0	02	
Date:	30-Nov	/-2023		
Sampler ID:	VG			
				Calibration Checks/ Notes
	GFM430)-1 (101	53)	21/03/2023
Equipment (& Serial	MiniRae	Lite (59	5-00336	24/08/2023
Number).				N/A
Local Weather	Overcas snow.	st with su	unny spe	ells. 2 degrees Celcius. Light
Surface Conditions:	Concret wet.	e landsc	aping, w	et; grass, wet. Brick gravel,

Meteorologic	al Cono	ditions		
Data	Time		Barometric Pressure	Weather (temp, wind, cloud, rain)
Date	(Days)	(mBar)	Trend	
28.11.2023	-2	1011	Falling	6°C, partly cloudy
29.11.2023	-1	1009	Falling	3°C, sunny
30.11.2023	0	1006	Relatively steady then rising	3°C, partly cloudy
01.12.2023	1	1008	Rising	3°C, partly cloudy
02.12.2023	2	1013	Rising	3°C, mostly sunny

Note atmospheric pressure data and trends for the days prior to, on and following the monitoring event were taken from www.wunderground. the site.

6

					Gas							entrat	ion						Static /					Monito	ring Well		Comments
Location	Location	Time	F	low				Peak						S	teady sta	ate			Atmosphe	Relative	Depth to Water	Depth to Base	Water	Dama		Internal	
	Level		Peak	Steady	С	∶H₄	CO2	0 ₂ *	со	H ₂ S	PID	0	∶H₄	CO2	02	со	H ₂ S	PID	Pressure	i i costare	Match	Duse	Level	керо	nse zone	Diameter	
	(m AOD)		(l/h)	(l/h)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(%)	(% LEL)	(%)	(%)	(ppm)	(ppm)	(ppm)	(mBar)	(Pa)	(m bgl)	(m bgl)	(m AOD)	(r	n bgl)	(mm)	
Start	-	11:10	0.0	0.0	0	0	0	25	1	0	0.0	0	0	0	25	1	0	0.0	1003	-	-	-	-	-	-	-	-
WS101A	47.52	13:45	0.1	0.1	0	0	0	17.3	0	0	0.0	0	0	0.0	17.3	0	0	0.0	1004	-	0.960	1.18	46.56	0.5	1.2	50	
WS102	47.42	14:00	-0.3	-0.3	0	0	0	22.9	0	0	0.0	0	0	0.0	22.8	0	0	0.0	1004	-	3.140	3.22	44.28	1.0	3.3	50	
WS103	47.46	14:10	-0.6	-0.4	31.7	>>>	16.5	3	1	0	0.3	28.7	>>>	15.5	0.1	0	0	0.3	1004	-	DRY	4.00	-	1.0	4.0	50	
WS104	47.88	13:25	0.0	0.0	0	0	4.1	19.2	0	0	0.0	0	0	4.1	7.6	0	0	0.0	1004	-	2.530	3.01	45.35	1.0	3.0	50	
WS105	48.15	11:25	0.3	0.0	0.0	0	0	22.3	4	0	0.0	0	0	0.0	21.7	1	0	0.0	1002	-	0.940	1.55	47.21	0.4	1.5	50	
WS106	48.14	11:15	0.0	0.0	0.0	0	0	24	1	0	0.0	0	0	0	20.5	0	0	0.0	1003	-	0.690	0.85	47.45	0.3	0.9	50	
WS107	47.88	11:40	0.6	0.0	0.0	0	2.1	21.5	1	0	0.0	0	0	2.1	18.1	1	0	0.0	1002	-	1.930	2.88	45.95	1.4	2.8	50	
WS108	48.14	11:45	-0.1	-0.1	0.0	0	0.6	17.2	1	0	0.0	0	0	0.6	0.6	1	0	0.0	1002	-	1.290	1.35	46.85	0.3	1.3	50	
WS109	48.12	12:00	-0.5	0.1	0.0	0	0.0	23.3	3	0	0.0	0	0	0.0	23.3	1	0	0.0	1002	-	0.630	1.11	47.49	0.5	1.1	50	
WS110	48.06	11:55	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		0.880	2.95	47.18	1.5	3.0	50	Not sampled de
WS111	49.59	12:15	0.7	0.5	0	0	0.0	21.0	0	0	0.0	0	0	0.0	20.8	0	0	0.0	1002	-	1.800	2.68	47.79	0.5	2.5	50	
WS112	48.40	13:20	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	-	0.270	2.04	48.13	1.3	2.0	50	Not sampled du
CP1	50.48	14:30	0.3	0.1	31.1	>>>	16.3	1.0	0	0	0.0	31.1	>>>	16.3	0.2	0	0	0.0	1004	-	7.020	9.11	43.46	1.0	7.0	50	Acrid smell. Bla
CP2	49.77	14:20	0.0	0.0	0.0	0	5.4	22.8	0	0	0.6	0.0	0	5.4	11.9	0	0	0.6	1004	-	6.450	6.58	43.32	1.0	9.0	50	Depth to water
CP7	48.10	14:50	0.0	0.0	0	0	0	23.9	0	0	0.0	0	0	0	23.8	0	0	0.0	1004	-	0.660	2.83	47.44	0.5	3.0	50	
CP11	50.33	13:05	0.3	0.0	0.0	0	0.0	24.5	0	0	0.0	0	0	0.0	24.5	0	0	0.0	1003	-	1.080	3.14	49.25	0.5	3.0	50	
WS6	52.03	12:30	0.1	0.1	0.0	0	0.0	24.4	1	0	0.0	0	0	0.0	24.3	0	0	0.0	1002	-	2.070	2.82	49.96	1.0	3.0	50	
WS7	52.19	12:40	-0.2	0.1	0.0	0	0.0	24.4	0	0	0.0	0	0	0.0	24.4	0	0	0.0	1002	-	1.490	1.88	50.70	1.0	2.0	50	
WS8	51.31	12:50	0.1	0.0	0.0	0	0.0	24.3	0	0	0.0	0	0	0.0	22.9	0	0	0.0	1002	-	1.910	5.55	49.40	1.0	6.5	50	
WS9	50.58	12:55	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	-	0.540	3.36	50.04	1.0	3.5	50	Not sampled du
WS12	47.82	13:15	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	-	0.540	1.01	47.28	0.6	1.3	50	Not sampled du
End	-	14.55	_	-	0	0	0	24.2	1	0	0.0	0	0	0.0	24.2	1	0	0.0	1004	-	-	-	-		-	-	-

Notes:

DP = Differential Pressure

LEL = Lower Explosive Limit

 $\,^*$ $\rm O_2$ Peak concentration recorded as a minimum

- Denotes where data was not recorded

Ground gas was measured for at least 180 seconds before taking final readings.

NS = Not sampled

Ramboll

I.com for Barnsley, United Kingdom weather station, located approximately 300m north of
a ta flaadad barabala
e to flooded borehole.
ck staining on din tape with slight hydrocarbon odour.
and base measured to top of tophat cover.
and the second sec
e to flooded borehole. Depth to water measured to top of tophat cover.
e to flooded borehole.

Appendix 4 Field Methods In the preparation of this report Ramboll has made reference to UK regulatory guidance and methodologies, including, but not limited to: Land Contamination: Risk Management¹⁶ (LCRM); BS5930:2015+A1:2020 Code of Practice for site Investigation¹⁷; and BS10175:2011 + A2:2017 Code of Practice for the Investigation of Potentially Contaminated Sites¹⁸.

Investigatory Locations

Investigatory locations were marked out and cleared by a specialist underground service clearance contractor before the start of intrusive works, in accordance with Ramboll's Health and Safety procedures. Supervision of drilling works was undertaken by a professional engineer, who logged the soil arisings, collected samples and completed in-situ testing;

Where boreholes were drilled, these were undertaken to facilitate the collection of shallow and deeper soil and groundwater samples. Selected boreholes were installed with monitoring wells for assessment of ground gas and, where present groundwater conditions .

Trial pits were excavated using a mechanical excavator to facilitate the collection of shallow soil samples and allow the assessment of ground conditions for environmental purposes;

Hand dug pits were dug, to facilitate the collection of shallow soil samples and allow the assessment of ground conditions for environmental purposes.

Sampling

Samples of various environmental media were collected in accordance with BS 10175⁴.

Samples and were stored within appropriate sample containers and forwarded to an independent analytical laboratory. Samples were placed in containers supplied by the laboratory appropriate to the type of analysis being undertaken and stored in cool boxes with ice packs. All samples were dispatched accompanied by chain of custody documentation. The laboratory selected to perform the analysis is accredited by UKAS to ISO 17025. Internal quality assurance checks are carried out by the laboratory data prior to the laboratory certificates being issued. A trip blank was also submitted to the laboratory and was scheduled for VOC and SVOC testing.

Each of the monitoring/sampling wells that were constructed were developed on completion. Prior to sampling, the depth to the resting groundwater level (where present) and base of the monitoring wells were measured using an electronic interface probe, wells were then purged before samples were taken.

Testing

Where soil samples were tested on site for volatile organic compounds (VOCs), testing was completed using a photo-ionisation detector (PID). Each sample was placed into a sealed plastic bag and agitated. The PID was then inserted into the headspace and the total VOC reading recorded. The PID screens for a wide range of VOCs but does not indicate a specific compound; therefore, the results of the PID screening provide a semi-quantitative indication of the concentration of VOCs present in soil pore spaces.

Where relevant testing was undertaken by the laboratory to MCerts standards. Selected samples were scheduled for analysis for a suite of contaminants designed to be reflective of the site's

¹⁶ Environment Agency (2020) Land Contamination: Risk Management

¹⁷ British Standards (2015) Code of Practice for site Investigation BS5930: 2015+A1: 2020

¹⁸ British Standards (2017) Code of Practice for the Investigation of Potentially Contaminated sites. BS10175:2011 + A2:2017

historical and contemporary uses, and specifically to investigate the PCLs identified in the PRA (as listed in Section 3.2).

Monitoring

Wells were of appropriate construction for the ground conditions encountered. The well designs are detailed within the appended borehole logs.

Ground gas monitoring was completed using a calibrated monitor. The following parameters were measured:

- Methane (% vol);
- Carbon dioxide (% vol);
- Oxygen (% vol);
- Carbon Monoxide (ppm);
- Hydrogen Sulphide (ppm); and
- Flow rate (I/hr).

Gas flow rates were measured at all monitoring boreholes and the range in flow rates and concentrations were recorded until a steady state was reached or for at least three minute.

Appendix 5 Laboratory Testing Results – Summary Tables

Soils - Ri	sk to Hur	man Heal	lth								23/168	869														23/16058											23/17063			
EMT Sample No					4 WS111 22	5-6	7	9-10	11-12 WS107_0.2	14-16 HD1	17-19	20-22 HD3	23-25 HD4	26-28 HD5	29-31 HD6	32-34 HD7	35-37 HD8	38-40 HDQ	1-3 TP101	4-6 TP102	7-9 TP103	10-11 WS102-3.8	13-15 WS112_17	16 WS112.0.2	18-20 TP105	23/10958 21-23 TP104	24-26	27-29 TP108	30-32 TP106	33 WS101A 0.1	34-35	36-40 WS104_04	41-43 WS104_27	1-2 WS103-2-8	3 WS109.04	4-5 WS109.0.9	6 WS108_0.3	7-8 WS108-34	9 WS110_34	10-11 WS110_27
Depth					2.2	0.6	1.4	0.8	0.2	0.25-0.30	0.20-0.30	0.20-0.30	0.10-0.30	0.00-0.20	0.15-0.30	0.15-0.30	0.20-0.30	0.10-0.25	+1.50-0.00	2.20-2.40	+0.90-0.00	3.8	1.7	0.2	+1.30-0.00	+0.90-0.00	0.60-0.70	0.30-0.60	+1.40-0.00	0.1	1	0.4	2.7	2.8	0.4	0.9	0.3	3.4	0.3	2.7
Strata					Made Ground	Made Ground	Clay N	Made Ground N	Made Ground	Made Ground	Made Ground N	Made Ground N	Nade Ground M	lade Ground	Made Ground	Made Ground N	Nade Ground I	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Sand	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground	Mudstone	Made Ground	Made Ground	Made Ground	Made Ground	Made Ground I	Made Ground	Clay	Made Ground	Sand
Date Sampled				2	09/10/2023	09/10/2023 09	9/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023
Analytical Parameter (Soil Analysis) Natural Moisture Content	Units %	Limit of detection	GAC (Commerical / Industrial)	Aaximum Concentration	12.4	21.8	NA	15.6	20.4	19.6	7.8	17.1	7.2	11.5	10.5	11.6	14.9	17.9	15.1	17.1	19.9	19.3	9.4	NA	11.1	11.7	17.4	19.6	9.8	NA	7.8	20.2	26.4	19.9	NA	13.5	4.5	13	NA	8.2
Asbestos Fibres #	Туре	N/A																	NAD	NAD	NAD	NA	NA	NAD	NAD	NAD	NAD	Fibre Bundles	NAD	Fibre Bundles	NA	NA	NA	NA	NAD	NA	NA	NA	NAD	NA
Asbestos ACM [#] Asbestos Type [#]	Type N/A	N/A N/A			NA	NA	NA	NA	NA	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD	NAD NAD	NAD NAD	NAD NAD	NA NA	NA NA	NAD NAD	NAD NAD	NAD NAD	NAD NAD	NAD Chrysotile	NAD NAD	NAD Chrysotile	NA NA	NA NA	NA NA	NA NA	NAD NAD	NA NA	NA NA	NA NA	NAD NAD	NA NA
General Inorganics																																								
pH #	pH Units	N/A	2100	9.57 7	8.27	8.72	NA	8.07	7.8	6.66	6.32	7.12	8.36 <0.5	6.65	7.47	7.03 <0.5	8.01	6.31	7.31	7.8	8.01 <0.5	8.39 <0.5	7.63	NA	8.89	8.85	8.38 0.9	7.72	8.57	NA	8 <0.5	8.44	NA	8.14 7	NA	8.98	9.57 NA	6.92 <0.5	NA	6.86
Total Organic Carbon # Fraction Organic Carbon	None	<0.02 <0.001		4.96	1.21	NA	0.51	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA 0.018	NA 0.003	NA	NA NA	NA	NA NA	4.96	NA	NA	NA 0.006	NA NA	NA 0.038	NA 0.118	NA	NA 0.001	0.74	NA 0.005	NA NA	NA 0.005
Sulphate as SO4 (2:1 Ext) #	g/I	<0.0015		1.7885	NA	0.0275	NA	1.7885	1.5875	0.0242	0.0974	0.1723	0.0174	0.0164	0.062	0.0029	0.0118	0.0674	0.097	0.0188	0.2022	0.0773	0.0205	NA	0.0384	0.0068	0.1149	0.0562	0.0188	NA	0.0319	0.0941	NA	0.1125	NA	0.0391	NA	0.0454	NA	0.0245
Total Phenois Total Phenois HPLC	ma/ka	< 0.15	380	0.88	NA	< 0.15	NA	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	0.17	0.88	< 0.15	< 0.15	< 0.15	<0.15	<0.15	<0.15	<0.15	<0.15	NA	<0.15	<0.15	<0.15	<0.15	<0.15	NA	<0.15	0.23	NA	<0.15	NA	<0.15	NA	<0.15	NA	<0.15
Speciated PAHs	mgrag	40110		0.00				10110	10110	10110	10110	10110	0110	0117	0.00	0110	0110	10110	0110	0.10	0.10	0.10	0.110		0110	0.110	0.10	0.110	0.10		0110	0.20		0.10		0110				0.10
Naphthalene Acenaphthylene	mg/kg mg/kg	<0.04 <0.03	110 76000	1.37 0.48	0.15	<0.04 <0.03	NA NA	<0.04 <0.03	0.73 <0.03	0.05 <0.03	<0.04 <0.03	0.09 <0.03	0.17 0.06	0.23 <0.03	0.34 0.06	0.13 <0.03	<0.04 <0.03	1.37 0.18	<0.04 <0.03	<0.04 <0.03	0.05 <0.03	0.12 0.05	<0.04 <0.03	NA NA	0.07	0.07	1.02 0.46	<0.04 <0.03	0.1 <0.03	NA NA	<0.04 <0.03	0.61 0.48	NA NA	0.31 0.1	NA NA	<0.04 <0.03	<0.04 0.07	<0.04 <0.03	NA NA	<0.04 <0.03
Acenaphthene Fluorene	mg/kg mg/kg	<0.05 <0.04	75000 60000	2.93 3.74	<0.05 <0.04	<0.05 <0.04	NA NA	<0.05 <0.04	<0.05 <0.04	<0.05 <0.04	<0.05 <0.04	<0.05 <0.04	<0.05 0.05	<0.05 <0.04	0.06 0.04	<0.05 <0.04	<0.05 <0.04	0.08 <0.04	<0.05 <0.04	<0.05 <0.04	<0.05 <0.04	<0.05 <0.04	<0.05 <0.04	NA NA	<0.05 <0.04	<0.05 <0.04	1.9 1.57	<0.05 <0.04	<0.05 <0.04	NA NA	<0.05 <0.04	2.93 3.74	NA NA	0.16 0.16	NA NA	<0.05 <0.04	<0.05 <0.04	<0.05 <0.04	NA NA	<0.05 <0.04
Phenanthrene Anthracene	mg/kg mg/kg	<0.03 <0.04	22000 520000	12.09 4.34	0.2 <0.04	<0.03 <0.04	NA NA	0.08 <0.04	0.42 <0.04	0.08 <0.04	<0.03 <0.04	0.2 <0.04	0.86 0.25	0.45 0.08	0.65 0.15	0.31 0.06	<0.03 <0.04	0.94 0.19	<0.03 <0.04	0.05 <0.04	0.07 <0.04	0.57 0.12	<0.03 <0.04	NA NA	0.16 <0.04	0.11 <0.04	8.73 3.22	0.18 <0.04	0.23 <0.04	NA NA	0.06 <0.04	12.09 4.34	NA NA	1.32 0.34	NA NA	<0.03 <0.04	0.13	<0.03 <0.04	NA NA	<0.03 <0.04
Fluoranthene Pyrene	mg/kg mg/kg	<0.03 <0.03	23000 54000	18.4 18.98	0.11 0.1	0.07 0.06	NA NA	0.13 0.1	0.14 0.13	0.12 0.1	<0.03 <0.03	0.19 0.16	1.84 1.51	0.48 0.4	0.81 0.69	0.4 0.36	<0.03 <0.03	1.78 1.59	<0.03 <0.03	<0.03 <0.03	0.07 0.06	0.85 0.67	<0.03 <0.03	NA NA	0.04 0.03	<0.03 <0.03	15.27 12.86	0.33 0.26	0.05 0.04	NA NA	0.2 0.19	18.4 18.98	NA NA	1.98 1.64	NA NA	<0.03 <0.03	1.3 1.23	<0.03 <0.03	NA NA	<0.03 <0.03
Benzo(a)anthracene Chrysene	mg/kg mg/kg	<0.06 <0.02	170 350	7.74	0.09	<0.06 0.06	NA	0.09	0.12 0.12	0.1	<0.06 <0.02	0.13	1 1.08	0.21	0.41	0.22 0.26	<0.06 <0.02	1.01 1.23	<0.06 <0.02	<0.06 <0.02	<0.06 0.06	0.39	<0.06 <0.02	NA NA	<0.06 <0.02	<0.06 <0.02	6.47 6.42	0.18 0.19	<0.06 <0.02	NA NA	0.14	7.74 7.46	NA NA	0.9 0.97	NA NA	<0.06 <0.02	0.93 0.95	<0.06	NA NA	<0.06
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	<0.05	45 1200	8.74 3.4	0.09	0.08	NA	0.09	0.1	0.09 0.04	< 0.05	0.17	1.33 0.52	0.35	0.58	0.28	< 0.05	1.66 0.65	<0.05 <0.02	<0.05 <0.02	0.06	0.48	<0.05		<0.05	<0.05	7.54 2.93	0.22	<0.05 <0.02		0.21	8.74 3.4		1.25 0.49	NA NA	<0.05	1.21 0.47	<0.05		<0.05
Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	<0.04	76 510	4.35	<0.04	0.06	NA	<0.04	<0.04	0.07	<0.04	0.13	0.75	0.21	0.42	0.19	<0.04	0.95	<0.04	<0.04	<0.04	0.36	<0.04		<0.04	<0.04	6.56 3.94	<0.04 0.11	<0.04	NA NA	0.16	4.35	NA NA	0.97	NA	<0.04	0.82	<0.04		<0.04
Benzo(ghi)perylene	mg/kg mg/kg	<0.04	3900	4.35	< 0.04	0.05	NA	<0.04 <0.04	0.04 0.06	0.04 0.06	<0.04 <0.04	0.09	0.68	<0.04 0.16	0.3	0.15	<0.04 <0.04	0.22	<0.04 <0.04	<0.04 <0.04	<0.04 <0.04	0.00	<0.04	NA	<0.04 <0.04	<0.04 <0.04	3.4	0.11	<0.04 <0.04	NA	0.14	4.35	NA	0.7	NA	<0.04 <0.04	0.10	<0.04 <0.04	NA	<0.04 <0.04
Total PAH	mg/ kg	<0.04		0.07	<0.0 4	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA		NA .	NA			NA	NA		NA.	N/A	-0.0+	NA	NA		NA	NA	NA			0.03			NA
Speciated Total EPA 16 PAHs Speciated Total EPA 17 PAHs	mg/kg mg/kg	<0.6 <0.64		106.4 8.59	NA 0.87	<0.6 NA	NA NA	0.7 NA	1.9 NA	0.9 NA	<0.6 NA	1.4 NA	11.4 NA	3.2 NA	5.6 NA	2.6 NA	<0.6 NA	14 NA	<0.6 NA	<0.6 NA	<0.6 NA	4.8 NA	<0.6 NA	NA NA	<0.6 NA	<0.6 NA	83.1 NA	1.7 1.66	<0.6 NA	NA NA	1.4 NA	106.4 NA	NA NA	12.1 NA	NA NA	<0.6 NA	NA 8.59	<0.6 NA	NA NA	<0.6 NA
Heavy Metals / Metalloids																																								
Arsenic [#]	mg/kg	< 0.5	640	49.6	NA	42.3	NA	31.8	49.6	14.9	7.3	12.8	3.6	26.1	22.5	23.9	6.2	40.1	2.8	10.1	8.3	25.7	4.1	NA	5.4	2.9	32.5	28.3	10.7	NA	2.3	10.2	NA	42.5	NA	5.8	NA	5.7	NA	13.5
Cadmium #	mg/kg	<0.5	410	0.8	NA	<0.1	NA	<0.1	<0.1	0.1	<0.1	<0.1	0.5	<0.1	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	0.2	0.8	0.2	<0.1	NA	<0.1	0.2	NA	<0.1	NA	<0.1	NA	<0.1	NA	<0.1
Hexavalent Chromium #	mg/kg	<0.3	49		NA	<0.3	NA	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	NA	<0.3	<0.3	<0.3	<0.3	<0.3	NA 21	<0.3	<0.3	NA 22		00				42		
Copper " Lead [#]	mg/kg mg/kg	<1 <5	2300	98 134	NA	12	NA	47	86 27	26 35	16	44	40	36 56	43	39 64	21 11	94 110	34 15	29 21	28	43 54	21 15	NA NA	30 19	36 17	98 134	55 65	31 16	NA	29 14	23 26	NA	98 79	NA	8	NA	16	NA NA	29 13
Mercury [#] Nickel [#]	mg/kg mg/kg	<0.1 <0.7	8.9 980	2 62.9	NA NA	<0.1 27.1	NA NA	<0.1 21	<0.1 36.1	0.2 32.1	0.1 27.3	<0.1 37.4	<0.1 4.5	<0.1 32.7	0.2 26.7	<0.1 28.2	0.1 41.4	0.2 41.4	<0.1 31.2	0.2 45.9	<0.1 36.2	2 31	0.1 47.7	NA NA	0.1 49.2	<0.1 58.2	0.4 33.5	0.2 28.5	0.2 48.2	NA NA	0.1 54.8	<0.1 21.3	NA NA	<0.1 45.1	NA NA	<0.1 8	NA NA	<0.1 62.9	NA NA	<0.1 60
Selenium [#] Vanadium	mg/kg mg/kg	<1 <1	12000 9000	10 101	NA NA	<1 46	NA NA	1 46	2 66	1 38	2 20	<1 37	<1 9	2 42	2 35	2 55	2 28	2 43	1 23	<1 31	<1 28	10 61	1 23	NA NA	1 33	<1 34	2 39	2 43	<1 30	NA NA	1 31	<1 34	NA NA	3 101	NA NA	<1 24	NA NA	<1 31	NA NA	<1 27
Water Soluble Boron # Zinc #	mg/kg mg/kg	<0.1 <5	240000 730000	3.6 325	NA NA	0.4 33	NA NA	0.7 46	0.9 52	0.6 105	0.9 93	1.1 142	0.3 85	0.8 124	1.3 95	0.6 109	0.1 67	1.9 242	1.7 155	0.3 154	0.8 120	0.8 94	0.2 75	NA NA	0.3 113	0.4 144	3.6 260	0.9 126	0.3 113	NA NA	0.3 97	0.4 95	NA NA	2.9 325	NA NA	0.5 59	NA NA	0.3 99	NA NA	0.2
Monoaromatics & Oxygenates	;																																						•	
MTBE [#] Benzene [#]	μg/kg μg/kg	<5 <5	3800 15000	19	<5 <5	NA	NA NA	NA NA	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<2 <3	<5 <5	NA NA	<5 <5	<5 <5	<5 19	<5 <5	<5 <5	NA NA	<5 <5	<2 <3	<2 <3	<2 7	NA NA	<2 <3	<5 <5	<5 <5	NA NA	<5 <5
Toluene [#] Ethylbenzene [#]	μg/kg μg/kg	<5 <5	33000 3200	20 6	<5 <5	NA	NA NA	NA NA	8 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	7 <5	<5 <5	<5 <5	<5 <5	10 <3	<5 <5	NA NA	<5 <5	<5 <5	16 <5	10 <5	<5 <5	NA NA	<5 <5	<3 <3	<3 <3	20 6	NA NA	<3 <3	<5 <5	<5 <5	NA NA	<5 <5
m/p-Xylene [#] o-Xylene [#]	μg/kg μg/kg	<5 <5	6700 3700	19 8	<5 <5	NA	NA NA	NA NA	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <3	<5 <5	NA NA	<5 <5	<5 <5	12 7	<5 <5	<5 <5	NA NA	<5 <5	8 8	<5 <3	19 8	NA NA	<5 <3	<5 <5	<5 <5	NA NA	<5 <6
Petroleum Hydrocarbons				-																																				
>C5-C6 (HS_1D_AL) # >C6-C8 (HS_1D_AL) #	mg/kg mg/kg	<0.1 <0.1	2400 5300		NA NA	<0.1 <0.1	NA	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	NA NA	<0.1 <0.1	NA NA	<0.1 <0.1
>C8-C10 (HS_1D_AL) >C10-C12 (EH_CU_1D_AL) #	mg/kg mg/kg	<0.1 <0.2	1300 6100	1.4 77	NA NA	<0.1 <0.2	NA NA	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	NA NA	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	NA NA	<0.1 <0.2	1.1 74.6	1.4 77	0.7 3	NA NA	<0.1 <0.2	NA NA	<0.1 <0.2	NA NA	<0.1 <0.2
>C12-C16 (EH_CU_1D_AL) # >C16-C21 (EH_CU_1D_AL) #	mg/kg mg/kg	<4 <7	43000 1000000	993 2308	NA NA	< 4 < 7	NA NA	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	<4 <7	11 27	<4 <7	<4 <7	9 31	<4 <7	<4 <7	<4 <7	<4. <7	<4 <7	NA NA	<4 <7	<4 <7	7 36	8 <7	<4 <7	NA NA	<4 <7	993 2308	849 1650	6 61	NA NA	5 16	NA NA	<4 <7	NA NA	<4 <7
>C21-C35 (EH_CU_1D_AL) #	mg/kg	<7	1000000	1660	NA	<7	NA	<7	<7	<7	<7	<7	<7	<7	66	<7	<7	124	<7	<7	<7	16	<7	NA	<7	<7	187	16	<7	NA	<7	1660	808	320	NA	44	NA	<7	NA	<7
(EH+HS_CU_1D_AL)	mg/kg	<19		5037	NA	<19	NA	<19	<19	<19	<19	<19	<19	<19	104	<19	<19	164	<19	<19	<19	<19	<19	NA	<19	<19	230	24	<19	NA	<19	5037	3385	391	NA	65	NA	<19	NA	<19
>C5-EC7 (HS_1D_AR) #	mg/kg	< 0.1		3700	NA	< 0.1	NA	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	< 0.1	<0.1	<0.1	NA	<0.1	NA	<0.1	NA	<0.1
>EC8-EC10 (HS_1D_AR) #	mg/kg	<0.1	2200	15.2	NA	<0.1	NA	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	<0.1	<0.1	NA	<0.1	<0.1	<0.1	<0.1	NA	<0.1	NA	<0.1	NA	<0.1
>EC10-EC12 (EH_CU_1D_AR) >EC12-EC16 (EH_CU_1D_AR) #	mg/kg	<0.2	35000	540	NA	< 4	NA	< 4	< 0.2	< 0.2	< 4	< 4	< 4	< 4	7	< 4	< 4	1.4	<4	<4	<4	<4	<4	NA	<4	<4	15	<4	<4	NA	<4	393	540	4.2	NA	<4	NA	<4	NA	<4
>EC16-EC21 (EH_CU_1D_AR) * >EC21-EC35 (EH_CU_1D_AR) *	mg/kg mg/kg	<7	29000	1439	NA	<7	NA	<7	<7	< / 32	<7	<7	102	70	101	70	< / 11	46 232	<7 <7	<7 <7	<7 41	<7 47	<7 <7	NA NA	<7 <7	<7	399	<7 <7	<7 <7	NA	<7 <7	1700	1559 643	541	NA	<7	NA	<7	NA NA	<7
Total aromatics C5-35 (EH+HS_CU_1D_AR) [#]	mg/kg	<19		3547	NA	<19	NA	<19	<19	32	<19	<19	123	84	135	88	<19	291	<19	<19	41	47	<19	NA	<19	<19	517	<19	<19	NA	<19	3547	2751	629	NA	<19	NA	<19	NA	<19
Total aliphatics and aromatics(C5- 35) (EH+HS_CU_1D_Total)	mg/kg	<38		8584	NA	<38	NA	<38	<38	<38	<38	<38	123	84	239	88	<38	455	<38	<38	41	47	<38	NA	<38	<38	747	<38	<38	NA	<38	8584	6136	1020	NA	65	NA	<38	NA	<38
Mineral Oil (C10-C40)	mg/kq	<30			<30	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<30	NA	NA	NA	NA	NA	NA	NA	NA	<30	NA	NA	NA
VOCs																																								<u> </u>
Dichlorodifluoromethane Methyl Tertiary Butyl Ether #	µg/kg µg/kg	<2 <2			NA	<2 <2	NA	<2 <2	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	<2 <2	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	<2 <2	<2 <2	<2 <2	NA NA	<2 <2	NA NA	NA	NA NA	NA
Chloromethane [#]	µg/kg µg/kg	<3 <2			NA	<3 <2	NA	<3 <2	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	<3 <2	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	<3 <2	<3 <2	<3 <2	NA	<3 <2	NA NA	NA	NA NA	NA NA
Bromomethane Chloroethane [#]	μg/kg μg/kg	<1 <2			NA NA	<1 <2	NA	<1 <2	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	<1 <2	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1 <2	<1 <2	<1 <2	NA	<1 <2	NA	NA	NA	NA NA
Trichlorofluoromethane [#] 1,1-Dichloroethene (1,1 DCE) [#]	μg/kg μg/kg	<2 <6			NA NA	<2 <6	NA	<2 <6	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<2 <6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<2 <6	<2 <6	<2 <6	NA NA	<2 <6	NA NA	NA NA	NA NA	NA NA
Dichloromethane (DCM) # trans-1-2-Dichloroethene #	µg/kg µg/kg	<7 <3			NA NA	<7 <3	NA	<7 <3	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<7 <3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<7 <3	<7 <3	<7 <3	NA NA	<7 <3	NA NA	NA NA	NA NA	NA NA
1,1-Dichloroethane [#] cis-1-2-Dichloroethene [#]	μg/kg μg/kg	<3 <3			NA NA	<3 <3	NA NA	<3 <3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<3 <3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<3 <3	<3 <3	<3 <3	NA NA	<3 <3	NA NA	NA NA	NA NA	NA NA
2,2-Dichloropropane Bromochloromethane [#]	µg/kg µg/kg	<4 <3			NA NA	<4 <3	NA NA	<4 <3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<4 <3	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<4 <3	<4 <3	<4 <3	NA NA	<4 <3	NA NA	NA NA	NA NA	NA NA
Chloroform [#] 1,1,1-Trichloroethane [#]	μg/kg μg/kg	<3 <3			NA NA	<3 <3	NA NA	<3 <3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<3 <3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<3 <3	<3 <3	<3 <3	NA NA	<3 <3	NA NA	NA NA	NA NA	NA NA
1,1-Dichloropropene [#] Carbon tetrachloride [#]	µg/kg µq/ka	<3 <4			NA NA	<3 <4	NA NA	<3 <4	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<3 <4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<3 <4	<3 <4	<3 <4	NA NA	<3 <4	NA NA	NA NA	NA NA	NA NA
1,2-Dichloroethane #	µg/kg	<4	15	7	NA	<4 <3	NA NA	<4 <3	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	<4 <3	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<4 <3	<4 <3	<4 7	NA	<4	NA NA	NA NA	NA NA	NA NA
Trichloroethene (TCE) #	μg/kg	<3			NA	<3	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	<3	<3	NA	<3	NA	NA	NA	NA

Soils - Ris	k to Hur	man Hea	lth	1							23/1	6860								_	_	_		_		00/40050	_	_	_	_							03/17063		
EMT Sample No					4 WS111-2-2	5-6 WS106.06	7 S WS106 14	9-10	11-12 3 WS107 0.2	14-16	17-19	20-22	23-25 HD4	26-28 HD5	29-31 HD6	32-34 HD7	35-37 HD8	38-40	1-3 TP101	4-6 TP102	7-9 TP103	10-11 WS102 3.8	13-15 WS112_1_7	16 WS112.0.2	18-20 TP105	23/16958 21-23 TP104	24-26	27-29 TP108	30-32	33	34-35	36-40	41-43 WS104_27	1-2 WS103-2.8	3 NS109.0.4 W	4-5	6 7. (\$108.0.3 W(\$10	3 9 3 3 4 WS110 3	10-11 3.4 WS110.2.7
Depth					2.2	0.6	1.4	0.8	0.2	0.25-0.30	0.20-0.30	0.20-0.30	0.10-0.30	0.00-0.20	0.15-0.30	0.15-0.30	0.20-0.30	0.10-0.25	+1.50-0.00	2.20-2.40	+0.90-0.00	3.8	1.7	0.2	+1.30-0.00	+0.90-0.00	0.60-0.70	0.30-0.60 +	+1.40-0.00	0.1	1	0.4	2.7	2.8	0.4	0.9	0.3 3	4 0.3	2.7
Strata					Made Ground	d Made Ground	d Clay	Made Ground	d Made Ground	d Made Ground	Made Ground	Made Ground M	Made Ground	Made Grour	nd Made Ground	Made Ground	Made Ground	Made Ground	Sand I	Made Ground N	Made Ground	Made Ground N	ade Ground Ma	ade Ground Ma	ade Ground Ma	ade Ground	Mudstone N	lade Ground N	Made Ground	Made Ground M	ade Ground Mad	le Ground Ma	ade Ground Cl	y Made Groui	ind Sand				
Date Sampled				3	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	09/10/2023	3 10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023	10/10/2023 1	10/10/2023 1	0/10/2023 1	0/10/2023 1	10/10/2023	10/10/2023	10/10/2023	11/10/2023	1/10/2023 11/	/10/2023 1	1/10/2023 11/10	2023 11/10/202	23 11/10/2023
		Limi	GAC	laximu																																			
Analytical Parameter	Uni	t of d	(Comi ndust	Im Co																																			
(Soil Analysis)	ts	etecti	meric trial)	ncent																																			
		9	al /	ratio																																			
1,2-Dichloropropane #	µg/kg	<6			NA	<6	NA	<6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<6	NA	NA	NA	NA	NA	NA	NA	NA	NA	<6	<6	<6	NA	<6	NA N	NA NA	NA
Dibromomethane * Bromodichloromethane *	μg/kg μg/kg	<3			NA	<3	NA	<3	NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	<3 <3	NA	NA NA	NA	NA		NA NA	NA	NA	NA	<3	<3 <3	<3 <3	NA	<3 <3	NA N NA N	A NA	NA
cis-1-3-Dichloropropene Toluene #	μg/kg μg/kg	<4 <3	33000	20	NA NA	<4 <3	NA	<4 <3	NA	NA NA	NA	NA	NA		NA	NA	NA NA	NA			NA NA	<4 10	NA		NA NA						NA	<4 <3	<4 <3	<4 20		<4 <3	NA N NA N	A NA A NA	
1,1,2-Trichloroethane #	µg/kg µg/kg	<3			NA	<3 <3	NA	<3 <3	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3 <3	<3	<3		<3	NA N NA N	A NA	NA
1,3-Dichloropropane #	μg/kg μg/kg	<3			NA	< 3	NA	< 3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	<3	<3	NA	<3	NA NA	A NA	NA
1,2-Dibromoethane #	μg/kg μg/kg	<3			NA	< 3	NA	< 3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	<3	<3	NA	<3	NA NA	A NA	NA
Chlorobenzene " 1,1,1,2-Tetrachloroethane #	µg/kg µg/kg	<3			NA	<3	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	<3	<3	NA	<3	NA N NA N	A NA	NA
Ethylbenzene " m/p-Xylene #	µg/kg µg/kg	<3	3200 6700	6 19	NA	<3	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3 <5	NA	NA	NA	NA		NA	NA	NA	NA	<3 8	<3 <5	6 19	NA	<3 <5	NA N NA N	A NA A NA	NA
o-Xylene " Styrene Bromoform	µg/kg µg/kg	<3	3700	8	NA NA	< 3	NA NA	<3	NA	NA NA	NA NA		NA NA	NA	NA NA	NA		NA		NA NA	NA NA	<3 <3 <3	NA NA		NA NA	NA					NA NA	8 <3	<3	<3		<3	NA N NA N	A NA A NA	NA
Isopropylbenzene #	µg/kg µg/kg	<3	710000	5	NA	<3	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	5	<3	<3	NA	<3	NA NA		NA
Bromobenzene 1.2.3-Trichloropropane [#]	µg/kg µg/kg	<2			NA	<2	NA	<2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2	NA	NA	NA	NA	NA	NA	NA	NA	NA	<2	<2	<2 <4	NA	<2	NA NA	A NA	NA
Propylbenzene # 2-Chlorotoluene	µg/kg µg/kg	<4	2100000	10	NA	<4	NA	<4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<4	NA	NA	NA	NA	NA	NA	NA	NA	NA	10	<4	<4	NA NA	<4	NA NA	A NA	NA NA
1,3,5-Trimethylbenzene # 4-Chlorotoluene	µg/kg µg/kg µg/kg	<3	12000	13	NA	<3	NA	<3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	<3 <3	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	<3 <3	<3 <3	13 <3	NA	<3 <3	NA N NA N	A NA A NA	NA
tert-Butylbenzene [#] 1,2,4-Trimethylbenzene [#]	μg/kg μg/kg	<5 <6	7500000 22000	20 77	NA NA	<5 <6	NA	<5 <6	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<5 <6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	13 43	9 <6	20 77	NA	<5 <6	NA N NA N	A NA	NA NA
sec-Butylbenzene # 4-Isopropyltoluene	μg/kg μg/kg	<4 <4	7500000	212 67	NA NA	<4 <4	NA NA	<4 <4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<4.	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	61 48	212 38	13 67	NA	<4 <4	NA N NA N	A NA A NA	NA NA
1,3-Dichlorobenzene [#] 1,4-Dichlorobenzene [#]	µg/kg µg/kg	< 4 < 4			NA NA	<4 <4	NA NA	< 4 < 4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<4 <4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	< <u>4</u> < <u>4</u>	<4 <4	<4 <4	NA	<4 <4	NA N NA N	A NA	NA
n-Butylbenzene 1,2-Dichlorobenzene [#]	µg/kg µg/kg	<4 <4	83000000	85	NA NA	<4 <4	NA NA	<4 <4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<4 <4	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	85 <4	<4. <4.	8 <4	NA NA	<4 <4	NA N NA N	A NA A NA	NA NA
1,2-Dibromo-3-chloropropane 1,2,4-Trichlorobenzene	µg/kg µg/kg	<4 <7			NA NA	<4 <7	NA	<4 <7	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	<4 <7	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	<4 <7	<4 <7	<4 <7	NA	<4 <7	NA N NA N	A NA NA	NA
Hexachlorobutadiene Naphthalene	µg/kg µg/kg	<4 <27	1100000	44		<4 <27		<4 <27	NA				NA NA		NA NA	NA		NA				<4 <27	NA								NA	<4 <27	<4 <27	<4 44		<4 <27	NA N NA N	A NA A NA	
Surrogate Recovery Toluene D8	µу/ку	<0		109	NA	99	NA	107	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	109	NA	NA	NA	NA	NA	NA	NA	NA	NA	78	78	65	NA	97	NA N	A NA	NA
Bromofluorobenzene		<0		92	NA	81	NA	92	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	85	NA	NA	NA	NA	NA	NA	NA	NA	NA	68	64	58	NA	91	NA N	A NA	NA
<u>SVOC MS</u> Phenols			_		_	_												-																					
2-Chlorophenol [#] 2-Methylphenol	μg/kg μg/kg	<10 <10	16000000	13	NA NA	<10 <10	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	<10 <10	<10 <10	<10 13	NA NA	<10 <10	NA N NA N	A NA A NA	NA NA
2-Nitrophenol 2,4-Dichlorophenol #	μg/kg μg/kg	<10 <10			NA	<10 <10	NA	<10 <10	NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA NA	NA				<10 <10	NA NA		NA NA				NA	NA	NA	<10 <10	<10 <10	<10 <10		<10<10	NA N NA N	A NA NA	
2,4-Dimetnyiphenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	µg/kg µg/kg	<10			NA NA	<10		<10	NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA		NA	NA NA	NA NA	NA NA	<10 <10 <10	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10 <10	<10 <10 <10	<10 <10 <10		<10 <10 <10	NA N NA N	A NA A NA	
4-Chloro-3-methylphenol 4-Methylphenol	µg/kg µg/kg µg/kg	<10 <10 <10	16000000	35	NA	<10 <10 <10	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10 <10	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10 10</td <td><10 <10</td> <td><10 35</td> <td>NA</td> <td><10 <10</td> <td>NA N NA N</td> <td>A NA A NA</td> <td>NA</td>	<10 <10	<10 35	NA	<10 <10	NA N NA N	A NA A NA	NA
4-Nitrophenol Pentachlorophenol	µg/kg µg/kg	<10 <10			NA NA	<10 <10	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	<10 <10	<10 <10	NA NA	<10 <10	NA N NA N	A NA A NA	NA NA
Phenol [#] PAHs	µg∕kg	<10	380000	14	NA	<10	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10	<10	14	NA	<10	NA N	A NA	NA
2-Chloronaphthalene [#] 2-Methylnaphthalene [#]	μg/kg μg/kg	<10 <10	7100000	158	NA NA	<10 18	NA NA	<10 21	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 94	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 137	<10 119	<10 158	NA NA	<10 12	NA N NA N	A NA A NA	NA NA
Phthalates Bis(2-ethylhexyl) phthalate	µg/kg	<100	85000000	932	NA	<100	NA	<100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<100	NA	NA	NA	NA	NA	NA	NA	NA	NA	932	<100	<100	NA	<100	NA N	A NA	NA
Di-n-butyl phthalate	µg/kg µg/kg	<100	15000000	128	NA NA	<100		<100	NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA		NA NA	<100 <100 <100	NA NA		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	<100 123 <100	<100 128 <100	<100		<100 <100 <100	NA N NA N	A NA A NA	
Diethyl phthalate	µg/kg µg/kg	<100			NA	<100	NA	<100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<100 <100 <100	NA	NA	NA	NA	NA	NA	NA	NA	NA	<100	<100	<100 <100 <100	NA	<100	NA NA	A NA	NA
Other SVOCs																									L														
1,2-Dichlorobenzene 1,2,4-Trichlorobenzene [#]	µg/kg µg/kg	<10 <10			NA NA	<10 <10	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	<10 <10	<10 <10	NA NA	<10 <10	NA N NA N	A NA NA	NA NA
1,3-Dichlorobenzene 1,4-Dichlorobenzene	µg/kg µg/kg	<10 <10			NA NA	<10 <10	NA	<10 <10	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	<10 <10	NA NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	<10 <10	<10 <10	<10 <10	NA NA	<10 <10	NA N NA N	A NA A NA	
2-Nitroaniline 2,4-Dinitrotoluene	µg/kg µg/kg	<10 <10				<10 <10		<10 <10 <10	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA		NA	NA NA	NA NA	NA NA	<10 <10	NA NA		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	<10 <10	<10 <10 <10	<10 <10		<10 <10	NA N NA N	A NA A NA	
3-Nitroaniline 4-Bromophenylphenylether #	µg/kg µg/kg µa/ka	<10 <10 <10			NA	<10 <10	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10 <10 <10	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10 <10 <10	<10 <10 <10	<10 <10 <10	NA	<10	NA N NA N	A NA	NA
4-Chlorophenylphenylether 4-Chlorophenylphenylether	μg/kg μg/kg	<10 <10			NA	<10<10	NA NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	<10 <10	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10 <10	<10	<10	NA	<10 <10	NA N NA N	A NA A NA	NA
4-Nitroaniline Azobenzene	µg/kg µg/kg	<10 <10			NA NA	<10 <10	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	<10 <10	<10 <10	NA NA	<10 <10	NA N NA N	A NA A NA	NA NA
Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether	μg/kg μg/kg	<10 <10	000000	()	NA NA	<10 <10		<10 <10	NA			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA		NA NA		<10 <10	NA NA		NA NA				NA NA	NA NA	NA NA	<10 <10	<10 <10	<10 <10		<10 <10	NA N NA N	A NA A NA	
Carbazole Dibenzofuran #	μg/kg μg/kg	<10	6700000	63	NA	<10	NA	<10	NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	74	NA	NA	NA	NA		NA		NA	NA NA	<10 631	<10 124	80		<10 12	NA N NA N	A NA A NA	NA
Hexachlorobutadiene #	µg/kg µg/kg	<10			NA	<10	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10	<10	<10	NA	<10	NA N NA N	A NA	NA
Hexachloroethane Isophorone #	µg/kg µg/ka	<10			NA	<10	NA	<10	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10	NA	NA	NA	NA	NA	NA	NA	NA	NA	<10	<10	<10	NA	<10	NA N NA N	A NA NA	NA
N-nitrosodi-n-propylamine [#] Nitrobenzene [#]	μg/kg μg/kg	<10 <10			NA NA	<10 <10	NA NA	<10 <10	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	<10 <10	<10 <10	<10 <10	NA	<10 <10	NA N NA N	A NA NA	NA NA
Surrogate Recovery 2- Fluorobiphenyl	%	<0		133	NA	118	NA	113	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	111	NA	NA	NA	NA	NA	NA	NA	NA	NA	127	133	109	NA	107	NA N	A NA	NA
Surrogate Recovery p-Terphenyl- d14	%	<0		136	NA	107	NA	106	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	107	NA	NA	NA	NA	NA	NA	NA	NA	NA	135	136	131	NA	103	NAN	A NA	NA
PCBs	n	-			r	5.1.A	6.1.A	5.1 F	N 1 A	BIA	K1 A	51 A	N L A	N.L.A	NLA	<u> </u>	N L A	5.1 A	6.1.A	N I A	K I A	N L A	5.1.A	N I A	NTA	N1.6	K1 A		NIA	N I A	K1 A	N LA	NIA	NT A	NIA	NIA	~ E	6.1.A	h. j. A
PCB 28 " PCB 52 #	µg/kg µg/kg	<5 <5	<u> </u>	<u> </u>	<5 <5	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA		NA NA	NA	NA NA	NA NA	NA NA					NA NA			NA NA		<5			NA NA						N	A NA NA	
PCB 101 " PCB 118 #	μg/kg μg/kg	<5 <5		<u> </u>	<5 <5	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA		NA NA	NA NA	NA NA	~⊃ <5 ∠E	NA	NA	NA NA						N	NA NA	
PCB 138 " PCB 153 #	μg/kg	<5 <5		<u> </u>	<5 <5	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA		NA	NA NA	NA	<5 <5	NA	NA	NA NA	NA		NA			<5 N	A NA	
FUB 180 "	µg/Kg	<5		·	<0	NA	NA	NA	NA	AVI	NA	AVI	NA MA		NA NA	NA	NA NA	NA	NA NIA	NA NA	NA NA	NA NA	NA NIA	N/A NIA	NA	NA NIA		-35	NA	NA NA	N A		NA NA	NA NIA		NA	~J N		
I UIAI / MUBS	µy/ky	< 30		1	< 00	NA	AM	NA	NA	NА	IN/A	1 VPA	1.1/1	IN/A	1.11/1	I WA	NA	INA	1.1/*\	1 N/~\	1.11/1	1.11/73	1.11/71	1.1771	1.1/73	1.1/7	1.47%	-00	1.3773	1.1/73	1.117	1.37	1.1/7	1.1/7	003	1.17.1	NU N	. INA	1.1774

Exceedence of GAC NA = Not Analysed

Ramboll GAC for a Commercial /

Industrial End Use

Groundwater - Risk to Human Health

							23/1	7129	
EMT Sample No					14-23	24-33	34-43	44-53	54-63
Sample ID					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023
Depth									
Strata					10/10/2022	12/10/2022	12/10/2022	12/10/2022	12/10/2022
Date Sampled				-	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023
Analytical Parameter (Soil Analysis)	Units	Limit of detection	GAC - Protective of Human Health via Volatilisation Pathways	Maximum Concentration					

General Inorganics			 					
pH #	pH Units	<0.01	7.82	6.71	6.9	7.82	6.56	7.34
Total Cyanide #	mg/l	<0.01	0.02	<0.01	0.02	<0.01	< 0.01	0.02
Sulphate as SO4 #	mg/l	<0.5	424.5	67.8	424.5	104.1	140.1	139.3
Sulphide	mg/l	< 0.01		< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ammoniacal Nitrogen as N [#]	mg/l	< 0.03	42.2	0.04	0.14	< 0.03	0.04	42.2
Chloride #	mg/l	<0.3	146.4	6.9	114.9	9.3	9.5	146.4
Nitrite as NO2 #	mg/l	< 0.02	0.04	< 0.02	< 0.02	< 0.02	< 0.02	0.04
Nitrate as N #	mg/l	< 0.05	3.29	3.29	0.34	0.52	< 0.05	< 0.05
Total Alkalinity as CaCO3 #	mg/l	<1	1012	150	326	202	64	1012
Total Hardness Dissolved (as CaCO3)	mg/l	<1	690	129	498	261	188	690
Dissolved Organic Carbon #	mg/l	<2	17	5	7	3	12	17
Total Phenols					-			
Total Phenols HPLC	mg/l	<0.15		< 0.15	< 0.15	< 0.15	< 0.15	< 0.15

Heavy Metals / Metalloids

Dissolved Arsenic [#]	µg/l	<2.5	NV	18.8	4.1	<2.5	3.6	<2.5	18.8
Dissolved Beryllium	µg/l	< 0.5	NV		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dissolved Boron	µg/l	<12	NV	562	149	103	117	<12	562
Dissolved Cadmium [#]	µg/l	< 0.5	NV		< 0.5	<0.5	< 0.5	<0.5	< 0.5
Dissolved Calcium #	mg/l	<0.2	NV	127.6	30.1	115.9	70.8	35.3	109.7
Total Dissolved Chromium #	µg/l	<1.5	NV	4.1	4.1	<1.5	2.9	<1.5	<1.5
Hexavalent Chromium	ug/l	<6	NV		<6	<6	<6	<6	<6
Dissolved Copper #	µg/l	<7	NV		<7	<7	<7	<7	<7
Total Dissolved Iron #	ug/l	<20	NV	14302	<20	<20	<20	131	14302
Dissolved Lead #	µg/l	<5	NV		<5	<5	<5	<5	< 5
Dissolved Magnesium #	mg/l	<0.1	NV	99	12.7	49.7	19.9	23.7	99
Dissolved Mercury #	µg/l	<1	95		<1	<1	<1	<1	<1
Dissolved Nickel #	µg/l	<2	NV	16	<2	16	<2	<2	10
Dissolved Potassium #	mg/l	<0.1	NV	43.6	7.7	4.4	10.7	6.3	43.6
Dissolved Selenium [#]	µg/l	<3	NV	30	< 3	30	< 3	<3	<3
Dissolved Sodium #	mg/l	<0.1	NV	188.2	36.7	188.2	20	10.2	181.6
Dissolved Vanadium [#]	µg/l	<1.5	NV	15.3	5.5	2.2	15.3	<1.5	2.3
Dissolved Zinc #	µq/l	<3	NV	10	5	8	5	4	5

Naphthalene	µg/l	< 0.1	23000	0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01
Acenaphthylene	µg/l	< 0.005	20000000		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Acenaphthene	µg/l	< 0.005	15000000	0.095	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fluorene	µg/l	< 0.005	18000000		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Phenanthrene	µg/l	< 0.005	NV		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Anthracene	µg/l	< 0.005	NV		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Fluoranthene	µg/l	< 0.005	NV	0.148	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Pyrene	µg/l	< 0.005	NV	0.683	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Benzo(a)anthracene	µg/l	< 0.005	NV	0.019	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Chrysene	µg/l	< 0.005	NV	0.077	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Benzo(b)fluoranthene	µg/l	< 0.008	NV	0.088	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Benzo(k)fluoranthene	µg/l	< 0.008	NV	0.035	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Benzo(a)pyrene	µg/l	< 0.005	NV	0.066	< 0.002	<0.002	< 0.002	< 0.002	< 0.002
Indeno(1,2,3-cd)pyrene	µg/l	< 0.005	NV	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Dibenz(a,h)anthracene	µg/l	< 0.005	NV	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Benzo(ahi)pervlene	ua/l	< 0.005	NV	0.013	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005

Total PAH								
Speciated Total EPA 16 PAHs	µg/l	< 0.173	1.249	< 0.082	< 0.082	< 0.082	< 0.082	< 0.082

Monoaromatics & Oxygenates

MTBE #	µg/l	<0.1	7800000	<0.1	<0.1	< 0.1	<0.1	<0.1
Benzene #	µg/l	< 0.5	20000	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
Toluene #	µg/l	<5	21000000	<5	<5	<5	<5	<5
Ethylbenzene #	µg/l	<1	960000	<1	<1	<1	<1	<1
m/p-Xylene #	µg/l	<2	940000	<2	<2	<2	<2	<2
o-Xylene #	µg/l	<1	1100000	<1	<1	<1	<1	<1

Petroleum Hydrocarbons

>C5-C6 [#]	µg/l	<10	190000	<10	<10	<10	<10	<10
>C6-C8 #	µg/l	<10	150000	<10	<10	<10	<10	<10
>C8-C10 #	µg/l	<10	5700	<10	<10	<10	<10	<10
>C10-C12 #	µg/l	<5	3600	<5	<5	<5	<5	<5
>C12-C16 #	µg/l	<10	NV	<10	<10	<10	<10	<10
>C16-C21 #	µg/l	<10	NV	<10	<10	<10	<10	<10
>C21-C35 #	µg/l	<10	NV	<10	<10	<10	<10	<10
Total aliphatics C5-35 [#]	µg∕l	<10		<10	<10	<10	<10	<10

							23/17129			
EMT Sample No					14-23	24-33	34-43	44-53	54-63	
Sample ID					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023	
Depth										
Date Sampled					13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023	
Bato Gampiou			G	_	10/10/2020	10/10/2020	10/10/2020	10/10/2020	10/10/2020	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	AC - Protective of Human Health via Volatilisation Pathways	Maximum Concentration						
						1	1	1		
>C5-EC7 #	µg/l	<10	NV		<10	<10	<10	<10	<10	
>EC7-EC8 #	µg/l	<10	NV		<10	<10	<10	<10	<10	
>EC8-EC10 "	µg/l	<10	19000		<10	<10	<10	<10	<10	
>EC10-EC12 "	µg/I	<5	660000		<5	<5	<5	<5	<5	
>EC12-EC16"	µg/1	<10	3700000		<10	< 10	<10	<10	<10	
>EU16-EU21"	µg/i	<10	INV NIV		<10	< 10	<10	< 10	<10	
>EC21-EC35	μул	< 10	INV		< 10	< 10	< 10	< 10	< 10	
Total aromatics C5-35 #	µg/l	<10			<10	<10	<10	<10	<10	
Total aliphatics and aromatics(C5-35) *	µg/I	<10			<10	<10	<10	<10	<10	
VOCs										
Dichlorodifluoromethane	µg/l	<2			<2	<2	<2	<2	<2	
Methyl Tertiary Butyl Ether #	µg/l	<0.1			< 0.1	<0.1	< 0.1	<0.1	< 0.1	
Chloromethane #	µg/l	<3			<3	<3	<3	<3	<3	
Vinyl Chloride #	µg/l	<0.1			< 0.1	<0.1	< 0.1	<0.1	<0.1	
Bromomethane	µg/l	<1			<1	<1	<1	<1	<1	
Chloroethane #	µg/l	<3			<3	<3	<3	<3	<3	
Trichlorofluoromethane #	µg/l	<3			<3	<3	<3	<3	<3	
1,1-Dichloroethene (1,1 DCE) #	µg/l	<3			<3	<3	<3	<3	<3	
Dichloromethane (DCM) #	µg/l	<3			<3	<3	<3	<3	<3	
trans-1-2-Dichloroethene#	µg/l	<3			<3	<3	<3	<3	<3	
1,1-Dichloroethane [#]	µg/l	<3			<3	<3	<3	<3	<3	
cis-1-2-Dichloroethene#	µg/l	<3			<3	<3	<3	<3	<3	
2,2-Dichloropropane	µg/l	<1			< 1	<1	< 1	< 1	<1	
Bromochloromethane "	µg/I	<2			<2	<2	<2	<2	<2	
Chloroform "	µg/1	<2			< 2	<2	<2	<2	<2	
1, I, I-Irichloroethane	µg/1	<2			< 2	< 2	< 2	<2	< 2	
1, I-Dichloropropene "	µg/i	< 3			< 3	< 3	< 3	< 3	< 3	
Larbon tetrachioride "	µg/i	<2			<2	<2	<2	<2	<2	
1,2-Dicnioroetnane	µg/i	<2			< 2	< Z	< 2	< 2	< 2	
Benzene	µg/1	< 0.5			< 0.5	<0.5	< 0.5	<0.5	< 0.5	
1 2 Diableropropage #	µg/I	< 3			< 3	< 3	< 3	< 3	< 3	
1,2-Dichloropropane	µg/l	<2			< 2	< 3	< 2	<2	< 2	
Dibiomomethane #	µg/l	< 3			< 2	< 3	< 3	< 2	< 3	
cis_1_3_Dichloropropene	µg/l	<2	1		<2	<2	<2	<2	<2	
Toluene #	ua/l	<5			<5	<5	<5	<5	<5	
trans-1-3-Dichloropropene	µg/l	<2	1		<2	<2	<2	<2	<2	
1,1,2-Trichloroethane #	µg/l	<2			<2	<2	<2	<2	<2	
Tetrachloroethene (PCE) #	µg/l	<3			<3	<3	<3	< 3	<3	
1,3-Dichloropropane #	µg/l	<2			<2	<2	<2	<2	<2	
Dibromochloromethane #	µg/l	<2			<2	<2	<2	<2	<2	
1,2-Dibromoethane #	µg/l	<2	I		<2	<2	<2	<2	<2	
Chlorobenzene [#]	µg/l	<2	Į	I	<2	<2	<2	<2	<2	
1,1,1,2-Tetrachloroethane [#]	µg/l	<2	l	<u> </u>	<2	<2	<2	<2	<2	
Ethylbenzene *	µg/l	<1	1	 	<1	<1	<1	<1	<1	
m/p-Xylene "	µg/l	<2	ł	I	<2	<2	<2	<2	<2	
U-AYIENE "	µg/I	<1	ł		<	<	<	<	<	
Bromoform #	µg/l	<2	1	1	<2	<2	<2	<2	<2	
Isopronylbenzene [#]	μ <u>9/1</u> μα/Ι	<2	1		< 2	< 2	< 2	< 2	< 2	
1.1.2.2-Tetrachloroethane	μ <u>9</u> /1 μα/Ι	< 4	1		< 4	< 4	< 4	< 4	< 4	
Bromobenzene #	µg/l	<2	Ī	1	<2	<2	<2	<2	<2	
1,2,3-Trichloropropane *	µg/l	<3	1		< 3	<3	<3	<3	< 3	
Propylbenzene #	µg/l	<3	Ī	1	< 3	<3	< 3	< 3	<3	
2-Chlorotoluene #	µg/l	<3	Ī	1	< 3	<3	< 3	< 3	<3	
1,3,5-Trimethylbenzene [#]	µg/l	<3			< 3	< 3	<3	< 3	< 3	
4-Chlorotoluene #	µg/l	<3			<3	<3	<3	<3	<3	
tert-Butylbenzene #	µg/l	<3			<3	<3	<3	<3	<3	
1,2,4-Trimethylbenzene #	µg/l	<3			<3	<3	<3	<3	<3	
sec-Butylbenzene #	µg/l	<3			<3	<3	<3	<3	<3	
4-Isopropyltoluene #	µg/l	<3			<3	<3	<3	<3	<3	
1,3-Dichlorobenzene #	µg/l	<3			<3	<3	<3	<3	<3	
1,4-Dichlorobenzene #	µg/l	<3			<3	<3	<3	<3	<3	
n-Butylbenzene #	µg/l	<3			<3	<3	< 3	<3	< 3	
1,2-Dichlorobenzene #	µg/l	<3	I		<3	<3	<3	<3	<3	
1,2-Dibromo-3-chloropropane	µg/l	<2	I		<2	<2	<2	<2	<2	
1,2,4-Trichlorobenzene	µg/l	<3	1	 	< 3	< 3	< 3	< 3	< 3	
nexachioroputadiene Naphthalene	µg/l	< 3	1	ł	< 3	< 3	< 3	< 3	< 3	
1.2.3-Trichlorobenzepe	μy/1 μα/Ι	<3	1		< 3	< 3	< 3	< 3	< 3	
Surrogate Recovery Toluene D8	%	<0	Ī	117	101	99	103	106	114	
Surrogate Recovery 4-Bromofluorobenzene	%	< 0	T	118	104	102	104	111	117	

					23/17129						
EMT Sample No			1		14-23	24-33	34-43	44-53	54-63		
Sample ID					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023		
Depth											
Strata Data Sampled					12/10/2022	12/10/2022	12/10/2022	12/10/2022	12/10/2022		
Date Sampled			0		13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	GAC - Protective of Human Health via Volatilisation Pathways	Maximum Concentration							
SVOC MS											
2-Chlorophenol #	ua/l	<1	1	T	<1	<1	<1	<1	<1		
2-Methylphenol	ug/l	< 0.5	NV	10.6	< 0.5	<0.5	< 0.5	< 0.5	< 0.5		
2-Nitrophenol	µg/l	< 0.5		10.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2,4-Dichlorophenol #	µg/l	< 0.5		1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
2,4-Dimethylphenol	µg/l	<1	NV	19	<1	<1	<1	<1	<1		
2,4,5-Trichlorophenol	µg/l	< 0.5			< 0.5	<0.5	< 0.5	<0.5	< 0.5		
2,4,6-Trichlorophenol	µg/l	<1			<1	<1	<1	<1	<1		
4-Chloro-3-methylphenol	µg/l	< 0.5		4.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
4-Methylphenol	µg/l	<1	NV	12	<1	<1	<1	<1	<1		
4-Nitrophenol Reptachlorophenol	µg/l	<10			< 10	< 10	< 10	< 10	< 10		
Pentachiorophenoi	µg/l	<1	NIV	2	<1	<1	<1	<1	<1		
Phenol	µg/i			2	< 1	< 1	< 1	< 1	< 1		
Chlorenenhthelene #	ug/l	-1			>1	~1	>1	~1	>1		
2-Chloronaphthalene	µg/l	<1			- 1	1	1	1	1		
2-Methylnaphthalene	μg/i	<1			< 1	<	<	<	< 1		
Prinalates		- 5	1		. E	- 5	- 5	. E	. E		
Butylbenzyl phthalate	µg/I	< 5			< 0	<0	<0	<0	<0		
Di-n-butyl phthalate	μg/1 μg/1	<15			<1.5	<1.5	<1.5	<1.5	<1.5		
Di-n-Octyl phthalate	ua/l	<1			<1	<1	<1	<1	<1		
Diethyl phthalate	ua/l	<1			<1	<1	<1	<1	<1		
Dimethyl phthalate #	µq/l	<1		1	<1	<1	<1	<1	<1		
			•		•						
Other SVOCs											
1,2-Dichlorobenzene	µg/l	<1			<1	<1	<1	<1	<1		
1,2,4-Trichlorobenzene #	µg/l	<1			<1	<1	<1	<1	<1		
1,3-Dichlorobenzene	µg/l	<1			<1	<1	<1	<1	<1		
1,4-Dichlorobenzene	µg/l	<1			<1	<1	<1	<1	<1		
2-Nitroaniline	µg/l	<1			<1	<1	<1	<1	<1		
2,4-Dinitrotoluene	µg/l	< 0.5		l	< 0.5	<0.5	< 0.5	< 0.5	< 0.5		
2,6-Dinitrotoluene	µg/l	<1			<1	<1	<1	<1	<1		
4 Promonhonydohonydothar #	μg/1 μg/1	< I _1	1	1	>1	>1	>1	>1	>1		
4-biomophenyiphenyiether	μg/i μα/i	21	ł	1	>1	21	21	>1	<1		
4-Chlorophenylphenylether	ua/l	<1	l	t	<1	<1	<1	<1	<1		
4-Nitroaniline	ua/l	< 0.5	l	1	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Azobenzene	µg/l	< 0.5	1	T	< 0.5	<0.5	< 0.5	< 0.5	< 0.5		
Bis(2-chloroethoxy)methane	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5		
Bis(2-chloroethyl)ether	µg/l	<1			<1	<1	<1	<1	<1		
Carbazole	µg/l	< 0.5	NV	1.2	< 0.5	<0.5	< 0.5	<0.5	< 0.5		
Dibenzofuran #	µg/l	< 0.5	NV	0.6	< 0.5	<0.5	< 0.5	< 0.5	< 0.5		
Hexachlorobenzene	µg/l	<1	Į	<u> </u>	<1	<1	<1	<1	<1		
Hexachlorobutadiene #	µg/l	<1	Į	<u> </u>	<1	<1	<1	<1	<1		
Hexachlorocyclopentadiene	µg/l	<1		 	<1	<1	<1	<1	<1		
Hexachioroethane	µg/I	<1			<	<	<	<	<		
Isopnorone "	µg/I	<0.5	 	<u> </u>	<0.5	<0.5	<0.5	<0.5	<0.5		
N-nitrosodi-n-propylamine #	µg/I	< 0.5			< 0.5	<0.5	<0.5	<0.5	< 0.5		
Nitrobenzene "	µg/I	<1	<u> </u>	ł	<1	<1	<1	<1	<1		
Surrogate Recovery 2- Fluorobiphenyl	%	<0		121	106	120	113	103	121		
d14	%	<0		129	111	129	121	107	123		

NV - Not Volatile
Groundwater - Risk to Groundwater

							23/1	7129		
EMT Sample No					14-23	24-33	34-43	44-53	54-63	64-73
Sample ID					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023	WS104_131023
Depth										
Strata										
Date Sampled					13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023
Analytical Parameter (Soil Analysis)	Units	Limit of detection	GAC - protection of groundwater resource	Maximum Concentration						

pH [#]	pH Units	< 0.01		7.82	6.71	6.9	7.82	6.56	7.34	7.4
Total Cyanide #	mg/l	< 0.01		0.02	< 0.01	0.02	< 0.01	< 0.01	0.02	< 0.01
Sulphate as SO4 #	mg/l	< 0.5	188	424.5	67.8	424.5	104.1	140.1	139.3	126.1
Sulphide	mg/l	< 0.01			<0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Ammoniacal Nitrogen as N#	mg/l	< 0.03	0.29	42.2	0.04	0.14	< 0.03	0.04	42.2	0.16
Chloride #	mg/l	< 0.3	188	146.4	6.9	114.9	9.3	9.5	146.4	13.2
Nitrite as NO2 #	mg/l	<0.02	0.5	0.04	<0.02	< 0.02	<0.02	< 0.02	0.04	0.04
Nitrate as N#	mg/l	< 0.05		3.29	3.29	0.34	0.52	< 0.05	< 0.05	0.66
Total Alkalinity as CaCO3 #	mg/l	<1		1012	150	326	202	64	1012	492
Total Hardness Dissolved (as CaCO3)	mg/l	<1		690	129	498	261	188	690	511
Dissolved Organic Carbon #	mg/l	<2		17	5	7	3	12	17	6

Total Phenols									
Total Phenols HPLC	mg/l	<0.15	0.17	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	0.17

Heavy Metals / Metalloids

Dissolved Arsenic [#]	µg/l	<2.5	5	18.8	4.1	<2.5	3.6	<2.5	18.8	<2.5
Dissolved Beryllium	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
Dissolved Boron	µg/l	<12		562	149	103	117	<12	562	415
Dissolved Cadmium [#]	μg/l	< 0.5	0.1		< 0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
Dissolved Calcium [#]	mg/l	<0.2		127.6	30.1	115.9	70.8	35.3	109.7	127.6
Trivalent Chromium	µg/l	<1.5		4.1	4.1	<1.5	2.9	<1.5	<1.5	<1.5
Hexavalent Chromium	ug/l	<6	1		<6	<6	<6	<6	<6	<6
Dissolved Copper #	µg/l	<7	1500		<7	<7	<7	<7	<7	<7
Total Dissolved Iron #	ug/l	<20		14302	<20	<20	<20	131	14302	2548
Dissolved Lead #	µg/l	<5	5		<5	<5	<5	<5	<5	<5
Dissolved Magnesium #	mg/l	<0.1		99	12.7	49.7	19.9	23.7	99	45.7
Dissolved Mercury [#]	µg/l	<1			<1	<1	<1	<1	<1	<1
Dissolved Nickel #	µg/l	<2	15	16	<2	16	<2	<2	10	4
Dissolved Potassium #	mg/l	<0.1		43.6	7.7	4.4	10.7	6.3	43.6	19.8
Dissolved Selenium #	µg/l	<3		30	<3	30	<3	< 3	< 3	<3
Dissolved Sodium #	mg/l	<0.1		188.2	36.7	188.2	20	10.2	181.6	38.3
Dissolved Vanadium [#]	µg/l	<1.5		15.3	5.5	2.2	15.3	<1.5	2.3	1.7
Dissolved Zinc #	µg/l	<3		10	5	8	5	4	5	10

Naphthalene	µg/l	< 0.1	0.075	0.01	<0.01	< 0.01	< 0.01	0.01	<0.01	< 0.0
Acenaphthylene	µg/l	< 0.005			< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.0
Acenaphthene	µg/l	< 0.005		0.095	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	0.09
Fluorene	µg/l	< 0.005			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0
Phenanthrene	µg/l	< 0.005			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.0
Anthracene	µg/l	< 0.005			`	< 0.005	< 0.005	< 0.005	< 0.005	<0.0
Fluoranthene	µg/l	< 0.005	0.075	0.148	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.14
Pyrene	µg/l	< 0.005		0.683	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.68
Benzo(a)anthracene	µg/l	< 0.005		0.019	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0
Chrysene	µg/l	< 0.005		0.077	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0
Benzo(b)fluoranthene	µg/l	< 0.008	0.05	0.088	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0
Benzo(k)fluoranthene	µg/l	<0.008	0.05	0.035	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0
Benzo(a)pyrene	µg/l	< 0.005	0.005	0.066	< 0.002	< 0.002	< 0.002	< 0.002	< 0.002	0.0
Indeno(1,2,3-cd)pyrene	µg/l	<0.005	0.05	0.02	< 0.005	<0.005	<0.005	<0.005	<0.005	0.0
Dibenz(a,h)anthracene	µq/l	< 0.005		0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0
Benzo(ghi)pervlene	ua/l	< 0.005	0.05	0.013	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.0

TULALEAN									
Speciated Total EPA 16 PAHs	µg/l	< 0.173	1.249	< 0.082	< 0.082	< 0.082	<0.082	< 0.082	1.249

Monoaromatics & Oxygenates

MTBE #	µg/l	<0.1	15	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzene #	μg/l	< 0.5	1	< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5
Toluene #	μg/l	<5	350	<5	<5	<5	<5	<5	<5
Ethylbenzene #	µg/l	<1		<1	<1	<1	<1	<1	<1
m/p-Xylene #	µg/l	<2	2	<2	<2	<2	<2	<2	<2
o-Xylene [#]	µg/l	<1	3	<1	<1	<1	<1	<1	<1

Petroleum Hydrocarbons									
>C5-C6 #	μg/l	<10	15000	<10	<10	<10	<10	<10	<10
>C6-C8 #	µg/l	<10	15000	<10	<10	<10	<10	<10	<10
>C8-C10 [#]	µg/l	<10	300	<10	<10	<10	<10	<10	<10

							23/1	7129		
EMT Sample No					14-23	24-33	34-43	44-53	54-63	64-73
Sample ID					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023	WS104_131023
Depin Strata					<u> </u>					
Date Sampled					13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023
			(0	_						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	GAC - protection of groundwater resource	Maximum Concentration						
>C10-C12 #	μg/l	<5	300		<5	<5	<5	<5	<5	53
>C12-C16 #	µg/l	<10	300		<10	<10	<10	<10	<10	400
>C16-C21 #	µg/l	<10	-		<10	<10	<10	<10	<10	850
>C21-C35 #	µg/l	<10	-		<10	<10	<10	<10	<10	440
Total aliphatics C5-35 #	µg/l	<10			<10	<10	<10	<10	<10	1743
or roz#	.ug/l	-10	1	r	-10	-10	-10	-10	-10	-10
>05-EC7 "	µg/I	<10	700		< 10	< 10	< 10	< 10	< 10	< 10
>EC8-EC10#	µg/1 µg/1	<10	300		< 10	< 10	< 10	< 10	< 10	< 10
>FC10-FC12 #	µg/1 µa/l	<5	90	32	<5	<5	<5	<5	<5	32
>EC12-EC16 #	µg/l	<10	90	210	<10	<10	<10	<10	<10	210
>EC16-EC21 #	µg/l	<10	90	520	<10	<10	<10	<10	<10	520
>EC21-EC35 #	µg/l	<10	90	260	<10	<10	<10	<10	<10	260
Total aromatics C5-35 #	µg/l	<10		1022	<10	<10	<10	<10	<10	1022
										07.5
Total aliphatics and aromatics(C5-35) #	µg/l	<10		2765	<10	<10	<10	<10	<10	2765
VOCs										
Dichlorodifluoromethane	μα/Ι	<2			<2	<2	<2	<2	<2	<2
Methyl Tertiary Butyl Ether #	µg/l	<0.1		1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1
Chloromethane #	μg/l	<3			<3	<3	< 3	<3	<3	< 3
Vinyl Chloride #	µg/l	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Bromomethane	µg/l	<1			<1	<1	<1	<1	<1	<1
Chloroethane #	µg/l	<3			< 3	<3	<3	<3	<3	<3
Trichlorofluoromethane "	µg/l	<3			< 3	<3	< 3	<3	<3	< 3
1, I-Dichloroethene (1, I DCE)	µg/i	< 3			< 3	< 3	< 3	< 3	< 3	< 3
trans-1-2-Dichloroethene#	μg/1 μg/1	< 3			< 3	< 3	< 3	< 3	< 3	< 3
1 1-Dichloroethane #	µg/1 µg/1	< 3			< 3	< 3	< 3	< 3	< 3	< 3
cis-1-2-Dichloroethene #	ua/l	<3			< 3	< 3	< 3	< 3	< 3	<3
2,2-Dichloropropane	μg/l	<1			<1	<1	<1	<1	<1	<1
Bromochloromethane #	µg/l	<2			<2	<2	<2	<2	<2	<2
Chloroform [#]	µg/l	<2			<2	<2	<2	<2	<2	<2
1,1,1-Trichloroethane #	µg/l	<2			<2	<2	<2	<2	<2	<2
1,1-Dichloropropene "	µg/I	< 3			< 3	< 3	< 3	< 3	< 3	< 3
Larbon tetrachioride "	µg/I	<2			<2	<2	<2	<2	<2	<2
1,2-Dichiol dethalle	μg/I μg/I	<0.5			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Trichloroethene (TCE) #	µg/1 µa/l	< 3			< 3	< 3	< 3	< 3	< 3	< 3
1.2-Dichloropropane #	µg/l	<2			<2	<2	<2	<2	<2	<2
Dibromomethane #	µg/l	<3			< 3	<3	<3	<3	< 3	<3
Bromodichloromethane #	µg/l	<2			<2	<2	<2	<2	<2	<2
cis-1-3-Dichloropropene	µg/l	<2			<2	<2	<2	<2	<2	<2
Toluene #	µg/l	<5			<5	<5	<5	<5	<5	<5
1 1 2 Trichloroothano #	µg/I	<2			<2	<2	<2	<2	<2	<2
Tetrachloroethene (PCF) #	μg/1 μα/Ι	<3		ł	< 3	<3	< 3	<3	< 3	< 3
1.3-Dichloropropane [#]	μg/l	<2		l	<2	<2	<2	<2	<2	<2
Dibromochloromethane #	µg/l	<2		1	<2	<2	<2	<2	<2	<2
1,2-Dibromoethane #	µg/l	<2			<2	<2	<2	<2	<2	<2
Chlorobenzene #	µg/l	<2			<2	<2	<2	<2	<2	<2
1,1,1,2-Tetrachloroethane #	µg/l	<2		l	<2	<2	<2	<2	<2	<2
Ethylbenzene *	µg/l	<1		l	<1	<1	<1	<1	<1	<1
m/p-Xylene "	μg/I	<2			<2	<2	<2	<2	<2	<2
u-xyiene Styrene	µg/1 /!	<1		ł	<1	<1	<1	<1	<1	<1
Bromoform [#]	μg/1 μq/l	<2		l	<2	<2	<2	<2	<2	<2
Isopropylbenzene #	µg/l	<3		1	< 3	<3	< 3	<3	<3	< 3
1,1,2,2-Tetrachloroethane	µg/l	<4			<4	<4	<4	<4	<4	<4
Bromobenzene #	µg/l	<2		 	<2	<2	<2	<2	<2	<2
1,2,3-Trichloropropane #	µg/l	<3		 	< 3	< 3	< 3	< 3	< 3	< 3
Propylbenzene "	µg/I	<3		ł	<3	<3	<3	<3	<3	<3
2-UNIOFOLOIUENE "	μg/I	< 3			< 3	< 3	< 3	< 3	< 3	< 3
4-Chlorotoluene #	µg/1 µa/l	< 3		I	< 3	< 3	< 3	< 3	< 3	< 3
tert-Butylbenzene #	μg/I	<3			<3	< 3	< 3	< 3	<3	< 3
1,2,4-Trimethylbenzene [#]	μq/l	<3			< 3	<3	<3	<3	<3	<3
sec-Butylbenzene #	µg/l	<3		1	< 3	<3	< 3	<3	<3	< 3
4-Isopropyltoluene #	µg/l	<3			<3	<3	<3	<3	<3	<3
1,3-Dichlorobenzene [#]	µg/l	<3			<3	< 3	< 3	< 3	<3	<3
1,4-Dichlorobenzene #	μg/l	<3		<u> </u>	<3	<3	<3	<3	<3	<3
n-Butylbenzene #	µg/l	<3		 	< 3	< 3	< 3	< 3	< 3	< 3
1,2-Dichlorobenzene [#]	µg/l	<3		<u> </u>	< 3	< 3	< 3	< 3	< 3	< 3
1.2.4-Trichlorobenzepe	μg/1 μα/1	<2		1	<2	<2	<2	<2	<2	<2
Hexachlorobutadiene	μg/l	<3			<3	<3	< 3	<3	<3	<3
Naphthalene	µg/l	<2			<2	<2	<2	<2	<2	<2
1,2,3-Trichlorobenzene	µg/l ∞	<3		117	<3	<3	<3	<3	<3	<3 117
Surrugate Recovery roluene D8	70	<0		11/	101	77	103	100	114	117

EMT Sample No					14-23	24-33	34-43	44-53	54-63	64-73
Sample ID					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023	WS104_131023
Strata										
Date Sampled					13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023
Analytical Parameter (Soil Analysis)	Units	Limit of detection	GAC - protection of groundwater resource	Maximum Concentration						
Surrogate Recovery 4-Bromofluorobenzene	%	<0		118	104	102	104	111	117	118
SVOC MS Phenols						-	-			
2-Chlorophenol #	µg/l	<1			<1	<1	<1	<1	<1	<1
2-Methylphenol	µg/l	< 0.5		10.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	10.6
2-Nitrophenol #	µg/i	< 0.5			< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
2.4-Dimethylphenol	μg/1 μα/Ι	<1		19	< 1	<0.5	<0.5	<1	<1	19
2,4,5-Trichlorophenol	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol	µg/l	<1			<1	<1	<1	<1	<1	<1
4-Chloro-3-methylphenol	µg/l	< 0.5			<0.5	<0.5	<0.5	<0.5	< 0.5	<0.5
4-Methylphenol	µg/l	<1		12	<1	<1	<1	<1	<1	12
4-Nitrophenol	µg/I	<10			< 10	< 10	< 10	< 10	< 10	< 10
Phenol #	ug/l	<1		2	<1	<1	<1	<1	<1	2
PAHs	μg/i			- 2	5.1	<u></u>	51			2
2-Chloronaphthalene #	ua/l	<1			<1	<1	<1	<1	<1	<1
2-Methylnaphthalene *	µg/l	<1			<1	<1	<1	<1	<1	<1
Phthalates	1.5									
Bis(2-ethylhexyl) phthalate	µg/l	<5			<5	<5	<5	<5	<5	<5
Butylbenzyl phthalate	µg/l	<1			<1	<1	<1	<1	<1	<1
Di-n-butyl phthalate	µg/l	<1.5			<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Di-n-Octyl phthalate	µg/I	<1			<	<1	<1	<	<	<
Dimethyl phthalate #	μg/1 μα/Ι	<1			<1	<1	<1	<1	<1	<1
Dimetry prinduce	Pig/1									
Other SVOCs										
1,2-Dichlorobenzene	µg/l	<1			<1	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene #	µg/l	<1			<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	µg/l	<1			<1	<1	<1	<1	<1	<1
2-Nitroapilipe	µg/i	<1			<1	<1	<1	<1	<1	<1
2.4-Dinitrotoluene	ua/l	< 0.5			< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
2,6-Dinitrotoluene	µg/l	<1			<1	<1	<1	<1	<1	<1
3-Nitroaniline	µg/l	<1			<1	<1	<1	<1	<1	<1
4-Bromophenylphenylether #	µg/l	<1			<1	<1	<1	<1	<1	<1
4-Chloroaniline	µg/l	<1			<1	<1	<1	<1	<1	<1
4-Chiorophenyiphenyiether	µg/i	< 1			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Azobenzene	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroethoxy)methane	µg/l	< 0.5			< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5
Bis(2-chloroethyl)ether	µg/l	<1			<1	<1	<1	<1	<1	<1
Carbazole	µg/l	< 0.5		1.2	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1.2
Hexachlorobenzenc	μg/1	< 0.5		0.0	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	U.0
Hexachlorobutadiene #	μα/Ι	<1			<1	<1	<1	<1	<1	<1
Hexachlorocyclopentadiene	μg/l	<1			<1	<1	<1	<1	<1	<1
Hexachloroethane	µg/l	<1			<1	<1	<1	<1	<1	<1
Isophorone #	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-nitrosodi-n-propylamine #	µg/l	<0.5			< 0.5	<0.5	< 0.5	<0.5	< 0.5	<0.5
Nitrobenzene #	µg/l	<1		ļ	<1	<1	<1	<1	<1	<1
Surrogate Recovery 2- Fluorobiphenyl	%	<0		121	106	120	113	103	121	109
d14	%	<0		129	111	129	121	107	123	120

Exceedance of GAC

Groundwater resource potential risk based standards screened against JAGDAG limit of quantification for hazardous substances.

In the absence of JAGDAG, minimum reporing values and general quality of groundwater body values were used.

Groundwater - Risk to Surface Water

							23/1	7129		
EMT Sample No					14-23	24-33	34-43	44-53	54-63	64-73
Sample ID Depth					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023	WS104_131023
Strata										
Date Sampled					13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023
Analytical Parameter (Soil Analysis)	Units	Limit of detection	GAC - Freshwater Environmental Quality Standard (SW)	Maximum Concentration						
General Inorganics										
рН #	pH Units	<0.01	<6,>9	7.82	6.71	6.9	7.82	6.56	7.34	7.4
Total Cyanide #	mg/l	<0.01	0.001	0.02	<0.01	0.02	<0.01	< 0.01	0.02	< 0.01
Sulphate as SO4 #	mg/l	< 0.5	400	424.5	67.8	424.5	104.1	140.1	139.3	126.1
Sulphide	mg/i	< 0.01	0.2	12.2	<0.01	<0.01	< 0.01	< 0.01	<0.01	<0.01
Chlorido [#]	mg/l	< 0.03	250	42.2	6.9	114 9	93	9.5	42.2	13.2
Nitrite as NO2 [#]	ma/l	< 0.02	230	0.04	< 0.02	< 0.02	< 0.02	< 0.02	0.04	0.04
Nitrate as N #	mg/l	< 0.05		3.29	3.29	0.34	0.52	< 0.05	< 0.05	0.66
Total Alkalinity as CaCO3 #	mg/l	<1		1012	150	326	202	64	1012	492
Total Hardness Dissolved (as CaCO3)	mg/l	<1	l	690	129	498	261	188	690	511
Dissolved Organic Carbon #	mg/l	<2		17	5	7	3	12	17	6
Total Dhanala										
Total Phenols HPLC	mg/l	<0.15	7.7	0.17	<0.15	<0.15	< 0.15	<0.15	<0.15	0.17
Heavy Metals / Metalloids										
Dissolved Arsenic [#]	µg/l	<2.5	50	18.8	4.1	<2.5	3.6	<2.5	18.8	<2.5
Dissolved Beryllium Dissolved Boron	µg/l µa/l	<0.5	2000	562	<0.5	<0.5	<0.5	< 0.5	<0.5	<0.5
Dissolved Cadmium [#]	µg/l	< 0.5	0.25	502	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Dissolved Calcium [#]	mg/l	<0.2		127.6	30.1	115.9	70.8	35.3	109.7	127.6
Trivalent Chromium	µg/l	<1.5	4.7	4.1	4.1	<1.5	2.9	<1.5	<1.5	<1.5
Hexavalent Chromium	µg/I	<0	3.4 see below		<0	< 0	<0	<0	<6	<0
Bioavailable Copper	µg/1 µa/l		1 ^[2]		NR	NR	NR	NR	NR	NR
Total Dissolved Iron [#]	µg/l	<20	1000	14302	<20	<20	<20	131	14302	2548
Dissolved Lead #	µg/l	<5	see below		<5	<5	<5	<5	<5	<5
Bioavailable Lead	µg/l		1.2 ^[1]		NR	NR	NR	NR	NR	NR
Dissolved Magnesium *	mg/l	<0.1	0.07	99	12.7	49.7	19.9	23.7	99	45.7
Dissolved Mercury	μg/i μα/l	<1	see below	16	< 2	16	< 2	< 2	10	< 1 4
Bioavailable Nickel	μg/l	12	4 ^[2]	10	NR	2.56	NR	NR	1.12	0.87
Dissolved Potassium #	mg/l	<0.1		43.6	7.7	4.4	10.7	6.3	43.6	19.8
Dissolved Selenium [#]	µg/l	<3		30	<3	30	<3	<3	<3	<3
Dissolved Sodium #	mg/l	< 0.1		188.2	36.7	188.2	20	10.2	181.6	38.3
Dissolved Vanadium "	µg/l	<1.5	60 soo bolow	15.3	5.5	2.2	15.3	<1.5	2.3	1./
Bioavailable Zinc	μg/I μg/I	<3	10.9 ^[2,3]	10	2.42	3.15	2.51	1.25	0.95	3.73
Creatists of DAUs										
Naphthalene	ua/l	< 0.1	2	0.01	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Acenaphthylene	µg/l	< 0.005			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005
Acenaphthene	µg/I	<0.005		0.095	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.095
Fluorene	ua/l	< 0.005			< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005
Phenanthrene	µg/l	< 0.005			< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Anthracene	µg/l	< 0.005	0.1	0.1.10		< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
Pyrene	μg/I μα/Ι	< 0.005	0.0003	0.148	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.148
Benzo(a)anthracene	µg/l	< 0.005		0.019	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.019
Chrysene Benzo(b)fluoranthono	µg/l	< 0.005	0.00017	0.077	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.077
Benzo(b)nd0ranthene	µg/1	<0.000	0.00017	0.000	<0.000	<0.000	<0.000	<0.000	<0.000	0.000
Benzo(k)fluoranthene	µg/l	<0.008	0.00017	0.035	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.035
Benzo(a)pyrene	µg/l	<0.005	0.00017	0.066	< 0.002	< 0.002	< 0.002	<0.002	<0.002	0.066
Indeno(1,2,3-cd)pyrene	µg/I	<0.005	0.00017	0.02	<0.005	<0.005	<0.005	<0.005	<0.005	0.02
Dibenz(a,h)anthracene	µg/l	< 0.005	0.00017	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.005
Benzolgni)perviene	µg/I	<0.005	0.00017	0.013	<0.005	<0.005	<0.005	<0.005	<0.005	0.013
Total PAH		.0 170		1 0 / 0	.0.000	.0.000	.0.000	.0.000	.0.000	1 040
specialed Total EPA 16 PAHs	µg/I	<0.1/3	1	1.249	<0.082	<0.082	<0.082	<0.082	<0.082	1.249
Monogromatics & Ovygonates										
monoaromatics & Oxygenates		.0.1			-0.1	.0.1	.0.1	.0.1	.0.1	.0.1

MTBE #	µg/l	<0.1		<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1
Benzene [#]	µg/l	< 0.5	10	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5
Toluene #	µg/l	<5	74	<5	<5	<5	<5	<5	<5
Ethylbenzene #	µg/l	<1		<1	<1	<1	<1	<1	<1
m/p-Xylene #	µg/l	<2	30	<2	<2	<2	<2	<2	<2
o-Xvlene *	ua/l	<1	30	<1	<1	<1	<1	<1	<1

					23/17129						
EMT Sample No					14-23	24-33	34-43	44-53	54-63	64-73	
Sample ID					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023	WS104_131023	
Strata											
Date Sampled					13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	GAC - Freshwater Environmental Quality Standard (SW)	Maximum Concentration							
Petroleum Hydrocarbons											
>C5-C6 #	µg/l	<10			<10	<10	<10	<10	<10	<10	
>C6-C8 #	µg/l	<10			<10	<10	<10	<10	<10	<10	
>0.0.012 #	ug/l	<10		53	< 10	< 10	< 10	< 10	< 10	53	
>C12-C16 #	μg/l	<10		400	<10	<10	<10	<10	<10	400	
>C16-C21 #	µg/l	<10		850	<10	<10	<10	<10	<10	850	
>C21-C35#	µg/l	<10		440	<10	<10	<10	<10	<10	440	
Total aliphatics C5-35	μg/i	<10		1743	< 10	< 10	< 10	< 10	< 10	1743	
>C5-EC7 #	µg/l	<10			<10	<10	<10	<10	<10	<10	
>EC7-EC8 #	µg/l	<10			< 10	< 10	< 10	< 10	< 10	<10	
>EC8-EC10 #	µg/l	<10		22	<10	<10	<10	<10	<10	<10 22	
>EC12-EC16 #	μα/Ι	<10		210	<10	<10	<10	<10	<10	210	
>EC16-EC21 #	μg/l	<10		520	<10	<10	<10	<10	<10	520	
>EC21-EC35 #	µg/l	<10		260	<10	<10	<10	<10	<10	260	
Total aromatics C5-35 #	µg/l	<10		1022	<10	<10	<10	<10	<10	1022	
Total aliphatics and aromatics(C5-35) #	ua/l	<10		2765	<10	<10	<10	<10	<10	2765	
	1.5										
VOCs	ug/l	- 2			- 2	- 2	-2	- 2	-2	-2	
Methyl Tertiary Butyl Ether #	µg/l	<0.1			<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
Chloromethane #	µg/l	<3			<3	<3	<3	<3	<3	<3	
Vinyl Chloride #	µg/l	<0.1			< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	
Chloroethane #	ug/I	<1			< 3	< 3	< 3	< 3	< 3	< 3	
Trichlorofluoromethane #	µg/l	<3			<3	<3	<3	<3	<3	<3	
1,1-Dichloroethene (1,1 DCE) #	µg/l	<3			< 3	< 3	< 3	<3	<3	<3	
Dichloromethane (DCM) "	µg/I	< 3			< 3	< 3	< 3	< 3	< 3	< 3	
1,1-Dichloroethane #	μg/l	<3			<3	<3	<3	<3	<3	<3	
cis-1-2-Dichloroethene #	µg/l	<3			<3	<3	<3	<3	<3	<3	
2,2-Dichloropropane	µg/l	<1			<1	<1	<1	<1	<1	<1	
Chloroform #	µg/I µa/I	<2			<2	<2	<2	<2	<2	<2	
1,1,1-Trichloroethane #	µg/l	<2			<2	<2	<2	<2	<2	<2	
1,1-Dichloropropene #	µg/l	< 3			<3	< 3	<3	<3	<3	<3	
Carbon tetrachloride "	µg/l	<2			<2	<2	<2	<2	<2	<2	
Benzene #	μg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5	
Trichloroethene (TCE) #	µg/l	<3			<3	<3	<3	<3	<3	<3	
1,2-Dichloropropane #	µg/l	<2			<2	<2	<2	<2	<2	<2	
Dibromomethane " Bromodichloromethane #	μg/i μg/l	<3			< 3	< 3	< 3	< 3	< 3	< 3	
cis-1-3-Dichloropropene	μg/l	<2			<2	<2	<2	<2	<2	<2	
Toluene #	µg/l	<5			<5	<5	<5	<5	<5	<5	
1,1,2-Trichloroethane #	μg/I μg/I	<2			<2	<2	<2	<2	<2	<2	
Tetrachloroethene (PCE) #	µg/l	<3			<3	<3	<3	<3	<3	<3	
1,3-Dichloropropane #	µg/l	<2			<2	<2	<2	<2	<2	<2	
Dibromochloromethane "	µg/l	<2			<2	<2	<2	<2	<2	<2	
Chlorobenzene #	μg/l	<2			<2	<2	<2	<2	<2	<2	
1,1,1,2-Tetrachloroethane#	µg/l	<2			<2	<2	<2	<2	<2	<2	
Ethylbenzene #	µg/l	<1			<1	<1	<1	<1	<1	<1	
m/p-xylene #	ug/l	<1			<1	<1	<1	<1	<1	<1	
Styrene	µg/l	<2			<2	<2	<2	<2	<2	<2	
Bromoform [#]	µg/l	<2			<2	<2	<2	<2	<2	<2	
1,1,2,2-Tetrachloroethane	μg/I μα/Ι	< 3 < 4			< 3	< 3	< 3	< 3	< 3	< 3	
Bromobenzene #	μg/l	<2			<2	<2	<2	<2	<2	<2	
1,2,3-Trichloropropane #	µg/l	<3			<3	<3	<3	<3	<3	<3	
Propylbenzene "	µg/l ua/l	< 3			< 3	<3	<3	<3	< 3	<3	
1,3,5-Trimethylbenzene #	μg/l	<3			<3	<3	<3	<3	<3	<3	
4-Chlorotoluene #	μg/l	<3			<3	<3	<3	<3	<3	<3	
tert-Butylbenzene #	µg/l	<3			<3	< 3	<3	<3	<3	<3	
1,2,4-1rimethylbenzene "	μg/I μα/Ι	< 3 < 3			< 3	< 3	<3	<3	< 3	< 3	
4-Isopropyltoluene #	μg/l	<3			<3	<3	<3	<3	<3	<3	
1,3-Dichlorobenzene #	µg/l	<3			<3	<3	<3	<3	<3	<3	
1,4-Dichlorobenzene [#]	µg/l	<3			<3	<3	<3	<3	<3	<3	
n-вutyidenzene 1 2-Dichlorobenzene [#]	µġ/I ua/I	< 3 < 3			<3	<3	<3	<3	<3	<3	
1,2-Dibromo-3-chloropropane	μg/l	<2	1		<2	<2	<2	<2	<2	<2	

							23/1	7129		
FMT Sample No					14-23	24-33	34.43	44-53	54-63	64-73
Sample ID					CP7-131023	WS112-131023	WS109_131023	WS9_131023	WS8_131023	WS104_131023
Depth										
Strata					40/40/2022	40/40/2022	40/40/2022	10/10/2022	10/10/2022	10/10/2022
Date Sampled					13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023
Analytical Parameter (Soil Analysis)	Units	Limit of detection	GAC - Freshwater Environmental Quality Standard (SW)	Maximum Concentration						
1,2,4-Trichlorobenzene	µg/l	<3			< 3	<3	<3	<3	<3	<3
Hexachlorobutadiene	µg/l	<3		<u> </u>	<3	<3	<3	<3	<3	<3
1 2 3-Trichlorobenzene	µg/i lig/l	<2			<3	<3	<.3	<3	<.3	<.3
Surrogate Recovery Toluene D8	%	<0		117	101	99	103	106	114	117
Surrogate Recovery 4-Bromofluorobenzene	%	<0		118	104	102	104	111	117	118
SVOC MS Phenols										
2-Chlorophenol #	μg/l	<1			<1	<1	<1	<1	<1	<1
2-Methylphenol	µg/l	< 0.5		10.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	10.6
2-Nitrophenol	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,4-Dichlorophenol	μg/i	<0.5		10	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5
2 4 5-Trichlorophenol	μg/1 μg/1	<0.5		17	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,4,6-Trichlorophenol	µg/l	<1			<1	<1	<1	<1	<1	<1
4-Chloro-3-methylphenol	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
4-Methylphenol	µg/l	<1		12	<1	<1	<1	<1	<1	12
4-Nitrophenol	µg/I	<10			< 10	< 10	< 10	< 10	< 10	<10
Dhenol #	µg/i ug/l	~1		2	<1	<1	<1	<1	<1	2
PAHs	۳9, ۰	· · ·		-	S 1	<u> </u>		<u> </u>	<u> </u>	4
2-Chloronaphthalene #	µg/l	<1			<1	<1	<1	<1	<1	<1
2-Methylnaphthalene #	μg/l	<1			<1	<1	<1	<1	<1	<1
Bis(2-ethylhexyl) phthalate	ug/l	<5			<5	<5	<5	<5	<5	<5
Butylbenzyl phthalate	µg/l	<1			<1	<1	<1	<1	<1	<1
Di-n-butyl phthalate	µg/l	<1.5			<1.5	<1.5	<1.5	<1.5	<1.5	<1.5
Di-n-Octyl phthalate	µg/l	<1			<1	<1	<1	<1	<1	<1
Diethyl phthalate	µg/I	<1			<1	<1	<1	<1	<1	< 1
Dimetnyi primalate	μул	< i			< 1	< 1	< I	< 1	< 1	< 1
Other SVOCs										
1,2-Dichlorobenzene	µg/l	<1			<1	<1	<1	<1	<1	<1
1,2,4-Trichlorobenzene #	µg/l	<1			<1	<1	<1	<1	<1	<1
1,3-Dichlorobenzene	µg/l	<1			<1	<1	<1	<1	<1	<1
2-Nitroapiline	µg/i	<1			<	<	<	<	<	<
2.4-Dinitrotoluene	ua/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
2,6-Dinitrotoluene	µg/l	<1			<1	<1	<1	<1	<1	<1
3-Nitroaniline	µg/l	<1			<1	<1	<1	<1	<1	<1
4-Bromophenylphenylether #	µg/l	<1			<1	<1	<1	<1	<1	<1
4-Chlorophenylphenylether	µg/I	<1			<1	<1	<1	<1	<1	< ~1
4-Nitroaniline	ug/l	< 0.5			< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5
Azobenzene	µg/l	<0.5			< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Bis(2-chloroethoxy)methane	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Bis(2-chloroethyl)ether	µg/l	<1		1.0	<1	<1	<1	<1	<1	<1
Dibopzofuran#	μg/1 μg/1	< 0.5		0.6	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6
Hexachlorobenzene	ug/l	<1		0.0	<1	<1	<1	<1	<1	<1
Hexachlorobutadiene #	µg/l	<1			<1	<1	<1	<1	<1	<1
Hexachlorocyclopentadiene	µg/l	<1			<1	<1	<1	<1	<1	<1
Hexachloroethane	µg/l	<1			<1	<1	<1	<1	<1	<1
Isophorone #	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
N-nitrosodi-n-propylamine #	µg/l	< 0.5			< 0.5	< 0.5	< 0.5	< 0.5	<0.5	<0.5
Nitrobenzene "	µg/I	<1		101	<1 106	<1 120	<1 112	<1 103	<1 101	<1 100
				120	111	120	101	103	121	107

Exceedance of EOS
[1] Bioavailable fraction of the metal has been calculated using the Lead (Pb) Risk Assessment Screening Tool
[2] Bioavailable fraction of the metal has been calculated using the Metal Bioavailability Assessment Tool.
NR (Not Required) indicates those concentrations which do not require additional bioavailability calculations due to concentration being lower than the GAC.
[3] Zinc the Ambient Background
Concentration for "All other
Freshwaters not listed" from WFD
UKTAG (1.4 ug/l) has been used.
http://www.vfduk.org/resources/r
ivers-lakes-metal-bioavailabilityassessment-tool-m-bat

Appendix 6 Laboratory Certificates

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ramboll 1 Broad Gate The Headrow Leeds United Kingdom LS1 8EQ		Hac-MRA	UKAS TESTING 4225
Attention :	Michael Hazlehurst		
Date :	2nd November, 2023		
Your reference :	1620015371-002		
Our reference :	Test Report 23/17129 Batch 1		
Location :	Stairfoot		
Date samples received :	14th October, 2023		
Status :	Final report		
Issue :	1		

Eight samples were received for analysis on 14th October, 2023 of which eight were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 25.05 kg of CO2

Scope 1&2&3 emissions - 59.201 kg of CO2

Authorised By:

Baler

Paul Boden BSc Senior Project Manager Inorganics Laboratory:

David Adams VOC Laboratory Manager

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ramboll 1620015371-002 Stairfoot Michael Hazlehurst 23/17129

Report : Solid

EMT Sample No.	11-13												
Sample ID	WS110-1.4												
Depth	1.40										Plaasa sa	o attachad n	otos for all
COC No / misc											abbrevi	ations and a	cronyms
O sutsing													
Containers	VJI												
Sample Date	13/10/2023 08:15												
Sample Type	Soil												
Batch Number	1												Method
Date of Receipt	14/10/2023										LOD/LOR	Units	No.
PAH MS													
Naphthalene #	<0.04										<0.04	ma/ka	TM4/PM8
Acenaphthylene	< 0.03										< 0.03	mg/kg	TM4/PM8
Acenaphthene [#]	< 0.05										<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04										<0.04	mg/kg	TM4/PM8
Phenanthrene#	<0.03										<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04										<0.04	mg/kg	TM4/PM8
Fluoranthene #	<0.03										<0.03	mg/kg	TM4/PM8
Pyrene [#]	<0.03										<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene #	<0.06										<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02										<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene#	<0.07										<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04										<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene #	<0.04										<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene #	<0.04										<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04										<0.04	mg/kg	TM4/PM8
Coronene	<0.04										<0.04	mg/kg	TM4/PM8
PAH 17 Total	<0.64										<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05										<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02										<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	122										<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30										<30	mg/kg	TM5/PM8/PM16
*													
MTBE"	<5										<5	ug/kg	TM36/PM12
Benzene"	<5										<5	ug/kg	TM36/PM12
Toluene "	<0										<0	ug/kg	TM36/PM12
Etnyibenzene	<5 <5										<5 <5	ug/kg	TM26/DM12
m/p-xylene	<5										<5	ug/kg	TM36/PM12
о-хуюне	-5										-5	ug/kg	110130/110112
PCB 28 [#]	<5										<5	ua/ka	TM17/PM8
PCB 52 #	<5										<5	ug/kg	TM17/PM8
PCB 101 [#]	<5										<5	ua/ka	TM17/PM8
PCB 118 [#]	<5										<5	ug/kg	TM17/PM8
PCB 138 [#]	<5										<5	ug/kg	TM17/PM8
PCB 153#	<5										<5	ug/kg	TM17/PM8
PCB 180 [#]	<5										<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35										<35	ug/kg	TM17/PM8
													ĺ
Natural Moisture Content	34.5										<0.1	%	PM4/PM0
Total Organic Carbon *	0.30										<0.02	%	1M21/PM24
	1	1	1	1	1	1	1	1	1	1	1		1

Client Name:	Ramboll	1 000				Report :	Solid					
Reference: Location: Contact:	Stairfoot Michael Ha	zlehurst				Solids: V=	60g VOC jai	r, J=250g gl	ass jar, T=p	lastic tub		
EMT Job No:	23/17129									_		
EMT Sample No.	11-13											
Sample ID	WS110-1.4											
Depth	1.40									Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and ac	ronyms
Containers	VIT											
Samula Data	10/10/2020 00.45											
Sample Date	13/10/2023 08:15											
Sample Type	Soil											
Batch Number	1									LOD/LOR	Units	Method
Date of Receipt	14/10/2023											No.
ANC at pH4	0.05									<0.03	mol/kg	TM77/PM0
ANC at pH7	NDP									<0.03	mol/kg	TM77/PM0
Loss on Ignition [#]	4.3									<1.0	%	TM22/PM0
рн	1.23									<0.01	pri units	1 MI/ 3/PM11
												ļ
	I I		1	1	1	1	1		1	1		

Client Name: Reference:	Ramboll 16200153	371-002					Report :	Liquid					
Contact:	Michael H	lazlehurst					Liquids/p	oducts: V=	40ml vial, G	=glass bottl	e, P=plastic	bottle	
EMI JOD NO:	23/17129						H=H ₂ SO ₄ ,	Z=ZnAc, N=	NaOH, HN=	HNU ₃			
EMT Sample No.	14-23	24-33	34-43	44-53	54-63	64-73							
Sample ID	CP7-131023	WS112- 131023	WS109_13102 3	WS9_131023	WS8_131023	WS104_13102 3							
Depth											Disease		
COC No / misc											abbrevi	ations and a	cronyms
Containers	V H HN N Z P G	V H HN N Z P G	V H HN N Z P G	V H HN N Z P G	V H HN N Z P G	V H HN N Z P G							
Sample Date	13/10/2023 10:50	13/10/2023 11:40	13/10/2023 12:10	13/10/2023 14:00	13/10/2023 15:00	13/10/2023 15:40							
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water							
Batch Number	1	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023							No.
Dissolved Arsenic [#]	4.1	<2.5	3.6	<2.5	18.8	<2.5					<2.5	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Boron	149	103	117	<12	562	415					<12	ug/l	TM30/PM14
Dissolved Cadmium [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM30/PM14
Dissolved Calcium [#]	30.1	115.9	70.8	35.3	109.7	127.6					<0.2	mg/l	TM30/PM14
Total Dissolved Chromium*	4.1	<1.5	2.9	<1.5	<1.5	<1.5					<1.5	ug/l	TM30/PM14
Dissolved Copper"	<7	<7	<7	<7	<7	<7					<7	ug/l	TM30/PM14
Total Dissolved Iron "	<20	<20	<20	131	14302 AA	2048					<20	ug/i	TM30/PM14
Dissolved Lead	12.7	<5 /0.7	10.0	23.7	<5 00.0	45.7					<0.1	ug/i	TM30/PM14
Dissolved Magnesium	<1	<1	<1	<1	<1	<1					<1	ug/l	TM30/PM14
Dissolved Nickel [#]	<2	16	<2	<2	10	4					<2	ug/l	TM30/PM14
Dissolved Potassium [#]	7.7	4.4	10.7	6.3	43.6	19.8					<0.1	mg/l	TM30/PM14
Dissolved Selenium [#]	<3	30	<3	<3	<3	<3					<3	ug/l	TM30/PM14
Dissolved Sodium [#]	36.7	188.2	20.0	10.2	181.6	38.3					<0.1	mg/l	TM30/PM14
Dissolved Vanadium [#]	5.5	2.2	15.3	<1.5	2.3	1.7					<1.5	ug/l	TM30/PM14
Dissolved Zinc [#]	5	8	5	4	5	10					<3	ug/l	TM30/PM14
Total Hardness Dissolved (as CaCO3)	129	498	261	188	690	511					<1	mg/l	TM30/PM14
PAH MS													
Naphthalene*	<0.01	<0.01	<0.01	0.01	<0.01	<0.01					<0.01	ug/l	Subcontracted
Acenaphthylene*	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	Subcontracted
Acenaphthene*	<0.005	<0.005	<0.005	<0.005	<0.005	0.095					<0.005	ug/l	Subcontracted
Fluorene*	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	Subcontracted
Phenanthrene*	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	Subcontracted
Anthracene*	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005					<0.005	ug/l	Subcontracted
Fluoranthene*	<0.005	<0.005	<0.005	<0.005	<0.005	0.148					<0.005	ug/l	Subcontracted
Pyrene*	<0.005	<0.005	<0.005	<0.005	<0.005	0.683					<0.005	ug/l	Subcontracted
Benzo(a)anthracene*	<0.005	< 0.005	< 0.005	<0.005	<0.005	0.019					<0.005	ug/l	Subcontracted
Chrysene*	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	0.077					<0.005	ug/l	Subcontracted
Benzo(bk)fluoranthene*	<0.01	<0.01	< 0.01	<0.01	<0.01	0.12					<0.01	ug/l	Subcontracted
Benzo(a)pyrene*	<0.002	<0.002	<0.002	<0.002	<0.002	0.066					<0.002	ug/i	Subcontracted
Dibenze(ab)enthreene*	<0.005	<0.005	<0.005	<0.005	<0.005	0.020					<0.005	ug/i	Subcontracted
Benzo(ghi)pervlene*	<0.005	<0.005	<0.005	<0.005	<0.005	0.005					<0.005	ug/l	Subcontracted
PAH 16 Total*	<0.003	<0.000	<0.000	<0.003	<0.003	1 249					<0.000	ug/l	Subcontracted
Benzo(b)fluoranthene*	<0.002	<0.002	<0.002	<0.002	<0.002	0.088					<0.002	ua/l	Subcontracted
Benzo(k)fluoranthene*	<0.005	<0,005	<0,005	<0.005	<0.005	0.035					<0.005	ua/l	Subcontracted
	0.000	0.000	0.000	0.000	0.000	5.000					5.000	~ 3 ,1	
Methyl Tertiary Butyl Ether #	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM15/PM10
Benzene [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM15/PM10
Toluene [#]	<5	<5	<5	<5	<5	<5					<5	ug/l	TM15/PM10
Ethylbenzene #	<1	<1	<1	<1	<1	<1					<1	ug/l	TM15/PM10
m/p-Xylene [#]	<2	<2	<2	<2	<2	<2					<2	ug/l	TM15/PM10

Client Name: Reference: Location:	Ramboll 16200153 Stairfoot	371-002					Report :	Liquid					
Contact: EMT Job No:	Michael H 23/17129	lazlehurst					Liquids/pr H=H ₂ SO ₄ ,	oducts: V= Z=ZnAc, N=	40ml vial, G NaOH, HN=	9=glass bottl ∺HN0₃	e, P=plastic	bottle	
EMT Sample No.	14-23	24-33	34-43	44-53	54-63	64-73							
Sample ID	CP7-131023	WS112- 131023	WS109_13102 3	WS9_131023	WS8_131023	WS104_13102 3							
Donth													
Depui											Please se abbrevi	e attached n ations and a	otes for all cronyms
COC No / misc													,
Containers	V H HN N Z P G	V H HN N Z P G	V H HN N Z P G	V H HN N Z P G	V H HN N Z P G	V H HN N Z P G	6						
Sample Date	13/10/2023 10:50	13/10/2023 11:40	13/10/2023 12:10	13/10/2023 14:00	13/10/2023 15:00	13/10/2023 15:40)						
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	Ground Water	r						
Batch Number	1	1	1	1	1	1							Method
Date of Receipt	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023					LOD/LOR	Units	No.
o-Xvlene #	<1	<1	<1	<1	<1	<1					<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	101	99	103	106	114	117					<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	104	102	104	111	117	118					<0	%	TM15/PM10
TPH CWG													
Aliphatics													
>C5-C6 #	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>C6-C8 #	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>C8-C10 [#]	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>C10-C12#	<5	<5	<5	<5	<5	53					<5	ug/l	TM5/PM16/PM30
>C12-C16 [#]	<10	<10	<10	<10	<10	400					<10	ug/l	TM5/PM16/PM30
>C16-C21 #	<10	<10	<10	<10	<10	850					<10	ug/l	TM5/PM16/PM30
>C21-C35 [#]	<10	<10	<10	<10	<10	440					<10	ug/l	TM5/PM16/PM30
Total aliphatics C5-35 #	<10	<10	<10	<10	<10	1743					<10	ug/l	TM5/TM36/PM12/PM16/PM30
Aromatics													
>C5-EC7#	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>EC7-EC8*	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>EC8-EC10*	<10	<10	<10	<10	<10	<10					<10	ug/l	TM36/PM12
>EC10-EC12"	<5	<5	<5	<5	<5	32					<5	ug/i	TM5/PM16/PM30
>EC12-EC16	<10	<10	<10	<10	<10	520					<10	ug/l	TM5/PM16/PM30
>EC10-EC21	<10	<10	<10	<10	<10	260					<10	ug/l	TM5/PM16/PM30
Total aromatics C5-35 [#]	<10	<10	<10	<10	<10	1022					<10	ug/l	TM5/TM36/PM12/PM16/PM3
Total aliphatics and aromatics(C5-35)	<10	<10	<10	<10	<10	2765					<10	ug/l	TM5/TM36/PM12/PM16/PM3
		-										5	
Total Phenols HPLC	<0.15	<0.15	<0.15	<0.15	<0.15	0.17					<0.15	mg/l	TM26/PM0
Sulphate as SO4 #	67.8	424.5	104.1	140.1	139.3	126.1					<0.5	mg/l	TM38/PM0
Chloride [#]	6.9	114.9	9.3	9.5	146.4	13.2					<0.3	mg/l	TM38/PM0
Nitrite as NO2 [#]	<0.02	<0.02	<0.02	<0.02	0.04	0.04					<0.02	mg/l	TM38/PM0
Nitrate as N [#]	3.29	0.34	0.52	<0.05	<0.05	0.66					<0.05	mg/l	TM38/PM0
Total Cyanide [#]	<0.01	0.02	<0.01	<0.01	0.02	<0.01					<0.01	mg/l	TM89/PM0
Ammoniacal Nitrogen as N #	0.04	0.14	< 0.03	0.04	42.20	0.16					<0.03	mg/l	TM38/PM0
Hexavalent Chromium	<6	<6	<6	<6	<6	<6					<6	ug/l	TM38/PM0
Total Dissolved Chromium III	<6	<6	<6	<6	<6	<6					<6	ug/l	TM0/PM0
												5	
Total Alkalinity as CaCO3 [#]	150	326	202	64	1012	492					<1	mg/l	TM75/PM0
Sulphide	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01					<0.01	mg/l	TM107/PM0
Dissolved Organic Carbon #	5	7	3	12	17	6					<2	mg/l	TM60/PM0
pH#	6.71	6.90	7.82	6.56	7.34	7.40					<0.01	pH units	TM73/PM0

Client Name:	Ramboll			Report :	CEN 10:1	1 Batch				
Reference: Location: Contact: EMT Job No:	1620015371-002 Stairfoot Michael Hazlehur 23/17129	rst		Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
EMT Sample No.	11-13							1		
Sample ID	WS110-1.4									
Depth	1.40							Discourse		
COC No / misc								abbrevia	ations and a	cronyms
Containers	VIT									
Samula Data										
Sample Date	0.15									
Sample Type	Soil									1
Batch Number	1							LOD/LOR	Units	Method
Date of Receipt	14/10/2023									110.
Mass of raw test portion	0.1232								kg	NONE/PM17
Mass of dried test portion	0.09								kg	NONE/PM1/
										[

Client Name:	Ramboll
Reference:	1620015371-002
Location:	Stairfoot
Contact:	Michael Hazlehurst
EMT Job No:	23/17129

SVOC Report : Liquid

	20, 11 120									_		
EMT Sample No.	14-23	24-33	34-43	44-53	54-63	64-73						
Sample ID	CP7-131023	WS112- 131023	WS109_13102 3	WS9_131023	WS8_131023	WS104_13102 3						
Depth										Please se	e attached n	otes for all
COC No / misc										abbrevia		Jonyms
Containers	V H HN N Z P G											
Sample Date	13/10/2023 10:50	13/10/2023 11:40	13/10/2023 12:10	13/10/2023 14:00	13/10/2023 15:00	13/10/2023 15:40						
Sample Type	Ground Water											
Batch Number	1	1	1	1	1	1				LOD/LOR	Units	Method
Date of Receipt	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023						NO.
SVOC MS												
Phenols												
2-Chlorophenol [#]	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylphenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5	10.6				<0.5	ug/l	TM16/PM30
2-Nitrophenol	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4-Dichlorophenol [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4-Dimethylphenol	<1	<1	<1	<1	<1	19				<1	ug/l	TM16/PM30
2,4,5-Trichlorophenol *	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,4,6-Trichlorophenol	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloro-3-methylphenol #	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
4-Methylphenol	<1	<1	<1	<1	<1	12				<1	ug/l	TM16/PM30
4-Nitrophenol	<10	<10	<10	<10	<10	<10				<10	ug/l	TM16/PM30
Pentachlorophenol	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Phenol	<1	<1	<1	<1	<1	2				<1	ug/l	TM16/PM30
PAHs												
2-Chloronaphthalene#	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Methylnaphthalene * Phthalates	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Bis(2-ethylhexyl) phthalate	<5	<5	<5	<5	<5	<5				<5	ug/l	TM16/PM30
Butylbenzyl phthalate	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Di-n-butyl phthalate #	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5				<1.5	ug/l	TM16/PM30
Di-n-Octyl phthalate	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Diethyl phthalate [#]	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Dimethyl phthalate	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Other SVOCs												
1,2-Dichlorobenzene *	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene #	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,3-Dichlorobenzene #	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
1,4-Dichlorobenzene *	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2-Nitroaniline	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
2,4-Dinitrotoluene*	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
3-Nitroaniline	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Bromophenylphenylether *	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloroaniline	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chlorophenylphenylether *	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Nitroaniline	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Azobenzene *	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethoxy)methane *	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Bis(2-chloroethyl)ether*	<1	<1	<1	<1	<1	<1				<1	ug/l	TM16/PM30
Carbazole"	<0.5	<0.5	<0.5	<0.5	<0.5	1.2				<0.5	ug/l	TM16/PM30
Ulbenzoturan "	<0.5	<0.5	<0.5	<0.5	<0.5	0.6				<0.5	ug/l	TM16/PM30
Hexachlorobenzene "	<1	<1	<1	<1	<1	<1				<1	ug/I	TM16/PM30
nexachioroputadiene "	<1	<1	<1	<1	<1	<1				<1	ug/I	TM16/DM20
Hexachiorocyclopentadiene	<1	<1	<1	<1	<1	<1				<1	ug/i	TM16/PM30
Hexachloroethane "	<1	<1	<1	<1	<1	<1				<1	ug/I	TM16/PM30
Isophorone "	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5				<0.5	ug/i	TM10/PM30
N-muosoui-n-propylamine "	<0.0	<0.5	<0.0 <1	<0.0 <1	<0.5	<0.5				<0.5	ug/I	TM16/DM20
Nitrobenzene	100	100	140	102	104	100					ug/i	TM16/PM30
Surrogate Recovery 2-Fluorobiphenyi	100	120	113	103	121	109				<0	% 0/	TM16/PM30
Surrogate Recovery p-reiphenyi-014	111	129	121	107	123	120				<0	70	11010/P1030
	1	1	1	1	1	1	1	1				

Client Name:	Ramboll
Reference:	1620015371-
Location:	Stairfoot
Contact:	Michael Hazle
EMT Job No:	23/17129

002 ehurst

EMT Sample No.	14-23	24-33	34-43	44-53	54-63	64-73	74				
Sample ID	CP7-131023	WS112- 131023	WS109_13102 3	WS9_131023	WS8_131023	WS104_13102 3	TRIPBLANK				
Depth									Please se	e attached n	otes for all
COC No / misc									abbrevia	ations and a	cronyms
Containers	V H HN N Z P G	V		1							
Sample Date	13/10/2023 10:50	13/10/2023 11:40	13/10/2023 12:10	13/10/2023 14:00	13/10/2023 15:00	13/10/2023 15:40	\diamond		l		
Sample Type	Ground Water	Trip Blank (water)		ļ							
Batch Number	1	1	1	1	1	1	1		LOD/LOR	Units	Method
Date of Receipt	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023	14/10/2023				NO.
VOC MS	.0	-0	-0	-0	-0	-0	-0		-0		That
Dicniorodifiuoromethane	<2	<2	<2	<2	<2	<2	<2		<2	ug/i	TM15/PM10
Chloromothano#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	ug/i	TM15/PM10
Vinvl Chloride [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	<1	<1	<1	<1		<1	ug/l	TM15/PM10
Chloroethane #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
Trichlorofluoromethane #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE)#	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
Dichloromethane (DCM)#	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
trans-1-2-Dichloroethene#	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
1,1-Dichloroethane #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
cis-1-2-Dichloroethene#	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1	<1	<1	<1		<1	ug/l	TM15/PM10
Bromochloromethane #	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
Chloroform [#]	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
1,1,1-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
1,1-Dichloropropene *	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
Carbon tetrachloride "	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
1,2-Dichloroethane "	<2	<2	<2	<2	<2	<2	<2		<2	ug/i	TM15/PM10
Benzene "	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.5	ug/i	TM15/PM10
1 2 Dichleropropaga #	<2	<2	<2	<2	<2	<2	<2		<2	ug/i	TM15/PM10
Dibromomethane [#]	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
Bromodichloromethane #	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
Toluene [#]	<5	<5	<5	<5	<5	<5	<5		<5	ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
1,1,2-Trichloroethane #	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
Tetrachloroethene (PCE)#	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
1,3-Dichloropropane #	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
Dibromochloromethane #	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
1,2-Dibromoethane #	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
Chlorobenzene [#]	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane *	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
Ethylbenzene "	<1	<1	<1	<1	<1	<1	<1		<1	ug/l	TM15/PM10
m/p-Xylene "	<2	<2	<2	<2	<2	<2	<2		<2	ug/i	TM15/PM10
u-Ayiene Styrene	~1	~1	~1	~1	~1	<	<		~1	ug/I	TM15/PM10
Bromoform [#]	<2	<2	<2	<2	<2	<2	<2		<2	ug/i	TM15/PM10
Isopropylbenzene [#]	<3	<3	<3	<3	<3	<3	<3		<3	ua/l	TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4	<4	<4	<4	<4		<4	ug/l	TM15/PM10
Bromobenzene [#]	<2	<2	<2	<2	<2	<2	<2		<2	ug/l	TM15/PM10
1,2,3-Trichloropropane #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
Propylbenzene [#]	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
2-Chlorotoluene #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
4-Chlorotoluene #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
tert-Butylbenzene [#]	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
1,2,4-Trimethylbenzene #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
sec-Butylbenzene#	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
4-Isopropyltoluene #	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
1,3-Dichlorobenzene*	<3	<3	<3	<3	<3	<3	<3		 <3	ug/l	TM15/PM10
1,4-Dichlorobenzene "	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
n-Butylbenzene	<3	< 3	<3	<3 /2	< 3	<3	<3		<-3 -2	ug/I	TM15/PM10
1,2-Dichloropenzene "	~3	- 3	~3	~3	~3 ~2	- 3	- 3		~3	ug/I	TM15/PM10
1.2.4-Trichlorobenzene	<3	<3	<3	<3	<3	<3	<3		<3	ug/i	TM15/PM10
Hexachlorobutadiene	<3	<3	<3	<3	<3	<3	<3		<3	ua/l	TM15/PM10
Naphthalene	<2	<2	<2	<2	<2	<2	<2		<2	ua/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	<3	<3	<3	<3		<3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	101	99	103	106	114	117	119		<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	104	102	104	111	117	118	122		<0	%	TM15/PM10

VOC Report :

Liquid

CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg)	0
Mass of dry sample (kg) =	0
Particle Size <4mm =	>

0.1232 0.09 >95% Moisture Content Ratio (%) = Dry Matter Content Ratio (%) = 37.2 72.9

EMT Job No			23/17129	Landfill Waste Acceptance					
Sample No			13	Criteria Limits					
Client Sample No			WS110-1.4	Stable					
Depth/Other			1.40	Inert	Non-reactive	Hazardous			
Sample Date			13/10/2023 08:15	Waste	Hazardous Waste in Non-	Waste			
Batch No			1	Landfill	Hazardous	Landfill			
Solid Waste Analysis		_			Landfill				
Total Organic Carbon (%)	0.30			3	5	6			
Loss on Ignition (%)	4.3			-	-	10			
Sum of BTEX (mg/kg)	<0.025			6	-	-			
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-			
Mineral Oil (mg/kg) (EH_CU_1D_AL)	<30			500	-	-			
PAH Sum of 17(mg/kg)	<0.64			100	-	-			
pH (pH Units)	7.23			-	>6	-			
ANC to pH 7 (mol/kg)	NDP			-	to be evaluated	to be evaluated			
ANC to pH 4 (mol/kg)	0.05			-	to be evaluated	to be evaluated			
Eluate Analysis	10:1 conc" leached			Limit v le BS EN	aching test using 12457-2 at L/S 10 I/kg				
	mg/l	mg/kg			mg/kg				
Arsenic	<0.0025	<0.025		0.5	2	25			
Barium	0.003	0.03		20	100	300			
Cadmium	<0.0005	<0.005		0.04	1	5			
Chromium	<0.0015	<0.015		0.5	10	70			
Copper	<0.007	<0.07		2	50	100			
Mercury	<0.001	<0.01		0.01	0.2	2			
Molybdenum	<0.002	<0.02		0.5	10	30			
Nickel	<0.002	<0.02		0.4	10	40			
Lead	<0.005	<0.05		0.5	10	50			
Antimony	<0.002	<0.02		0.06	0.7	5			
Selenium	<0.003	<0.03		0.1	0.5	7			
Zinc	0.004	0.04		4	50	200			
Chloride	0.5	5		800	15000	25000			
Fluoride	<0.3	<3		10	150	500			
Sulphate as SO4	6.5	65		1000	20000	50000			
Total Dissolved Solids	41	410		4000	60000	100000			
Phenol	<0.01	<0.1		1	-	-			
Dissolved Organic Carbon	4	40		500	800	1000			

NDP	Reason	Report
-----	--------	--------

Matrix : Solid

Client Name:	Ramboll
Reference:	1620015371-002
Location:	Stairfoot
Contact:	Michael Hazlehurst

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Method No.	NDP Reason
23/17129	1	WS110-1.4	1.40	11-13	TM77/PM0	Sample received is below pH7

Client Name:RambollReference:1620015371-002Location:Stairfoot

Contact: Michael Hazlehurst

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason

Notification of Deviating Samples

Matrix : Liquid

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/17129

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
Ν	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
тмо	Not available	PM0	No preparation is required.				
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16/PM30	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.			AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	- PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.				
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.				
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes			

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.	Yes			
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.	Yes			
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM75	Modified US EPA method 310.1 (1978). Determination of Alkalinity by Metrohm automated titration analyser.	PM0	No preparation is required.	Yes			

EMT Job No: 23/17129

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM77	Modified DDCEN/TS method 15364:2006. Determination of Acid Neutralization Capacity by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.	Yes			
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM107	Determination of Sulphide/Thiocyanate by Skalar Continuous Flow Analyser	PM0	No preparation is required.				
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
Subcontracted	See attached subcontractor report for accreditation status and provider.						

Method Code Appendix

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ramboll 1 Broad Gate The Headrow Leeds United Kingdom LS1 8EQ		ALL	UKAS TESTING 4225
Attention :	Michael Hazlehurst		
Date :	20th October, 2023		
Your reference :	1620015371.002		
Our reference :	Test Report 23/16869 Batch 1		
Location :	Stairfoot		
Date samples received :	11th October, 2023		
Status :	Final Report		
Issue :	1		

Seventeen samples were received for analysis on 11th October, 2023 of which fourteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 48.291 kg of CO2

Scope 1&2&3 emissions - 114.124 kg of CO2

Authorised By:

5.6000

Simon Gomery BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ramboll 1620015371.002 Stairfoot Michael Hazlehurst 23/16869

Report : Solid

EMT Sample No.	4	5-6	7	9-10	11-12	14-16	17-19	20-22	23-25	26-28			
Sample ID	WS111_2.2	WS106_0.6	WS106_1.4	WS105_0.8	WS107_0.2	HD1	HD2	HD3	HD4	HD5			
Depth	2.20	0.60	1.40	0.80	0.20	0.25-0.30	0.20-0.30	0.20-0.30	0.10-0.30	0.00-0.20	Please se	e attached n	otes for all
COC No / misc											abbrev	iations and a	cronyms
Containers	т	VJ	v	VJ	VJ	VJT	VJT	VJT	VJT	VJT			
Sample Date	09/10/2023 09:15	09/10/2023 10:15	09/10/2023 10:40	09/10/2023 13:00	09/10/2023 13:40	09/10/2023 09:05	09/10/2023 09:20	09/10/2023 09:30	09/10/2023 09:55	09/10/2023 10:15			
Cample Date	00/10/2020 00:10	00/10/2020 10:10	00/10/2020 10:40	00/10/2020 10:00	00/10/2020 10:40	00/10/2020 00:00	00/10/2020 00:20	00/10/2020 00:00	00/10/2020 00:00	0011012020 10:10			
Sample Type	Soil			1									
Batch Number	1	1	1	1	1	1	1	1	1	1		Units	Method
Date of Receipt	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	LODILOIT	- Crinio	No.
Arsenic [#]	-	42.3	-	31.8	49.6	14.9	7.3	12.8	3.6	26.1	<0.5	mg/kg	TM30/PM15
Beryllium	-	1.9	-	2.0	3.7	1.3	2.0	1.5	<0.5	1.7	<0.5	mg/kg	TM30/PM15
Cadmium [#]	-	<0.1	-	<0.1	<0.1	0.1	<0.1	<0.1	0.5	<0.1	<0.1	mg/kg	TM30/PM15
Chromium [#]	-	30.0	-	39.9	37.7	40.6	14.8	43.7	17.5	43.0	<0.5	mg/kg	TM30/PM15
Copper [#]	-	51	-	47	86	26	24	34	15	36	<1	mg/kg	TM30/PM15
Lead [#]	-	12	-	119	27	35	16	44	40	56	<5	mg/kg	TM30/PM15
Mercury [#]	-	<0.1	-	<0.1	<0.1	0.2	0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM30/PM15
Nickel [#]	-	27.1	-	21.0	36.1	32.1	27.3	37.4	4.5	32.7	<0.7	mg/kg	TM30/PM15
Selenium [#]	-	<1	-	1	2	1	2	<1	<1	2	<1	mg/kg	TM30/PM15
Vanadium	-	46	-	46	66	38	20	37	9	42	<1	mg/kg	TM30/PM15
Water Soluble Boron #	-	0.4	-	0.7	0.9	0.6	0.9	1.1	0.3	0.8	<0.1	mg/kg	TM74/PM32
Zinc [#]	-	33	-	46	52	105	93	142	85	124	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene [#]	0.15	<0.04	-	<0.04	0.73	0.05	<0.04	0.09	0.17	0.23	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	-	<0.03	<0.03	<0.03	<0.03	<0.03	0.06	<0.03	<0.03	mg/kg	TM4/PM8
Acenaphthene #	<0.05	<0.05	-	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene #	<0.04	<0.04	-	<0.04	<0.04	<0.04	<0.04	<0.04	0.05	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	0.20	<0.03	-	0.08	0.42	0.08	<0.03	0.20	0.86	0.45	<0.03	mg/kg	TM4/PM8
Anthracene *	<0.04	<0.04	-	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	0.25	0.08	< 0.04	mg/kg	TM4/PM8
Fluoranthene *	0.11	0.07	-	0.13	0.14	0.12	< 0.03	0.19	1.84	0.48	< 0.03	mg/kg	TM4/PM8
Pyrene"	0.10	0.06	-	0.10	0.13	0.10	< 0.03	0.16	1.51	0.40	< 0.03	mg/kg	
Benzo(a)anthracene "	0.09	< 0.06	-	0.09	0.12	0.10	< 0.06	0.13	1.00	0.21	< 0.06	mg/kg	
Chrysene "	0.10	0.06	-	0.10	0.12	0.08	<0.02	0.14	1.08	0.32	<0.02	mg/kg	
Benzo(bk)fluoranthene	0.12	0.11	-	0.13	0.14	0.13	<0.07	0.23	1.60	0.48	<0.07	mg/kg	
Benzo(a)pyrene "	<0.04	0.06	-	0.08	<0.04	0.07	<0.04	0.13	0.75	0.21	<0.04	mg/kg	
ndeno(123ca)pyrene "	<0.04	0.05	-	<0.04	<0.04	0.06	<0.04	0.08	0.75	0.10	<0.04	mg/kg	
Dibenzo(an)anthracene	<0.04	<0.04 0.05	-	<0.04	<0.04 0.06	<0.04 0.06	<0.04	<0.04	0.21	0.16	<0.04	mg/kg	
Coronene	<0.04	0.05	-	<0.04	0.00	0.00	<0.04	0.09	0.00	0.10	<0.04	mg/kg	
PAH 16 Total	-0.04	<0.6	_	0.7	19	0.9	<0.6	14	11.4	32	<0.6	mg/kg	TM4/PM8
PAH 17 Total	0.87	-0.0	_	-	-	0.0	-0.0		-	-	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.09	0.08	-	0.09	0.10	0.09	<0.05	0.17	1.33	0.35	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.03	0.03	-	0.04	0.04	0.04	<0.02	0.06	0.52	0.13	<0.02	ma/ka	TM4/PM8
PAH Surrogate % Recovery	126	103	-	102	97	100	98	96	99	99	<0	%	TM4/PM8
3 ,					-						-		
Methyl Tertiary Butyl Ether*	-	<2	-	<2	-	-	-	-	-	-	<2	ug/kg	TM15/PM10
Benzene [#]	-	<3	-	<3	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Toluene [#]	-	<3	-	<3	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Ethylbenzene #	-	<3	-	<3	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
m/p-Xylene [#]	-	<5	-	<5	-	-	-	-	-	-	<5	ug/kg	TM15/PM10
o-Xylene [#]	-	<3	-	<3	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	99	-	107	-	-	-	-	-	-	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	81	-	92	-	-	-	-	-	-	<0	%	TM15/PM10

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ramboll 1620015371.002 Stairfoot Michael Hazlehurst 23/16869

Report : Solid

EMT Sample No.	4	5-6	7	9-10	11-12	14-16	17-19	20-22	23-25	26-28			
Sample ID	WS111_2.2	WS106_0.6	WS106_1.4	WS105_0.8	WS107_0.2	HD1	HD2	HD3	HD4	HD5			
Depth	2.20	0.60	1.40	0.80	0.20	0.25-0.30	0.20-0.30	0.20-0.30	0.10-0.30	0.00-0.20	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	т	٧J	v	VJ	٧J	VJT	VJT	VJT	VJT	VJT			
Sample Date	09/10/2023 09:15	09/10/2023 10:15	09/10/2023 10:40	09/10/2023 13:00	09/10/2023 13:40	09/10/2023 09:05	09/10/2023 09:20	09/10/2023 09:30	09/10/2023 09:55	09/10/2023 10:15			
Sample Type	Soil												
Datab Number	4				4		4	4	4				
Batch Number	I	1	I	I	1	I	1	1	1	1	LOD/LOR	Units	Method No.
Date of Receipt	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023			
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	-	-	-	-	-	-	-	-	-	<30	mg/kg	TM5/PM8/PM16
Alinhatics													
>C5-C6 (HS_1D_AL)#	-	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	ma/ka	TM36/PM12
>C6-C8 (HS_1D_AL)#	-	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	-	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	-	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)*	-	<4	-	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL) [#]	-	<7	-	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	-	<7	-	<7	<7	<7	<7	<7	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	-	<19	-	<19	<19	<19	<19	<19	<19	<19	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics													
>C5-EC7 (HS_1D_AR)#	-	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	-	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)*	-	<0.1	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.150	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)*	-	<0.2	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)*	-	<4	-	<4	<4	<4	<4	<4	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)*	-	<7	-	<7	<7	22	<7	<7	102	70	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)	-	<19	-	<19	<19	32	<19	<19	102	84	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-35) (EH+HS_CU_ID_AR)	-	<38	-	<38	<38	<38	<38	<38	123	84	<38	mg/kg	TM5/TM36/PM8/PM12/PM16
MTBE [#]	<5	-	-	-	<5	<5	<5	<5	<5	<5 ^{SV}	<5	ug/kg	TM36/PM12
Benzene [#]	<5	-	-	-	<5	<5	<5	<5	<5	<5 ^{\$V}	<5	ug/kg	TM36/PM12
Toluene [#]	<5	-	-	-	8	<5	<5	<5	<5	<5 ^{\$V}	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	-	-	-	<5	<5	<5	<5	<5	<5 ^{SV}	<5	ug/kg	TM36/PM12
m/p-Xylene #	<5	-	-	-	<5	<5	<5	<5	<5	<5 ^{SV}	<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	-	-	-	<5	<5	<5	<5	<5	<5 ⁵⁰	<5	ug/kg	TM36/PM12
PCB 28#	<5	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 52 [#]	<5	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 101 #	<5	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 118 [#]	<5	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 138 [#]	<5	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 153#	<5	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
PCB 180 [#]	<5	-	-	-	-	-	-	-	-	-	<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	<35	-	-	-	-	-	-	-	-	-	<35	ug/kg	TM17/PM8
Total Phenols HPLC	-	<0.15	-	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.17	<0.15	mg/kg	TM26/PM21B
Natural Mojeturo Content	10.4	21.0		15.6	20.4	10.6	70	17.1	7.2	11 F	-0.1	0/_	
	12.4	21.0	-	13.0	20.4	19.0	1.0	17.1	1.2	11.5	SU. 1	/0	I IVIH/I*IVIU
Hexavalent Chromium [#]	-	<0.3	-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	mg/kg	TM38/PM20

Client Name:	
Reference:	
Location:	
Contact:	
EMT Job No:	

Ramboll 1620015371.002 Stairfoot Michael Hazlehurst 23/16869

Report : Solid

EMT Sample No.	4	5-6	7	9-10	11-12	14-16	17-19	20-22	23-25	26-28			
Sample ID	WS111_2.2	WS106_0.6	WS106_1.4	WS105_0.8	WS107_0.2	HD1	HD2	HD3	HD4	HD5			
Depth	2.20	0.60	1.40	0.80	0.20	0.25-0.30	0.20-0.30	0.20-0.30	0.10-0.30	0.00-0.20	DI		
COC No (miss			-								Please se abbrevi	e attached n ations and a	otes for all cronyms
COC NO / MISC													
Containers	Т	VJ	V	VJ	νJ	VJT	VJT	VJT	VJT	VJT			
Sample Date	09/10/2023 09:15	09/10/2023 10:15	09/10/2023 10:40	09/10/2023 13:00	09/10/2023 13:40	09/10/2023 09:05	09/10/2023 09:20	09/10/2023 09:30	09/10/2023 09:55	09/10/2023 10:15			
Sample Type	Soil												
Batch Number	1	1	1	1	1	1	1	1	1	1			
Baten Number					•						LOD/LOR	Units	Method No.
Date of Receipt	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023	11/10/2023			
Sulphate as SO4 (2:1 Ext) [#]	-	0.0275	-	1.7885	1.5875	0.0242	0.0974	0.1723	0.0174	0.0164	<0.0015	g/l	TM38/PM20
Chromium III	-	30.0	-	39.9	37.7	40.6	14.8	43.7	17.5	43.0	<0.5	mg/kg	NONE/NONE
Total Cyanide [#]	-	<0.5	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	mg/kg	TM89/PM45
*													
Total Organic Carbon "	1.21	-	0.51	-	-	-	-	-	-	-	<0.02	%	TM21/PM24
ANC at pH4	0.00										<0.02	mal//	
	0.08	-	-	-	-	-	-	-	-	-	<0.03	mol/kg	TM77/DM0
ANC at pm/	<0.03	-	-	-	-	-	-	-	-	-	<0.03	0/	TM22/PM0
	8.27	8.72	-	8.07	- 7.80	- 6.66	632	7 12	8 36	- 6.65	<0.01	⁷⁰ nH unite	TM73/PM11
pri	0.27	0.72	_	0.07	7.00	0.00	0.52	7.12	0.50	0.00	-0.01	priumo	
Ashestos Type*	_	-	-	-	-	NAD	NAD	NAD	NAD	NAD		None	Subcontracted
						10.0	10.05	10.0	1010	10.0			

Client Name:	Ramboll						Report :	Solid					
Reference:	16200153	371.002											
Location:	Stairtoot Michael H	lazlohuret					Solids: V=	60g VOC ja	r, J=250g gl	lass jar, T=p	lastic tub		
EMT Job No:	23/16869	lazienursi											
	23/10003	1									1		
EMT Sample No.	29-31	32-34	35-37	38-40									
Sample ID	HD6	HD7	HD8	HD9									
Depth	0.15-0.30	0.15-0.30	0.20-0.30	0.10-0.25							D		
COC No / miss											abbrevi	e attached n ations and a	cronyms
COC NO / MISC													
Containers	VJT	VJT	VJT	VJT									
Sample Date	09/10/2023 10:35	09/10/2023 11:00	09/10/2023 11:20	09/10/2023 11:55									
Sample Type	Soil	Soil	Soil	Soil									
Batch Number	1	1	1	1									Mothod
Date of Receipt	11/10/2023	11/10/2023	11/10/2023	11/10/2023							LOD/LOR	Units	No.
Date of Receipt	20.5	02.0	11/10/2023	40.4							-0.5		TM20/DM4
Arsenic	22.0	23.9	0.2	40.1							<0.5	mg/kg	TM20/PM1
Cadmium [#]	0.2	<0.1	<0.1	<0.1							<0.5	ma/ka	TM30/PM1
Chromium [#]	35.8	86.0	40.2	40.7							<0.1	ma/ka	TM30/PM1
Copper [#]	33	39	21	94							<1	ma/ka	TM30/PM1
Lead [#]	43	64	11	110							<5	ma/ka	TM30/PM1
Mercurv [#]	0.2	<0.1	0.1	0.2							<0.1	ma/ka	TM30/PM1
Nickel [#]	26.7	28.2	41.4	41.4							<0.7	mg/kg	TM30/PM1
Selenium [#]	2	2	2	2							<1	mg/kg	TM30/PM1
Vanadium	35	55	28	43							<1	mg/kg	TM30/PM1
Water Soluble Boron #	1.3	0.6	0.1	1.9							<0.1	mg/kg	TM74/PM3
Zinc [#]	95	109	67	242							<5	mg/kg	TM30/PM1
PAH MS													
Naphthalene [#]	0.34	0.13	<0.04	1.37							<0.04	mg/kg	TM4/PM8
Acenaphthylene	0.06	<0.03	<0.03	0.18							<0.03	mg/kg	TM4/PM8
Acenaphthene #	0.06	<0.05	<0.05	0.08							<0.05	mg/kg	TM4/PM8
Fluorene #	0.04	<0.04	<0.04	<0.04							<0.04	mg/kg	TM4/PM8
Phenanthrene *	0.65	0.31	< 0.03	0.94							<0.03	mg/kg	TM4/PM8
Anthracene #	0.15	0.06	<0.04	0.19							<0.04	mg/kg	TM4/PM8
Fluoranthene"	0.81	0.40	< 0.03	1.78							< 0.03	mg/kg	
Pyrene"	0.69	0.30	<0.03	1.59							<0.03	mg/kg	
Benzo(a)aninracene	0.41	0.22	<0.00	1.01							<0.00	mg/kg	
Chrysene Bonzo/bk)fluoranthono [#]	0.50	0.20	<0.02	2.31							<0.02	ma/ka	
Benzo(a)pyrene #	0.42	0.19	< 0.04	1.25							<0.04	ma/ka	TM4/PM8
Indeno(123cd)pyrene#	0.30	0.15	< 0.04	0.95							<0.04	ma/ka	TM4/PM8
Dibenzo(ah)anthracene [#]	0.08	<0.04	<0.04	0.22							<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene [#]	0.30	0.15	<0.04	0.91							<0.04	mg/kg	TM4/PM8
Coronene	-	-	-	-							<0.04	mg/kg	TM4/PM8
PAH 16 Total	5.6	2.6	<0.6	14.0							<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	-	-	-							<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.58	0.28	<0.05	1.66							<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.22	0.11	<0.02	0.65							<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	98	98	98	99							<0	%	TM4/PM8
Methyl Tertiary Butyl Ether #	-	-	-	-							<2	ug/kg	TM15/PM1
Benzene [#]	-	-	-	-							<3	ug/kg	TM15/PM1
Toluene [#]	-	-	-	-							<3	ug/kg	TM15/PM1
Ethylbenzene #	-	-	-	-							<3	ug/kg	TM15/PM1
m/p-Xylene #	-	-	-	-							<5	ug/kg	TM15/PM1
o-Xylene*	-	-	-	-							<3	ug/kg	TM15/PM1
Surrogate Recovery Toluene D8	-	-	-	-							<0	%	TM15/PM1
Surrogate Recovery 4-Bromofluorobenzene	- 1		- 1	- 1	1					1	<0	%	[1M15/PM1

Client Name:	Ramboll						Report :	Solid					
Reference:	16200153	371.002											
Location:	Stairfoot	loglok					Solids: V=	60g VOC ja	r, J=250g gl	lass jar, T=p	lastic tub		
Contact:	Michael F	lazlehurst											
	20/10000										I		
EMT Sample No.	29-31	32-34	35-37	38-40									
Sample ID	HD6	HD7	HD8	HD9									
Depth	0.15-0.30	0.15-0.30	0.20-0.30	0.10-0.25							Please se	a attached r	otes for all
COC No / misc											abbrevia	ations and a	cronyms
Containers	VIT	VIT	VIT	VIT									
Comula Data													
Sample Date	09/10/2023 10:35	09/10/2023 11:00	09/10/2023 11:20	09/10/2023 11:55									
Sample Type	Soil	Soil	Soil	Soil							L		1
Batch Number	1	1	1	1								Units	Method
Date of Receipt	11/10/2023	11/10/2023	11/10/2023	11/10/2023									No.
Mineral Oil (C10-C40) (EH_CU_1D_AL)	-	-	-	-							<30	mg/kg	TM5/PM8/PM16
TPH CWG													
Aliphatics													
>C5-C6 (HS_1D_AL)#	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}							<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)*	<0.1	<0.1	<0.1	<0.1 ^{SV}							<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1 ⁵⁰	<0.1	<0.1 ⁵⁰							<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)*	<0.2	<0.2	<0.2	<0.2							<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	11	<4	<4	9							<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	27	<7	<7	31							<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)*	66	<7	<7	124							<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	104	<19	<19	164							<19	mg/kg	TM5/TM36/PM8/PM12/PM1
Aromatics													
>C5-EC7 (HS_1D_AR)*	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}							<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}							<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) [#]	<0.1 ^{SV}	<0.1 ^{SV}	<0.1	<0.1 ^{SV}							<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	1.4							<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	7	<4	<4	12							<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	27	18	<7	46							<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	101	70	11	232							<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR)#	135	88	<19	291							<19	mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-35) (EH+HS_CU_1D_Total)	239	88	<38	455							<38	mg/kg	TM5/TM36/PM8/PM12/PM1
	sv	sv		sv									
MTBE"	<5°	<5°	<5	<5 sv							<5	ug/kg	TM36/PM12
Benzene*	<5°	<5°	<5	<5°							<5	ug/kg	TM36/PM12
Toluene *	<5	<5	<5	750							<5	ug/kg	TM36/PM12
Ethylbenzene #	<5 ^{5V}	<5 ^{5V}	<5	<5 ^{5V}							<5	ug/kg	TM36/PM12
m/p-Xylene *	<530	<5	<5	<5							<5	ug/kg	TM36/PM12
o-Xylene [#]	<530	<530	<5	<530							<5	ug/kg	TM36/PM12
PCB 28*	-	-	-	-							<5	ug/kg	TM17/PM8
PCB 52"	-	-	-	-							<5	ug/kg	TM17/PM8
PCB 101 #	-	-	-	-							<5	ug/kg	TM17/PM8
PCB 118 [#]	-	-	-	-							<5	ug/kg	TM17/PM8
PCB 138*	-	-	-	-							<5	ug/kg	TM17/PM8
PCB 153#	-	-	-	-							<5	ug/kg	TM17/PM8
PCB 180 [#]	-	-	-	-							<5	ug/kg	TM17/PM8
Total 7 PCBs [#]	-	-	-	-							<35	ug/kg	TM17/PM8
Total Phenols HPLC	0.88	<0.15	<0.15	<0.15							<0.15	mg/kg	FM26/PM21E
												~	DATE
Ivatural Moisture Content	10.5	11.6	14.9	17.9							<0.1	%	PM4/PM0
Havavalant Observit #	-0.2	-0.2	-0.2	-0.2							-0.2	ma//	TM20/DM00
	~0.3	~0.3	~0.3	-0.3	1	1	1	1	1	1	1 ~0.3	mg/kg	1 1 W 30/ F W 20

Client Name: Reference:	Ramboll 16200153	371.002				Report :	Solid					
Location:	Stairfoot					Solids: V=	60g VOC ja	r, J=250g gl	lass jar, T=p	plastic tub		
Contact: EMT Job No:	Michael H 23/16869	lazlehurst										
EMT Sample No.	29-31	32-34	35-37	38-40								
Sample ID	HD6	HD7	HD8	HD9								
Depth	0.15-0.30	0.15-0.30	0.20-0.30	0.10-0.25						Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT								
Sample Date	09/10/2023 10:35	09/10/2023 11:00	09/10/2023 11:20	09/10/2023 11:55								
Sample Type	Soil	Soil	Soil	Soil								
Batch Number	1	1	1	1						LOD/LOR	Units	Method
Date of Receipt	11/10/2023	11/10/2023	11/10/2023	11/10/2023						LOBILOIT	onito	No.
Sulphate as SO4 (2:1 Ext) [#]	0.0620	0.0029	0.0118	0.0674						<0.0015	g/l	TM38/PM20
Chromium III	35.8	86.0	40.2	40.7						<0.5	mg/kg	NONE/NONE
Total Cyanide [#]	<0.5	<0.5	<0.5	3.9						<0.5	mg/kg	TM89/PM45
Total Organic Carbon [#]	-	-	-	-						<0.02	%	TM21/PM24
ANC at pH4	-	-	-	-						< 0.03	mol/kg	TM77/PM0
ANC at pH7	-	-	-	-						<0.03	mol/kg	TM77/PM0
Loss on Ignition #	-	-	-	-						<1.0	%	TM22/PM0
рН#	7.47	7.03	8.01	6.31						<0.01	pH units	TM73/PM11
Ashestas Tyne*	NAD	ΝΑΟ	NAD	NAD							None	Subcontracted
Aspesios Type	NAD	NAD	NAD	NAD							None	Subcontracted
	l	<u> </u>	L	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>			

Client Name: Reference:	Ramboll 1620015371.002						Report : CEN 10:1 1 Batch								
Location: Contact:	Stairfoot Michael Ha	irfoot xhael Hazlehurst						Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub							
EMT Job No:	23/16869														
EMT Sample No.	4														
Sample ID	WS111_2.2														
Depth	2.20										Please se	e attached n	otes for all		
COC No / misc											abbrevi	ations and a	cronyms		
Containers	т														
Sample Date	09/10/2023 09:15														
Sample Type	Soil														
Batch Number	1										LOD/LOR	Units	Method		
Date of Receipt	11/10/2023												NO.		
Mass of raw test portion	0.1034											kg	NONE/PM17		
Mass of dried test portion	0.09											kg	NONE/PM17		

Element Material	s Tech	nology											
Client Name: Reference: Location: Contact:	Ramboll 16200153 Stairfoot Michael H		SVOC Re	port :	Solid								
EMT Job No:	23/16869												
EMT Sample No.	5-6	9-10						1					
Sample ID	WS106_0.6	WS105_0.8											
Depth	0.60	0.80						Plassa sa	o attachad r	otos for all			
COC No / misc	0.00	0.00						abbrevi	ations and a	cronyms			
Containers	٧J	VJ											
Sample Date	09/10/2023 10:15	09/10/2023 13:00											
Batch Number	1	1								Method			
Date of Receipt	11/10/2023	11/10/2023						LOD/LOR	Units	No.			
SVOC MS													
Phenois	-10	-10						-10					
2-Chlorophenol	<10	<10						<10	ug/kg ug/ka	TM16/PM8			
2-Nitrophenol	<10	<10						<10	ug/kg	TM16/PM8			
2,4-Dichlorophenol#	<10	<10						<10	ug/kg	TM16/PM8			
2,4-Dimethylphenol	<10	<10						<10	ug/kg	TM16/PM8			
2,4,5-Trichlorophenol	<10	<10						<10	ug/kg	TM16/PM8			
4-Chloro-3-methylphenol	<10	<10						<10	ug/kg ug/ka	TM16/PM8			
4-Methylphenol	<10	<10						<10	ug/kg	TM16/PM8			
4-Nitrophenol	<10	<10						<10	ug/kg	TM16/PM8			
Pentachlorophenol	<10	<10						<10	ug/kg	TM16/PM8			
Phenol *	<10	<10						<10	ug/kg	TM16/PM8			
2-Chloronaphthalene [#]	<10	<10						<10	ua/ka	TM16/PM8			
2-Methylnaphthalene #	18	21						<10	ug/kg	TM16/PM8			
Phthalates													
Bis(2-ethylhexyl) phthalate	<100	<100						<100	ug/kg	TM16/PM8			
Butylbenzyl phthalate	<100	<100						<100	ug/kg	TM16/PM8			
Di-n-Octyl phthalate	<100	<100						<100	ug/kg	TM16/PM8			
Diethyl phthalate	<100	<100						<100	ug/kg	TM16/PM8			
Dimethyl phthalate #	<100	<100						<100	ug/kg	TM16/PM8			
Other SVOCs	-10	-10						-10					
1,2-Dichlorobenzene	<10	<10						<10	ug/kg ug/kg	TM16/PM8			
1,3-Dichlorobenzene	<10	<10						<10	ug/kg	TM16/PM8			
1,4-Dichlorobenzene	<10	<10						<10	ug/kg	TM16/PM8			
2-Nitroaniline	<10	<10						<10	ug/kg	TM16/PM8			
2,4-Dinitrotoluene	<10	<10						<10	ug/kg	TM16/PM8			
3-Nitroaniline	<10	<10						<10	ug/kg ug/kg	TM16/PM8			
4-Bromophenylphenylether #	<10	<10						<10	ug/kg	TM16/PM8			
4-Chloroaniline	<10	<10						<10	ug/kg	TM16/PM8			
4-Chlorophenylphenylether	<10	<10						<10	ug/kg	TM16/PM8			
4-Nitroaniline	<10	<10						<10	ug/kg	1M16/PM8			
Bis(2-chloroethoxy)methane	<10	<10						<10	ug/kg	TM16/PM8			
Bis(2-chloroethyl)ether	<10	<10						<10	ug/kg	TM16/PM8			
Carbazole	<10	<10						<10	ug/kg	TM16/PM8			
Dibenzofuran #	<10	<10						<10	ug/kg	TM16/PM8			
Hexachlorobutadieno#	<10	<10						<10 <10	ug/kg	TM16/PM8			
Hexachlorocyclopentadiene	<10	<10						<10	ug/kg	TM16/PM8			
Hexachloroethane	<10	<10						<10	ug/kg	TM16/PM8			
Isophorone [#]	<10	<10						<10	ug/kg	TM16/PM8			
N-nitrosodi-n-propylamine [#]	<10	<10						<10	ug/kg	TM16/PM8			
Nitrobenzene " Surrogate Recovery 2-Eluorobiphenyl	<10	<10						<10	ug/kg	TM16/PM8			
Surrogate Recovery p-Terphenyl-d14	107	106						<0	%	TM16/PM8			
Element Material	s Tech	nology											
--	---	-----------------------	---	---	---	---	---------	-------	-------	---	-----------------------	------------------------------	---------------------------
Client Name: Reference: Location: Contact: FMT.Job No:	Ramboll 16200153 Stairfoot Michael H 23/16869	371.002 Iazlehurst					VOC Rep	ort :	Solid				
EMT Comple No.	5.0	0.40									1		
EMT Sample No.	5-6	9-10											
Sample ID	WS106_0.6	WS105_0.8											
Depth	0.60	0.80									Please se abbrevia	e attached i ations and a	notes for all icronyms
Containers	VJ	VJ											
Sample Date	09/10/2023 10:15	09/10/2023 13:00											
Sample Type	Soil	Soil											
Batch Number	1	1									LOD/LOR	Units	Method
Date of Receipt	11/10/2023	11/10/2023											INO.
	<2	<2									<2	ua/ka	TM15/PM10
Methyl Tertiary Butyl Ether#	<2	<2									<2	ug/kg	TM15/PM10
Chloromethane #	<3	<3									<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2									<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1									<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2									<2	ug/kg	TM15/PM10
Trichlorofluoromethane "	<2	<2									<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE)"	<0	<0									<0	ug/kg	TM15/PM10
trans-1-2-Dichloroethene [#]	<3	<3									<3	ug/kg ug/kg	TM15/PM10
1,1-Dichloroethane #	<3	<3									<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene#	<3	<3									<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4									<4	ug/kg	TM15/PM10
Bromochloromethane #	<3	<3									<3	ug/kg	TM15/PM10
Chloroform [#]	<3	<3									<3	ug/kg	TM15/PM10
1,1,1-Trichloroethane*	<3	<3									<3	ug/kg	TM15/PM10
1,1-Dichloropropene "	<3	<3									<3	ug/kg	TM15/PM10
1 2-Dichloroethane #	<4	<4									<4	ug/kg	TM15/PM10
Benzene #	<3	<3									<3	ug/kg	TM15/PM10
Trichloroethene (TCE)#	<3	<3									<3	ug/kg	TM15/PM10
1,2-Dichloropropane [#]	<6	<6									<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3									<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3									<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4									<4	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3									<3	ug/kg	TM15/PM10
1.1.2-Trichloroethane [#]	<3	<3									<3	ua/ka	TM15/PM10
Tetrachloroethene (PCE) [#]	<3	<3									<3	ug/kg	TM15/PM10
1,3-Dichloropropane [#]	<3	<3									<3	ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3									<3	ug/kg	TM15/PM10
1,2-Dibromoethane #	<3	<3									<3	ug/kg	TM15/PM10
Chlorobenzene#	<3	<3									<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane*	<3	<3									<3	ug/kg	TM15/PM10
Ethylbenzene "	<3	<3									<3	ug/kg	TM15/PM10
n.Xvlene [#]	<3	<3									<3	ug/kg	TM15/PM10
Styrene	<3	<3									<3	ug/kg	TM15_A/PM10
Bromoform	<3	<3									<3	ug/kg	TM15/PM10
lsopropylbenzene [#]	<3	<3									<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane [#]	<3	<3									<3	ug/kg	TM15/PM10
Bromobenzene	<2	<2									<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane*	<4	<4									<4	ug/kg	TM15/PM10
Propylbenzene	<4	<4									<4	ug/kg	TM15/PM10
1.3.5-Trimethylbenzene [#]	<3	<3									<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3									<3	ug/kg	TM15/PM10
tert-Butylbenzene [#]	<5	<5									<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene#	<6	<6									<6	ug/kg	TM15/PM10
sec-Butylbenzene [#]	<4	<4									<4	ug/kg	TM15/PM10
4-Isopropyltoluene	<4	<4									<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene "	<4	<4									<4	ug/kg	TM15/PM10
n-Butylbenzene	<4 <Δ	<4									<4	ug/kg	TM15/PM10
1.2-Dichlorobenzene [#]	<4	<4									<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane	<4	<4									<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene	<7	<7									<7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4									<4	ug/kg	TM15/PM10
Naphthalene	<27	<27									<27	ug/kg	TM15/PM10
1,2,3-Trichlorobenzene	<7	<7									<7	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	99	107									<0	%	TM15/PM10
Surroyate Recovery 4-Bromofluorobenzene	1 81	92	1	1	1	1	1	1	1	1	<0	%	1 IN15/PM10

CEN 10:1 LEACHATE RESULTS BS EN 12547-2

0.1034 Mass of sample taken (kg) Mass of dry sample (kg) = Particle Size <4mm =

0.09 >95% Moisture Content Ratio (%) = Dry Matter Content Ratio (%) = 14.8 87.1

EMT Job No			23/16869 Landfill Waste Acce		ceptance		
Sample No			4	Criteria Limits			
Client Sample No			WS111_2.2		Stable		
Depth/Other			2.20	Inert	Non-reactive	Hazardous	
Sample Date			09/10/2023 09:15	Waste	Hazardous Waste in Non-	Waste	
Batch No			1	Landfill	Hazardous	Landfill	
Solid Waste Analysis					Landfill		
Total Organic Carbon (%)	1.21			3	5	6	
Loss on Ignition (%)	3.0			-	-	10	
Sum of BTEX (mg/kg)	<0.025			6	-	-	
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-	
Mineral Oil (mg/kg) (EH_CU_1D_AL)	<30			500	-	-	
PAH Sum of 17(mg/kg)	0.87			100	-	-	
pH (pH Units)	8.27			-	>6	-	
ANC to pH 7 (mol/kg)	<0.03			-	to be evaluated	to be evaluated	
ANC to pH 4 (mol/kg)	0.08			-	to be evaluated	to be evaluated	
Eluate Analysis	10:1 lea	conc" ched		leaching test using BS EN 12457-2 at L/S 10 l/kg		bmpliance using L/S 10 l/kg	
	ma/l	ma/ka			mg/kg		
Arsenic	< 0.0025	< 0.025		0.5	2	25	
Barium	0.012	0.12		20	100	300	
Cadmium	<0.0005	<0.005		0.04	1	5	
Chromium	<0.0015	<0.015		0.5	10	70	
Copper	<0.007	<0.07		2	50	100	
Mercury	<0.001	<0.01		0.01	0.2	2	
Molybdenum	<0.002	<0.02		0.5	10	30	
Nickel	<0.002	<0.02		0.4	10	40	
Lead	<0.005	<0.05		0.5	10	50	
Antimony	<0.002	<0.02		0.06	0.7	5	
Selenium	<0.003	<0.03		0.1	0.5	7	
Zinc	0.004	0.04		4	50	200	
Chloride	<0.3	<3		800	15000	25000	
Fluoride	1.0	10		10	150	500	
Sulphate as SO4	22.1	221		1000	20000	50000	
Total Dissolved Solids	109	1090		4000	60000	100000	
Phenol	<0.01	<0.1		1	-	-	
Dissolved Organic Carbon	<2	<20		500	800	1000	

Client Name:	Ramboll
Reference:	1620015371.002
Location:	Stairfoot
Contact:	Michael Hazlehurst

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 23/16869									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/16869

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

Laboratory records are kept for a period of no less than 6 years

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
w	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description		MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.			AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.			AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM77	Modified DDCEN/TS method 15364:2006. Determination of Acid Neutralization Capacity by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	No
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes		AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
Subcontracted	See attached subcontractor report for accreditation status and provider.					AR	
TM15_A	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ramboll 1 Broad Gate The Headrow Leeds United Kingdom LS1 8EQ		BC-MRA	UKAS TESTING 4225
Attention :	Michael Hazlehurst		
Date :	23rd October, 2023		
Your reference :	1620015371-002		
Our reference :	Test Report 23/16958 Batch 1		
Location :	Stairfoot		
Date samples received :	12th October, 2023		
Status :	Final Report		
Issue .	1		

Nineteen samples were received for analysis on 12th October, 2023 of which fifteen were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 51.621 kg of CO2

Scope 1&2&3 emissions - 121.994 kg of CO2

Authorised By:

Baler

Paul Boden BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ramboll 1620015371-002 Stairfoot Michael Hazlehurst 23/16958

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

r	1		1	1							1		
EMT Sample No.	1-3	4-6	7-9	10-11	13-15	18-20	21-23	24-26	27-29	30-32	1		
Sample ID	TP101	TP102	TP103	WS102_3.8	WS112_1.7	TP105	TP104	TP107	TP108	TP106			
Depth	+1.50-0.00	2.20-2.40	+0.90-0.00	3.80	1.70	+1.30-0.00	+0.90-0.00	0.60-0.70	0.30-0.60	+1.40-0.00	Please se abbrevi	e attached n	otes for all
COC No / misc											abbroth		oronymo
Containers	VJT	VJT	VJT	٧J	V J	VJT	VJT	VJT	VJT	VJT			
Sample Date	10/10/2023 09:30	10/10/2023 09:00	10/10/2023 08:30	10/10/2023 08:40	10/10/2023 13:30	10/10/2023 10:20	10/10/2023 10:30	10/10/2023 11:15	10/10/2023 11:35	10/10/2023 12:05			
Sample Type	Soil	1											
Batch Number	1	1	1	1	1	1	1	1	1	1		Lipito	Method
Date of Receipt	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	LOD/LOIX	Onits	No.
Arsenic [#]	2.8	10.1	8.3	25.7	4.1	5.4	2.9	32.5	28.3	10.7	<0.5	mg/kg	TM30/PM15
Beryllium	1.3	1.6	1.4	1.5	1.1	1.9	2.0	2.0	1.9	1.6	<0.5	mg/kg	TM30/PM15
Cadmium [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	0.8	0.2	<0.1	<0.1	mg/kg	TM30/PM15
Chromium #	14.9	40.6	34.4	56.8	39.4	36.8	37.6	43.3	90.0	36.8	<0.5	mg/kg	TM30/PM15
Copper [#]	34	29	28	43	21	30	36	98	55	31	<1	mg/kg	TM30/PM15
Lead [#]	15	21	21	54	15	19	17	134	65	16	<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	0.2	<0.1	2.0	0.1	0.1	<0.1	0.4	0.2	0.2	<0.1	mg/kg	TM30/PM15
Nickel [#]	31.2	45.9	36.2	31.0	47.7	49.2	58.2	33.5	28.5	48.2	<0.7	mg/kg	TM30/PM15
Selenium [#]	1	<1	<1	10	1	1	<1	2	2	<1	<1	mg/kg	TM30/PM15
Vanadium	23	31	28	61	23	33	34	39	43	30	<1	mg/kg	TM30/PM15
Water Soluble Boron #	1.7	0.3	0.8	0.8	0.2	0.3	0.4	3.6	0.9	0.3	<0.1	mg/kg	TM74/PM32
Zinc [#]	155	154	120	94	75	113	144	260	126	113	<5	mg/kg	TM30/PM15
PAH MS													
Naphthalene [#]	<0.04	<0.04	0.05	0.12	<0.04	0.07	0.07	1.02	<0.04	0.10	<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03	<0.03	<0.03	0.05	<0.03	< 0.03	< 0.03	0.46	<0.03	<0.03	< 0.03	mg/kg	TM4/PM8
Acenaphthene [#]	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	1.90	<0.05	<0.05	<0.05	mg/kg	TM4/PM8
Fluorene [#]	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	1.57	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	<0.03	0.05	0.07	0.57	<0.03	0.16	0.11	8.73	0.18	0.23	<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	0.12	<0.04	<0.04	<0.04	3.22	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	<0.03	<0.03	0.07	0.85	<0.03	0.04	<0.03	15.27	0.33	0.05	<0.03	mg/kg	TM4/PM8
Pyrene [#]	<0.03	<0.03	0.06	0.67	<0.03	0.03	<0.03	12.86	0.26	0.04	<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06	<0.06	0.39	<0.06	<0.06	<0.06	6.47	0.18	<0.06	<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02	0.06	0.44	<0.02	<0.02	<0.02	6.42	0.19	<0.02	<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	0.08	0.66	<0.07	<0.07	<0.07	10.47	0.30	<0.07	<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	<0.04	<0.04	<0.04	0.36	<0.04	<0.04	<0.04	6.56	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	0.23	<0.04	<0.04	<0.04	3.94	0.11	<0.04	<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	0.06	<0.04	<0.04	<0.04	0.80	<0.04	<0.04	<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	0.23	<0.04	<0.04	<0.04	3.40	0.11	<0.04	<0.04	mg/kg	TM4/PM8
Coronene	-	-	-	-	-	-	-	-	<0.04	-	<0.04	mg/kg	TM4/PM8
PAH 16 Total	<0.6	<0.6	<0.6	4.8	<0.6	<0.6	<0.6	83.1	1.7	<0.6	<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	-	-	-	-	-	-	-	1.66	-	<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.05	<0.05	0.06	0.48	<0.05	<0.05	<0.05	7.54	0.22	<0.05	<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	0.02	0.18	<0.02	<0.02	<0.02	2.93	0.08	<0.02	<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	112	101	97	118	113	113	115	114	113	120	<0	%	TM4/PM8
Methyl Tertiary Butyl Ether #	-	-	-	<2	-	-	-	-	-	-	<2	ug/kg	TM15/PM10
Benzene [#]	-	-	-	<3	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Toluene [#]	-	-	-	10	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Ethylbenzene #	-	-	-	<3	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
m/p-Xylene [#]	-	-	-	<5	-	-	-	-	-	-	<5	ug/kg	TM15/PM10
o-Xylene [#]	-	-	-	<3	-	-	-	-	-	-	<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	-	-	109	-	-	-	-	-	-	<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	-	-	85	-	-	-	-	-	-	<0	%	TM15/PM10

Client Name:
Reference:
Location:
Contact:
EMT Job No:

Ramboll 1620015371-002 Stairfoot Michael Hazlehurst 23/16958

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	1-3	4-6	7-9	10-11	13-15	18-20	21-23	24-26	27-29	30-32	1		
				10 1.	10.12	10 23	2	2.2.	2	00.01			
Sample ID	TP101	TP102	TP103	WS102_3.8	WS112_1.7	TP105	TP104	TP107	TP108	TP106			
	'										1		
Depth	+1.50-0.00	2.20-2.40	+0.90-0.00	3.80	1.70	+1.30-0.00	+0.90-0.00	0.60-0.70	0.30-0.60	+1.40-0.00	Please se	e attached n	otes for all
COC No / misc											annievi	สิโเบกร สกน ละ	cronyms
Containers	VJT	VJT	VJT	٧J	٧J	VJT	VJT	VJT	VJT	VJT	1		
Sample Date	10/10/2023 09:30	10/10/2023 09:00	10/10/2023 08:30) 10/10/2023 08:40	10/10/2023 13:30	10/10/2023 10:20	10/10/2023 10:30	10/10/2023 11:15	10/10/2023 11:35	10/10/2023 12:05			
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	1		
Batch Number	1	1	1	1	1	1	1	1	1	1	<u> </u>		
Date of Receipt	12/10/2023		12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	LOD/LOR	Units	Method No.
	12/10/2020	12/10/2020	12/10/2020	12/10/2020	12/10/2020	12/10/2020	12/10/2020	12/10/2020	-20	12/10/2020	-20	malka	THE DAS PM16
Mineral OII (C10-C40) (CT_C0_ID_AC)	- '	-	-	-	-	-	-	-	<30	-	<30	mg/kg	IM5/PMo/PM to
TPH CWG	1												
Aliphatics	1												
>C5-C6 (HS 1D AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>C6-C8 (HS 1D AL) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1 ^{sv}	<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4	<4	<4	<4	<4	<4	7	8	<4	<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7	36	<7	<7	<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)*	<7	<7	<7	16	<7	<7	<7	187	16	<7	<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	<19	<19	<19	<19	<19	<19	<19	230	24	<19	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Aromatics	1												
>C5-EC7 (HS_1D_AR)*	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{sv}	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR) [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 ^{SV}	<0.1	<0.1 ^{SV}	<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4	<4	<4	<4	15	<4	<4	<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	<7	<7	<7	<7	<7	<7	<7	103	<7	<7	<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)*	<7	<7	41	47	<7	<7	<7	399	<7	<7	<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR)#	<19	<19	41	47	<19	<19	<19	517	<19	<19	<19	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(CS-35) (EH+HS_CU_1D_Total)	<38	<38	41	47	<38	<38	<38	747	<38	<38	<38	mg/kg	TM5/TM36/PM8/PM12/PM16
	<5	<5	<5		<5	<5	<5	sv	<5	sv	<5	ua/ka	TM36/PM12
MIBE Banzono [#]	<5	<5	<5	-	<5	<5	<5	<5 10 SV	<5	<5 _5	<5	ug/kg	TM36/PM12
Toluene [#]	<5	<5	<5		<5	<5	<5	19 16 SV	10	<5 _5\$V	<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	<5	<5	-	<5	<5	<5	sv	<5	Sv	<5	ug/kg	TM36/PM12
m/n-Xvlene [#]	<5	<5	<5	_	<5	<5	<5	12 ^{SV}	<5	SV	<5	ua/kg	TM36/PM12
o-Xvlene [#]	<5	<5	<5	-	<5	<5	<5	7 ^{SV}	<5	<5 <5	<5	ug/kg	TM36/PM12
o Ajiono	''''	-	-		-	-	-				-	-0.0	-
PCB 28 #	- 1	-	-	-	-	-	-	-	<5	-	<5	ug/kg	TM17/PM8
PCB 52 [#]	- 1	-	-	-	-	-	-	-	<5	-	<5	ug/kg	TM17/PM8
PCB 101 [#]	- '	-	-	-	-	-	-	-	<5	-	<5	ug/kg	TM17/PM8
PCB 118 [#]	- 1	-	-	-	-	-	-	-	<5	-	<5	ug/kg	TM17/PM8
PCB 138 [#]	- '	-	-	-	-	-	-	-	<5	-	<5	ug/kg	TM17/PM8
PCB 153 [#]	- '	-	-	-	-	-	-	-	<5		<5	ug/kg	TM17/PM8
PCB 180 [#]	- 1	-	-	-	-	-	-	-	<5	-	<5	ug/kg	TM17/PM8
Total 7 PCBs [#]		-	-	-	-	-	-	-	<35	-	<35	ug/kg	TM17/PM8
Total Phenols HPLC	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	mg/kg	TM26/PM21B
	'						I	I		'			
Natural Moisture Content	15.1	17.1	19.9	19.3	9.4	11.1	11.7	17.4	19.6	9.8	<0.1	%	PM4/PM0
	'								[]	[]	'		
Hexavalent Chromium#	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	< 0.3	<0.3	<0.3	mg/kg	TM38/PM20

Client Name:	Ramboll						Report :	Solid					
Reference:	16200153	371-002											
Location:	Stairfoot						Solids: V=	60g VOC ja	r, J=250g gl	lass jar, T=p	lastic tub		
Contact:	Michael H	lazlehurst											
EMT Job No:	23/16958										_		
EMT Sample No.	1-3	4-6	7-9	10-11	13-15	18-20	21-23	24-26	27-29	30-32			
Sample ID	TP101	TP102	TP103	WS102_3.8	WS112_1.7	TP105	TP104	TP107	TP108	TP106			
Depth	+1.50-0.00	2.20-2.40	+0.90-0.00	3.80	1.70	+1.30-0.00	+0.90-0.00	0.60-0.70	0.30-0.60	+1.40-0.00	Please se	e attached n	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	٧J	VJ	VJT	VJT	VJT	VJT	VJT			
Sample Date	10/10/2023 09:30	10/10/2023 09:00	10/10/2023 08:30	10/10/2023 08:40	10/10/2023 13:30	10/10/2023 10:20	10/10/2023 10:30	10/10/2023 11:15	10/10/2023 11:35	10/10/2023 12:05			
Sample Type	Soil	 											
Batch Number	1	1	1	1	1	1	1	1	1	1	LOD/LOR	Units	Method
Date of Receipt	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023	12/10/2023			
Sulphate as SO4 (2:1 Ext)"	0.0970	0.0188	0.2022	0.0773	0.0205	0.0384	0.0068	0.1149	0.0562	0.0188	<0.0015	g/i	TM38/PM20
Chromium III	14.9	40.6	34.4	56.8	39.4	36.8	37.6	43.3	90.0	36.8	<0.5	mg/kg	NONE/NONE
Total Cyanide [#]	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.9	<0.5	<0.5	<0.5	mg/kg	TM89/PM45
Total Organic Carbon [#]	-	-	-	-	-	-	-	-	4.96	-	<0.02	%	TM21/PM24
Fraction Organic Carbon	-	-	-	0.018	0.003	-	-	-	-	-	<0.001	None	TM21/PM24
ANC at pH4	-	-	-	-	-	-	-	-	0.29	-	<0.03	mol/kg	TM77/PM0
ANC at pH7	-	-	-	-	-	-	-	-	<0.03	-	<0.03	mol/kg	TM77/PM0
Loss on Ignition #	-	-	-	-	-	-	-	-	7.1	-	<1.0	%	TM22/PM0
pH [#]	7.31	7.80	8.01	8.39	7.63	8.89	8.85	8.38	7.72	8.57	<0.01	pH units	TM73/PM11

Client Name: Reference: Location: Contact: EMT Job No:

1620015371-002 Stairfoot Michael Hazlehurst 23/16958

Ramboll

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

							_		
EMT Sample No.	34-35	36-40	41-43						
Sample ID	WS101A_1.0	WS104_0.4	WS104_2.7						
Depth	1.00	0.40	2.70				 Please se	e attached r	otes for all
COC No / misc							abbrevi	ations and a	cronyms
Containers	V.I	V.IT	V.I						
Comula Data	40/40/0000 40.55		40/40/0000 40:50						
Sample Date	10/10/2023 10:33	10/10/2023 11:30	10/10/2023 12:50						
Sample Type	Soil	Soil	Soil						1
Batch Number	1	1	1					Unite	Method
Date of Receipt	12/10/2023	12/10/2023	12/10/2023				LOD/LOIX	Offics	No.
Arsenic [#]	2.3	10.2	-				<0.5	mg/kg	TM30/PM15
Beryllium	1.7	1.4	-				<0.5	mg/kg	TM30/PM15
Cadmium [#]	<0.1	0.2	-				<0.1	mg/kg	TM30/PM15
Chromium [#]	38.2	50.2	-				<0.5	mg/kg	TM30/PM15
Copper [#]	29	23	-				<1	mg/kg	TM30/PM15
Lead [#]	14	26	-				<5	mg/kg	TM30/PM15
Mercury [#]	0.1	<0.1	-				<0.1	mg/kg	TM30/PM15
Nickel [#]	54.8	21.3	-				<0.7	mg/kg	TM30/PM15
Selenium [#]	1	<1	-				<1	mg/kg	TM30/PM15
Vanadium	31	34	-				<1	mg/kg	TM30/PM15
Water Soluble Boron #	0.3	0.4	-				<0.1	mg/kg	TM74/PM32
Zinc [#]	97	95	-				<5	mg/kg	TM30/PM15
PAH MS									
Nanhthalene [#]	<0.04	0.61					<0.04	ma/ka	TM4/PM8
Acenaphthylene	<0.03	0.48	-				<0.03	ma/ka	TM4/PM8
Acenaphthene #	<0.05	2.93	-				<0.05	ma/ka	TM4/PM8
Fluorene #	< 0.04	3.74	-				<0.04	ma/ka	TM4/PM8
Phenanthrene [#]	0.06	12.09	-				<0.03	mg/kg	TM4/PM8
Anthracene [#]	<0.04	4.34	-				<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	0.20	18.40	-				<0.03	mg/kg	TM4/PM8
Pyrene [#]	0.19	18.98	-				<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene [#]	0.14	7.74	-				<0.06	mg/kg	TM4/PM8
Chrysene #	0.14	7.46	-				<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	0.29	12.14	-				<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene [#]	0.16	7.86	-				<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	0.12	4.35	-				<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	<0.04	0.94	-				<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.14	4.35	-				<0.04	mg/kg	TM4/PM8
Coronene	-	-	-				<0.04	mg/kg	TM4/PM8
PAH 16 Total	1.4	106.4	-				<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	-	-				<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	0.21	8.74	-				<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.08	3.40	-				<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	118	116	-				<0	%	TM4/PM8
Methyl Tertiary Butyl Ether #	-	<2	<2				<2	ug/kg	TM15/PM10
Benzene [#]	-	<3	<3				<3	ug/kg	TM15/PM10
Toluene [#]	-	<3	<3				<3	ug/kg	TM15/PM10
Ethylbenzene #	-	<3	<3				<3	ug/kg	TM15/PM10
m/p-Xylene [#]	-	8	<5				<5	ug/kg	TM15/PM10
o-Xylene [#]	-	8	<3				<3	ug/kg	TM15/PM10
Surrogate Recovery Toluene D8	-	78	78				<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	-	68	64				<0	%	TM15/PM10

Client Name:
Reference:
Location:
Contact:
EMT Job No:

1620015371-002 Stairfoot Michael Hazlehurst 23/16958

Ramboll

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EMT Sample No.	34-35	36-40	41-43									
Sample ID	WS101A_1.0	WS104_0.4	WS104_2.7									
Depth	1.00	0.40	2.70							Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	٧J	VJT	VJ									
Sample Date	10/10/2023 10:55	10/10/2023 11:30	10/10/2023 12:50									
Sample Type	Soil	Soil	Soil									
Sample Type	301	301	3011									
Batch Number	1	1	1							LOD/LOR	Units	Method
Date of Receipt	12/10/2023	12/10/2023	12/10/2023									110.
Mineral Oil (C10-C40) (EH_CU_1D_AL)	-	-	-							<30	mg/kg	TM5/PM8/PM16
TPH CWG												
Aliphatics												
>C5-C6 (HS_1D_AL)#	<0.1	<0.1 ^{SV}	<0.1 ^{SV}							<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL) [#]	<0.1	<0.1 ^{SV}	<0.1 ^{SV}							<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	1.1 ^{SV}	1.4 ^{SV}							<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)*	<0.2	74.6	77.0							<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)*	<4	993	849							<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)*	<7	2308	1650							<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)*	<7	1660	808							<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	<19	5037	3385							<19	mg/kg	TM5/TM36/PM8/PM12/PM18
	-0.1	SV	SV							-0.1	malka	TM26/DM12
>C5-EC7 (HS_1D_AR)"	<0.1	<0.1	<0.1							<0.1	mg/kg	TM26/PM12
>EC7-EC8 (HS_ID_AR)	<0.1	<0.1	<0.1							<0.1	mg/kg	TM36/PM12
	<0.1	15.3	<0.1 9.1							<0.1	mg/kg	TM5/PM8/PM16
>EC10-EC12 (EII_C0_1D_AR)	<4	393	540							<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)*	<7	1700	1559							<7	ma/ka	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)*	<7	1439	643							<7	ma/ka	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS CU 1D AR)*	<19	3547	2751							<19	mg/kg	TM5/TM36/PM8/PM12/PM18
Total aliphatics and aromatics(C5-35) (EH+HS_CU_1D_Total)	<38	8584	6136							<38	mg/kg	TM5/TM36/PM8/PM12/PM1
MTBE [#]	<5	-	-							<5	ug/kg	TM36/PM12
Benzene [#]	<5	-	-							<5	ug/kg	TM36/PM12
Toluene [#]	<5	-	-							<5	ug/kg	TM36/PM12
Ethylbenzene #	<5	-	-							<5	ug/kg	TM36/PM12
m/p-Xylene [#]	<5	-	-							<5	ug/kg	TM36/PM12
o-Xylene [#]	<5	-	-							<5	ug/kg	TM36/PM12
PCB 28 [#]	-	-	-							<5	ug/kg	TM17/PM8
PCB 52#	-	-	-							<5	ug/kg	TM17/PM8
PCB 101 [#]	-	-	-							<5	ug/kg	TM17/PM8
PCB 118 [#]	-	-	-							<5	ug/kg	TM17/PM8
PCB 138 #	-	-	-							<5	ug/kg	TM17/PM8
PCB 153*	-	-	-							<5	ug/kg	TM17/PM8
PCB 180"	-	-	-							<5	ug/kg	TM17/PM8
Total 7 PCBs"	-	-	-							<35	ug/kg	IM17/PM8
Total Phenols HPLC	<0.15	0.23	-							<0.15	mg/kg	TM26/PM21B
Natural Moisture Content	7.8	20.2	26.4							<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	-							<0.3	ma/ka	TM38/PM20
. iskuraioni Onioniidili	-0.0		1	1	1	1		1	1	1 .0.0	1	1

Client Name: Reference:	Ramboll 16200153	71-002			Report :	Solid					
Location:	Stairfoot				Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	plastic tub		
Contact: EMT Job No:	Michael H 23/16958	azlehurst									
EMT Sample No.	34-35	36-40	41-43								
Sample ID	WS101A_1.0	WS104_0.4	WS104_2.7								
Depth	1.00	0.40	2.70						Please se	e attached n	otes for all
COC No / misc									abbrevi	ations and a	cronyms
Containers	٧J	VJT	٧J								
Sample Date	10/10/2023 10:55	10/10/2023 11:30	10/10/2023 12:50								
Sample Type	Soil	Soil	Soil								
Batch Number	1	1	1								Mathad
Date of Receipt	12/10/2023	12/10/2023	12/10/2023						LOD/LOR	Units	No.
Sulphate as SO4 (2:1 Ext) [#]	0.0319	0.0941	-						<0.0015	g/l	TM38/PM20
Chromium III	38.2	50.2	-						<0.5	mg/kg	NONE/NONE
Total Cyanide [#]	<0.5	<0.5	-						<0.5	mg/kg	TM89/PM45
Total Organic Carbon [#]	-	-	-						<0.02	%	TM21/PM24
Fraction Organic Carbon	0.006	-	0.038						<0.001	None	TM21/PM24
ANC at pH4	-	-	-						<0.03	mol/kg	TM77/PM0
ANC at pH7	-	-	-						<0.03	mol/kg	TM77/PM0
Loss on Ignition "	- 8.00	- 844	-						<1.0	% nH units	TM22/PM0 TM73/PM11
pri	0.00	0.11							0.01	prraimo	

Client Name:	Ramboll					Report : CEN 10:1 1 Batch						
Location: Contact: EMT Job No:	Stairfoot Michael Hazlehurs 23/16958	t				Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
	07.00			1	1							
EMT Sample No.	27-29											
Sample ID	TP108											
Depth	0.30-0.60									Diagona ag	o ottoobod n	otoo for all
COC No / misc										abbrevi	ations and ad	cronyms
Containers	TLA											
Sample Date	10/10/2023 11:35											
Sample Type	Soil											
Batch Number	301											
Batch Number	1									LOD/LOR	Units	Method No.
Date of Receipt	12/10/2023											
Mass of raw test portion	0.1112										kg	NONE/PM17
	0.00										Ng	
		_										
		_										
	1 1	1	1	1	1	1	1	1	1	1		1

		0,									
Client Name: Reference: Location: Contact: FMT Job No:	Ramboll 16200153 Stairfoot Michael H 23/16958	71-002 azlehurst			Report : Solids: V=	CEN 10:1 60g VOC jai	1 Batch (I r, J=250g gl	Duplicate ass jar, T=p	results)		
	20/10000								1		
EMT Sample No.	27-29										
Sample ID	TP108										
Danih	0.00.0.00										
Depth	0.30-0.60								Please se abbrevi	e attached ne ations and ac	otes for all
COC No / misc									abbron		* on jino
Containers	VJT										
Sample Date	10/10/2023 11:35										
Sample Type	Soil								1		
Batch Number	1										Method
Date of Receipt	12/10/2023								LOD/LOR	Units	No.
Mass of raw test portion	0.1114									kg	NONE/PM17
Mass of dried test portion	0.09									kg	NONE/PM17
										['	
										'	
			 		 					'	
			 							'	
										('	
										í'	
			 	-						i'	
				-						i'	
										i'	
										í [–]	
										I'	
										[]	
			 							'	
			 							'	
										[]	
										'	
			 		 					'	
			 							'	
										'	
			 							('	
										['	
										('	
										[]	

Client Name: Reference: Location: Contact: EMT Job No:	Ramboll 16200153 Stairfoot Michael H 23/16958	71-002 lazlehurst			SVOC Re	port :	Solid			
EMT Sample No	10-11	36-40	41-43					1		
Sample ID	WS102_3.8	WS104_0.4	WS104_2.7							
Denth	3.80	0.40	2 70					Plaasa sa	a attached n	otos for all
COC No / misc	5.00	0.40	2.70					abbrevia	ations and a	cronyms
Containers	V J	VJT	VJ							
Sample Date	10/10/2023 08:40	10/10/2023 11:30	10/10/2023 12:50							
Sample Type	Soil	Soil	Soil							
Date of Receipt	12/10/2023	12/10/2023	12/10/2023					LOD/LOR	Units	Nethod No.
SVOC MS	12/10/2020	12/10/2020	12/10/2020							
Phenois										
2-Chlorophenol [#]	<10	<10	<10					<10	ug/kg	TM16/PM8
2-Methylphenol	<10	<10	<10					<10	ug/kg	TM16/PM8
2-Nitrophenol	<10	<10	<10					<10	ug/kg	TM16/PM8
2,4-Dicniorophenol	<10	<10	<10					<10	ug/kg	TM16/PM8
2,4,5-Trichlorophenol	<10	<10	<10					<10	ug/ka	TM16/PM8
2,4,6-Trichlorophenol	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Methylphenol	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10	<10					<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<10	<10					<10	ug/kg	TM16/PM8
Phenol [#]	<10	<10	<10					<10	ug/kg	TM16/PM8
PAHS	<10	<10	<10					<10	ua/ka	
2-Methylnanhthalene #	94	137	119					<10	ug/kg ug/kg	TM16/PM8
Phthalates			-						5.5	
Bis(2-ethylhexyl) phthalate	<100	932	<100					<100	ug/kg	TM16/PM8
Butylbenzyl phthalate	<100	<100	<100					<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	123	128					<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100	<100					<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<100	<100					<100	ug/kg	TM16/PM8
Dimethyl phthalate "	<100	<100	<100					<100	ug/kg	TM16/PM8
1 2-Dichlorobenzene	<10	<10	<10					<10	ua/ka	TM16/PM8
1.2.4-Trichlorobenzene [#]	<10	<10	<10					<10	ug/kg	TM16/PM8
1,3-Dichlorobenzene	<10	<10	<10					<10	ug/kg	TM16/PM8
1,4-Dichlorobenzene	<10	<10	<10					<10	ug/kg	TM16/PM8
2-Nitroaniline	<10	<10	<10					<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10	<10					<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10	<10	<10					<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<10	<10					<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10	<10					<10	ug/kg	TM16/PM8
Azobenzene	<10	<10	<10					<10	ug/kg	TM16/PM8
Bis(2-chloroethoxy)methane	<10	<10	<10					<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ether	<10	<10	<10					<10	ug/kg	TM16/PM8
Carbazole	63	<10	<10					<10	ug/kg	
Hexachlorobenzene	<10	<10	<10					<10	ug/kg	TM16/PM8
Hexachlorobutadiene #	<10	<10	<10					<10	ug/kq	TM16/PM8
Hexachlorocyclopentadiene	<10	<10	<10					<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10	<10					<10	ug/kg	TM16/PM8
Isophorone #	<10	<10	<10					<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine #	<10	<10	<10					<10	ug/kg	TM16/PM8
Nitrobenzene #	<10	<10	<10					<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	111	127	133 ⁵					<0	%	TM16/PM8
ourrogate recovery p-rerphenyi-014	107	135	136					~0	70	110/PIVI8

Client Name: Reference: Location: Contact:	Ramboll 16200153 Stairfoot Michael H	71-002 azlehurst			VOC Rep	ort :	Solid			
EMT Job No:	23/16958									
EMT Sample No.	10-11	36-40	41-43							
Sample ID	WS102_3.8	WS104_0.4	WS104_2.7							
Depth	3.80	0.40	2.70					Please se	e attached r	notes for all
COC No / misc	N/ I	VIT	V I					 abbievia		cronyms
Sample Date	10/10/2023 08:40	10/10/2023 11:30	V J 10/10/2023 12:50							
Sample Type	Soil	Soil	Soil							
Batch Number	1	1	1						Units	Method
Date of Receipt	12/10/2023	12/10/2023	12/10/2023					LOBILOIT	01110	No.
VOC MS	-2	-2	-2					-2	ualka	TM15/DM10
Methyl Tertiany Butyl Ether [#]	<2	<2	<2					<2	ug/kg ug/kg	TM15/PM10
Chloromethane [#]	<3	<3	<3					<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2	<2					<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1	<1					<1	ug/kg	TM15/PM10
Chloroethane #	<2	<2	<2					<2	ug/kg	TM15/PM10
Trichlorofluoromethane#	<2	<2	<2					<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1,1 DCE) [#]	<6	<6	<6					<6	ug/kg	TM15/PM10
Dichloromethane (DCM)*	<7	<7	<7					<7	ug/kg	TM15/PM10
trans-1-2-Dichloroethene"	<3	<3	<3					<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene #	<3	<3	<3					<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4	<4					<4	ug/kg	TM15/PM10
Bromochloromethane #	<3	<3	<3					<3	ug/kg	TM15/PM10
Chloroform [#]	<3	<3	<3					<3	ug/kg	TM15/PM10
1,1,1-Trichloroethane [#]	<3	<3	<3					<3	ug/kg	TM15/PM10
1,1-Dichloropropene#	<3	<3	<3					<3	ug/kg	TM15/PM10
Carbon tetrachloride *	<4	<4	<4					<4	ug/kg	TM15/PM10
1,2-Dichloroethane "	<4	<4	<4					<4	ug/kg	TM15/PM10
Trichloroethene (TCE)#	<3	<3	<3					<3	ug/kg	TM15/PM10
1.2-Dichloropropane [#]	<6	<6	<6					<6	ug/kg	TM15/PM10
Dibromomethane #	<3	<3	<3					<3	ug/kg	TM15/PM10
Bromodichloromethane #	<3	<3	<3					<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4	<4					<4	ug/kg	TM15/PM10
Toluene [#]	10	<3	<3					<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3	<3					<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane"	<3	<3	<3					<3	ug/kg	TM15/PM10
1 3 Dichloropropago [#]	<3	<3	<3					<3	ug/kg	TM15/PM10
Dibromochloromethane [#]	<3	<3	<3					<3	ug/kg	TM15/PM10
1.2-Dibromoethane #	<3	<3	<3					<3	ug/kg	TM15/PM10
Chlorobenzene [#]	<3	<3	<3					<3	ug/kg	TM15/PM10
1,1,1,2-Tetrachloroethane#	<3	<3	<3					<3	ug/kg	TM15/PM10
Ethylbenzene #	<3	<3	<3					<3	ug/kg	TM15/PM10
m/p-Xylene #	<5	8	<5					<5	ug/kg	TM15/PM10
o-Xylene #	<3	8	<3					<3	ug/kg	TM15/PM10
Styrene	<3	<3	<3					<3	ug/kg	TM15_A/PM10
Isopropylbenzene [#]	<3	5	<3					<3	ug/kg ug/kg	TM15/PM10
1 1 2 2-Tetrachloroethane [#]	<3	<3	<3					<3	ug/kg	TM15/PM10
Bromobenzene	<2	<2	<2					<2	ug/kg	TM15/PM10
1,2,3-Trichloropropane #	<4	<4	<4					<4	ug/kg	TM15/PM10
Propylbenzene #	<4	10	<4					<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3	<3					<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene #	<3	<3	<3					<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3	<3					<3	ug/kg	TM15/PM10
tert-Butylbenzene *	<5	13	9					<5	ug/kg	TM15/PM10
1,2,4- I rimethylbenzene "	<0	43	<0 212					<0	ug/kg	TM15/PM10
4-Isopropyltoluene	<4	48	38					<4	ug/kg	TM15/PM10
1,3-Dichlorobenzene [#]	<4	<4	<4					<4	ug/ka	TM15/PM10
1,4-Dichlorobenzene [#]	<4	<4	<4					<4	ug/kg	TM15/PM10
n-Butylbenzene	<4	85	<4					<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene#	<4	<4	<4					<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane	<4	<4	<4					<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene	<7	<7	<7					<7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4	<4					<4	ug/kg	TM15/PM10
Ivapntnalene	<27	<2/	<27					<2/	ug/kg	TM15/PM10
Surrogate Recovery Toluene De	100	5/ 78	57 78					</td <td>ug/Kg</td> <td>TM15/PM10</td>	ug/Kg	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	85	68	64					<0	%	TM15/PM10

CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg)	-		Moisture Content Ratio (%) =		24.1	
Mass of dry sample (kg) =	0.09		Dry Matter Content Ratio (%) =		80.6	
Particle Size <4mm =	>95%					
EMT Job No	1		23/16958	Land	fill Wasto Ar	centance
Sample No			29		Criteria Lin	nits
Client Sample No			TP108			
Depth/Other			0.30-0.60	Inort	Stable Non-reactive	Hazardoua
Sample Date			10/10/2023 11:35	Waste	Hazardous	Waste
Batch No			1	Landfill	Waste in Non- Hazardous	Landfill
Solid Waste Analysis	1				Landfill	
Total Organic Carbon (%)	4.96			3	5	6
Loss on Ignition (%)	7.1			-	_	10
Sum of BTEX (mg/kg)	<0.025			6	-	-
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-
Mineral Oil (mg/kg) (EH_CU_1D_AL)	<30			500	-	-
PAH Sum of 17(mg/kg)	1.66			100	-	-
pH (pH Units)	7.72			-	>6	-
ANC to pH 7 (mol/kg)	<0.03			-	to be evaluated	to be evaluated
ANC to pH 4 (mol/kg)	0.29			-	to be evaluated	to be evaluated
Eluate Analysis	10:1 lea	conc ^a ched A ₁₀		Limit le BS EN	Limit values for compl leaching test using BS EN 12457-2 at L/S 1	
	ma/l	ma/ka			mg/kg	
Arsenic	<0.0025	< 0.025		0.5	2	25
Barium	0.015	0.15		20	100	300
Cadmium	<0.0005	<0.005		0.04	1	5
Chromium	<0.0015	<0.015		0.5	10	70
Copper	<0.007	<0.07		2	50	100
Mercury	<0.001	<0.01		0.01	0.2	2
Molybdenum	0.004	0.04		0.5	10	30
Nickel	<0.002	<0.02		0.4	10	40
Lead	<0.005	<0.05		0.5	10	50
Antimony	<0.002	<0.02		0.06	0.7	5
Selenium	<0.003	<0.03		0.1	0.5	7
Zinc	<0.003	<0.03		4	50	200
Chloride	0.8	8		800	15000	25000
Fluoride	1.7	17		10	150	500
Sulphate as SO4	11.7	117		1000	20000	50000
Total Dissolved Solids	132	1320		4000	60000	100000
Phenol	<0.01	<0.1		1	-	-
Dissolved Organic Carbon	3	30		500	800	1000

Client Name:	Ramboll
Reference:	1620015371-002
Location:	Stairfoot
Contact:	Michael Hazlehurst

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/16958	1	TP101	+1.50-0.00	3	Catherine Coles	20/10/2023	General Description (Bulk Analysis)	brown soil,stone
					Catherine Coles	20/10/2023	Asbestos Fibres	NAD
					Catherine Coles	20/10/2023	Asbestos ACM	NAD
					Catherine Coles	20/10/2023	Asbestos Type	NAD
23/16958	1	TP102	2.20-2.40	6	Bart Kuznicki	20/10/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	20/10/2023	Asbestos Fibres	NAD
					Bart Kuznicki	20/10/2023	Asbestos ACM	NAD
					Bart Kuznicki	20/10/2023	Asbestos Type	NAD
23/16958	1	TP103	+0.90-0.00	9	Bart Kuznicki	20/10/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	20/10/2023	Asbestos Fibres	NAD
					Bart Kuznicki	20/10/2023	Asbestos ACM	NAD
					Bart Kuznicki	20/10/2023	Asbestos Type	NAD
23/16958	1	WS112_0.2	0.20	16	Bart Kuznicki	23/10/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	23/10/2023	Asbestos Fibres	NAD
					Bart Kuznicki	23/10/2023	Asbestos ACM	NAD
					Bart Kuznicki	23/10/2023	Asbestos Type	NAD
23/16958	1	TP105	+1.30-0.00	20	Bart Kuznicki	23/10/2023	General Description (Bulk Analysis)	Brown soil with stones and spider webs
					Bart Kuznicki	23/10/2023	Asbestos Fibres	NAD
					Bart Kuznicki	23/10/2023	Asbestos ACM	NAD
					Bart Kuznicki	23/10/2023	Asbestos Type	NAD
23/16958	1	TP104	+0.90-0.00	23	Bart Kuznicki	20/10/2023	General Description (Bulk Analysis)	Brown Soil with stones
					Bart Kuznicki	20/10/2023	Asbestos Fibres	NAD
					Bart Kuznicki	20/10/2023	Asbestos ACM	NAD
					Bart Kuznicki	20/10/2023	Asbestos Type	NAD
23/16958	1	TP107	0.60-0.70	26	Bart Kuznicki	23/10/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	23/10/2023	Asbestos Fibres	NAD
					Bart Kuznicki	23/10/2023	Asbestos ACM	NAD
					Bart Kuznicki	23/10/2023	Asbestos Type	NAD
23/16958	1	TP108	0.30-0.60	28	Charlotte Taylor	19/10/2023	General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	19/10/2023	Asbestos Fibres	Fibre Bundles
					Charlotte Taylor	19/10/2023	Asbestos ACM	NAD
					Charlotte Taylor	19/10/2023	Asbestos Type	Chrysotile

Client Name:
Reference:
Location:
Contact:

Ramboll 1620015371-002

Stairfoot Michael Hazlehurst

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/16958	1	TP106	+1.40-0.00	32	Bart Kuznicki	23/10/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	23/10/2023	Asbestos Fibres	NAD
					Bart Kuznicki	23/10/2023	Asbestos Fibres (2)	NAD
					Bart Kuznicki	23/10/2023	Asbestos ACM	NAD
					Bart Kuznicki	23/10/2023	Ashestos ACM (2)	ΝΑΠ
					Bart Kuznicki	23/10/2023		NAD
					Dart Kuznicki	23/10/2023		
					Bart Kuznicki	23/10/2023	Asbestos Type (2)	NAD
23/16958	1	WS101A_0.1	0.10	33	Bart Kuznicki	23/10/2023	General Description (Bulk Analysis)	Brown soil with stones
					Bart Kuznicki	23/10/2023	Asbestos Fibres	Fibre Bundles
					Bart Kuznicki	23/10/2023	Asbestos ACM	NAD
					Bart Kuznicki	23/10/2023	Asbestos Type	Chrysotile

Client Name:	Ramboll
Reference:	1620015371-002
Location:	Stairfoot
Contact	Michael Hazlehu

Michael Hazlehurst Contact:

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason					
	No deviating sample report results for job 23/16958										

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

Notification of Deviating Samples

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/16958

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
w	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes

EMT Job No: 23/16958

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.			AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.			AD	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996; Modified EPA	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes

Method Code Appendix

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
ТМ73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM77	Modified DDCEN/TS method 15364:2006. Determination of Acid Neutralization Capacity by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	No

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
TM15_A	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ramboll 1 Broad Gate The Headrow Leeds United Kingdom LS1 8EQ			
Attention :	Michael Hazlehurst		
Date :	31st October, 2023		
Your reference :	1620015371-002		
Our reference :	Test Report 23/16958 Batch 1 Schedule C		
Location :	Stairfoot		
Date samples received :	12th October, 2023		
Status :	Final Report		
Issue :	1		

Nineteen samples were received for analysis on 12th October, 2023 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 0.724 kg of CO2

Scope 1&2&3 emissions - 1.711 kg of CO2

Authorised By:

5.60-20

Simon Gomery BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name:	Ramboll
Reference:	1620015371-002
Location:	Stairfoot
Contact:	Michael Hazlehurst

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/16958	1	TP108	0.30-0.60	28	Remigiusz Blichowski	26/10/2023	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					Remigiusz Blichowski	26/10/2023	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					Remigiusz Blichowski	26/10/2023	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					Remigiusz Blichowski	26/10/2023	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					Remigiusz Blichowski	26/10/2023	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
23/16958	1	WS101A_0.1	0.10	33	Remigiusz Blichowski	26/10/2023	Total ACM Gravimetric Quantification (% Asb)	<0.001 (mass %)
					Remigiusz Blichowski	26/10/2023	Total Detailed Gravimetric Quantification (% Asb)	<0.001 (mass %)
					Remigiusz Blichowski	26/10/2023	Total Gravimetric Quantification (ACM + Detailed) (% Asb)	<0.001 (mass %)
					Remigiusz Blichowski	26/10/2023	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)
					Remigiusz Blichowski	26/10/2023	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)
Client Name:	Ramboll							
--------------	-----------------							
Reference:	1620015371-002							
Location:	Stairfoot							
Contact	Michael Hazlehu							

Contact: Michael Hazlehurst

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 23/16958	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/16958

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

Laboratory records are kept for a period of no less than 6 year

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
w	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/16958

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM131	Quantification of Asbestos Fibres and ACM based on HSG 248 Second edition:2021, HSG 264 Second edition:2012, HSE Contract Research Report No.83/1996, MDHS 87:1998, WM3 1st Edition v1.1:2018	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	Yes

Method Code Appendix

Element Materials Technology Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA P: +44 (0) 1244 833780 F: +44 (0) 1244 833781

W: www.element.com

Ramboll 1 Broad Gate The Headrow Leeds United Kingdom LS1 8EQ		
Attention :	Michael Hazlehurst	
Date :	3rd November, 2023	
Your reference :	1620015371-002	
Our reference :	Test Report 23/17063 Batch 1	
Location :	Stairfoot	
Date samples received :	13th October, 2023	
Status :	Final Report	
Issue :	2	

Seven samples were received for analysis on 13th October, 2023 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

The greenhouse gas emissions generated (in Carbon - Co2e) to obtain the results in this report are estimated as:

Scope 1&2 emissions - 22.661 kg of CO2

Scope 1&2&3 emissions - 53.554 kg of CO2

Authorised By:

5.6000

Simon Gomery BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Client Name:	Ramboll					Report :	Solid					
Reference:	16200153 Stairfoot	371-002				0		1 050				
Location:	Michael H	lazlehurst				Solids: V=	60g VOC ja	r, J=250g gl	lass jar, T=p	lastic tub		
EMT Job No:	23/17063											
EMT Sample No.	1.2	4.5	6	7.9	10 11					l		
Eini Sample No.	1-2	4-5	0	7-0	10-11							
Sample ID	WS103_2.8	WS109_0.9	WS108_0.3	WS108_3.4	WS110_2.7							
Depth	2.80	0.90	0.30	3.40	2.70					Please sc	o attachad r	otos for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	V I	N I	т	V I	V I							
Sampla Data	11/10/2022 09:15	11/10/2022 00/55	11/10/2022 11/10	11/10/2022 11:45	11/10/2022 00:45							
Sample Date	11/10/2023 00:13	11/10/2023 08:33	11/10/2023 11:10	11/10/2023 11:43	11/10/2023 03:43							
Sample Type	Soil	Soil	Soil	Soil	Soil							
Batch Number	1	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023							INO.
Arsenic [#]	42.5	5.8	-	5.7	13.5					<0.5	mg/kg	TM30/PM15
Beryllium	2.3	<0.5	-	1.5	1.2					<0.5	mg/kg	TM30/PM15
Cadmium [#]	<0.1	<0.1	-	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Chromium "	304.6 _{AA}	92.5	-	42.0	41.1					<0.5	mg/kg	TM30/PM18
Lead #	79	8	-	16	13					<5	mg/kg	TM30/PM15
Mercurv [#]	<0.1	<0.1	-	<0.1	<0.1					<0.1	mg/kg	TM30/PM15
Nickel [#]	45.1	8.0	-	62.9	60.0					<0.7	mg/kg	TM30/PM15
Selenium [#]	3	<1	-	<1	<1					<1	mg/kg	TM30/PM15
Vanadium	101	24	-	31	27					<1	mg/kg	TM30/PM15
Water Soluble Boron #	2.9	0.5	-	0.3	0.2					<0.1	mg/kg	TM74/PM32
Zinc [#]	325	59	-	99	100					<5	mg/kg	TM30/PM15
PAH MS	0.31	<0.04	<0.04	<0.04	<0.04					<0.04	malka	
Acenaphthylene	0.10	<0.04	0.07	<0.04	<0.04					<0.04	ma/ka	TM4/PM8
Acenaphthene [#]	0.16	< 0.05	<0.05	< 0.05	< 0.05					<0.05	mg/kg	TM4/PM8
Fluorene #	0.16	<0.04	<0.04	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Phenanthrene [#]	1.32	<0.03	0.13	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Anthracene #	0.34	<0.04	0.08	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	1.98	<0.03	1.30	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Pyrene [#]	1.64	<0.03	1.23	<0.03	<0.03					<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene *	0.90	< 0.06	0.93	<0.06	< 0.06					<0.06	mg/kg	TM4/PM8
Chrysene "	0.97	<0.02	0.95	<0.02	<0.02					<0.02	mg/kg	
Benzo(bk)iluoraninene	0.97	<0.07	0.82	<0.07	<0.07					<0.07	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	0.68	<0.04	0.59	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene [#]	0.17	<0.04	0.16	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	0.70	<0.04	0.56	<0.04	<0.04					<0.04	mg/kg	TM4/PM8
Coronene	-	-	0.09	-	-					<0.04	mg/kg	TM4/PM8
PAH 16 Total	12.1	<0.6	-	<0.6	<0.6					<0.6	mg/kg	TM4/PM8
PAH 17 Total	-	-	8.59	-	-					<0.64	mg/kg	TM4/PM8
Benzo(b)fluoranthene	1.25	<0.05	1.21	<0.05	<0.05					<0.05	mg/kg	TM4/PM8
Benzo(k)fluoranthene	0.49	<0.02	0.47	<0.02	<0.02					<0.02	mg/kg	TM4/PM8
PAH Surrogate % Recovery	106	108	122	107	108					<0	%	TM4/PM8
Methyl Tertion, Butyl Ethor#	<2	-2	_	_						57	ua/ka	TM15/PM10
Benzene [#]	7	<3	-	-	-					<3	ug/kg	TM15/PM10
Toluene [#]	20	<3	-	-	-					<3	ug/kg	TM15/PM10
Ethylbenzene #	6	<3	-	-	-					<3	ug/kg	TM15/PM10
m/p-Xylene [#]	19	<5	-	-	-					<5	ug/kg	TM15/PM10
o-Xylene [#]	8	<3	-	-	-					<3	ug/kg	TM15/PM10

Surrogate Recovery Toluene D8

Surrogate Recovery 4-Bromofluorobenzene

65

58

97

91

-

TM15/PM10

TM15/PM10

<0

<0

%

%

Client Name:	Ramboll					Report :	Solid					
Reference:	16200153	371-002										
Location:	Stairfoot					Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
Contact:	Michael H	lazlehurst										
EMT Job No:	23/17063						-		-	-		
EMT Sample No.	1-2	4-5	6	7-8	10-11							
Sample ID	WS103_2.8	WS109_0.9	WS108_0.3	WS108_3.4	WS110_2.7							
Depth	2.80	0.90	0.30	3.40	2.70					Please se	e attached r	otes for all
COC No / misc										abbrevia	ations and a	cronyms
Containers	٧J	٧J	т	٧J	VJ							
Sample Date	11/10/2023 08:15	11/10/2023 09:55	11/10/2023 11:10	11/10/2023 11:45	11/10/2023 09:45					1		
Sample Type	Soil	Soil	Soil	Soil	Soil					1		
Batch Number	1	1	1	1	1					· · · ·		
Date of Baselet	10/10/0000	1	1	1	1					LOD/LOR	Units	Method No.
Date of Receipt	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023							
Mineral Oil (C10-C40) (EH_CU_1D_AL)	-	-	<30	-	-					<30	mg/kg	TM5/PM8/PM16
TPH CWG												-
Alinhatics												
	, sv	<0.1		<0.1	<0.1					<0.1	ma/ka	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1 <0.1SV	<0.1	-	<0.1	<0.1					<0.1	ma/ka	TM36/PM12
>C8-C10 (HS_1D_AL)	0.7 ^{SV}	<0.1	-	<0.1	<0.1					<0.1	ma/ka	TM36/PM12
>C10-C12 (FH_CU_1D_AL)*	3.0	<0.2	-	<0.2	<0.2					<0.2	ma/ka	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	6	5	-	<4	<4					<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH CU 1D AL)#	61	16	-	<7	<7					<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH CU 1D AL)#	320	44	-	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-35 (EH+HS_CU_1D_AL)	391	65	-	<19	<19					<19	mg/kg	TM5/TM36/PM8/PM12/PM14
Aromatics												
>C5-EC7 (HS_1D_AR)*	<0.1 ^{SV}	<0.1	-	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR) [#]	<0.1 ^{SV}	<0.1	-	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1 ^{SV}	<0.1	-	<0.1	<0.1					<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	4.2	<0.2	-	<0.2	<0.2					<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	7	<4	-	<4	<4					<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)#	77	<7	-	<7	<7					<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	541	<7	-	<7	<7					<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-35 (EH+HS_CU_1D_AR)#	629	<19	-	<19	<19					<19	mg/kg	TM5/TM36/PM8/PM12/PM1
Total aliphatics and aromatics(C5-35) (EH+HS_CU_1D_Total)	1020	65	-	<38	<38					<38	mg/kg	TM5/TM36/PM8/PM12/PM1
MTBE [#]	-	-	<5	<5	<5					<5	ug/kg	TM36/PM12
Benzene [#]	-	-	<5	<5	<5					<5	ug/kg	TM36/PM12
Toluene#	-	-	<5	<5	<5					<5	ug/kg	TM36/PM12
Ethylbenzene #	-	-	<5	<5	<5					<5	ug/kg	TM36/PM12
m/p-Xylene *	-	-	<5	<5	<5					<5	ug/kg	TM36/PM12
o-Xylene "	-	-	<5	<5	<5					<5	ug/kg	TM36/PM12
DOD 00#			-5							-5		TN447/DN40
PCB 28"	-	-	<0	-	-					<0	ug/kg	
PCB 52	-	-	<5	-	-					<5	ug/kg	
PCB 101		-	<5	-	-					<5	ug/kg	TM17/PM8
PCB 139#	-	-	<5	-	-					<5	ug/kg	TM17/PM8
PCB 153#		-	<5	-	-					<5	ug/kg	TM17/PM8
PCB 180 [#]		_	<5	_	_					<5	ug/kg	TM17/PM8
Total 7 PCBs#	-	-	<35	-	-					<35	ua/ka	TM17/PM8
											~3/13	
Total Phenols HPLC	<0.15	<0.15	-	<0.15	<0.15					<0.15	mg/ka	TM26/PM21B
											55	
Natural Moisture Content	19.9	13.5	4.5	13.0	8.2					<0.1	%	PM4/PM0
										1		
Hexavalent Chromium#	<0.3	<0.3	-	<0.3	<0.3					<0.3	mg/kg	TM38/PM20

Client Name: Reference:	Ramboll 16200153	371-002				Report :	Solid					
Location:	Stairfoot					Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
Contact:	Michael H	lazlehurst										
EMT Job No:	23/17063									-		
EMT Sample No.	1-2	4-5	6	7-8	10-11							
Sample ID	WS103_2.8	WS109_0.9	WS108_0.3	WS108_3.4	WS110_2.7							
Depth	2.80	0.90	0.30	3.40	2.70					Please se	e attached n	otes for all
COC No / misc										abbrevi	ations and a	cronyms
Containers	VJ	٧J	Т	٧J	Λì							
Sample Date	11/10/2023 08:15	11/10/2023 09:55	11/10/2023 11:10	11/10/2023 11:45	11/10/2023 09:45							
Sample Type	Soil	Soil	Soil	Soil	Soil							1
Batch Number	1	1	1	1	1					LOD/LOR	Units	Method No.
Date of Receipt	13/10/2023	13/10/2023	13/10/2023	13/10/2023	13/10/2023							
Sulphate as SO4 (2:1 Ext)#	0.1125	0.0391	-	0.0454	0.0245					<0.0015	g/l	TM38/PM20
Chromium III	304.6	92.5	-	42.0	41.1					<0.5	mg/kg	NONE/NONE
Total Cyanide [#]	7.0	<0.5	-	<0.5	<0.5					<0.5	mg/kg	TM89/PM45
Total Organic Carbon [#]		_	0.74	_						<0.02	%	TM21/PM2/
Fraction Organic Carbon	0.118	0.001	-	0.005	0.005					<0.001	None	TM21/PM24
	0.110	0.001		0.000	0.000					-0.001	None	
ANC at pH4	-	-	1.33	-	-					<0.03	mol/kg	TM77/PM0
ANC at pH7	-	-	0.05	-	-					<0.03	mol/kg	ТМ77/РМ0
Loss on Ignition #	-	-	1.9	-	-					<1.0	%	TM22/PM0
рН #	8.14	8.98	9.57	6.92	6.86					<0.01	pH units	TM73/PM1
												-

Client Name:											
Reference: Location: Contact: EMT Job No:	1620015371-00 Stairfoot Michael Hazleh 23/17063	02 nurst			Solids: V=	60g VOC ja	r, J=250g gl	ass jar, T=p	lastic tub		
EMT Sample No.	6										
Sample ID	WS108_0.3										
Depth	0.30										
COC No / misc									Please se abbrevia	e attached n ations and ac	otes for all cronyms
Containers	т										
Sample Date	11/10/2023 11:10										
Sample Type	Soil										
Batch Number	1										
Date of Receipt	13/10/2023								LOD/LOR	Units	Nethod No.
Mass of raw test portion	0.0995									kg	NONE/PM17
Mass of dried test portion	0.09									kg	NONE/PM17

Element Material	s Tech	nology											
Client Name: Reference: Location: Contact: EMT Job No:	RambollSVOC Report :Solid1620015371-002StairfootMichael Hazlehurst23/17063												
	25/17005								-		1		
EMT Sample No.	1-2	4-5											
Sample ID	WS103_2.8	WS109_0.9											
Depth	2.80	0.90									Please se	e attached r	otes for all
COC No / misc											abbrevi	ations and a	cronyms
Containers Sample Date	V J	V J											
Sample Type	Soil	Soil											
Batch Number	1	1											Method
Date of Receipt	13/10/2023	13/10/2023									LOD/LOR	Units	No.
SVOC MS													
Phenols													
2-Chlorophenol [#]	<10	<10									<10	ug/kg	TM16/PM8
2-Methylphenol	13	<10									<10	ug/kg	TM16/PM8
2 4-Dichlorophenol [#]	<10	<10									<10	ug/kg	TM16/PM8
2,4-Dimethylphenol	<10	<10									<10	ug/ka	TM16/PM8
2,4,5-Trichlorophenol	<10	<10									<10	ug/kg	TM16/PM8
2,4,6-Trichlorophenol	<10	<10									<10	ug/kg	TM16/PM8
4-Chloro-3-methylphenol	<10	<10									<10	ug/kg	TM16/PM8
4-Methylphenol	35	<10									<10	ug/kg	TM16/PM8
4-Nitrophenol	<10	<10									<10	ug/kg	TM16/PM8
Pentachlorophenol	<10	<10									<10	ug/kg	TM16/PM8
Phenol [#]	14	<10									<10	ug/kg	TM16/PM8
PAHs		-10									-10		
2-Chioronaphthalene	158	12									<10	ug/kg	TM16/PM8
2-methyinaphthalates	130	12									10	ug/kg	TIVITO/FIVIO
Bis(2-ethylhexyl) phthalate	<100	<100									<100	ua/ka	TM16/PM8
Butylbenzyl phthalate	<100	<100									<100	ug/kg	TM16/PM8
Di-n-butyl phthalate	<100	<100									<100	ug/kg	TM16/PM8
Di-n-Octyl phthalate	<100	<100									<100	ug/kg	TM16/PM8
Diethyl phthalate	<100	<100									<100	ug/kg	TM16/PM8
Dimethyl phthalate #	<100	<100									<100	ug/kg	TM16/PM8
Other SVOCs													
1,2-Dichlorobenzene	<10	<10									<10	ug/kg	TM16/PM8
1,2,4-Trichlorobenzene "	<10	<10									<10	ug/kg	TM16/PM8
	<10	<10									<10	ug/kg	TM16/PM8
2-Nitroaniline	<10	<10									<10	ug/kg	TM16/PM8
2,4-Dinitrotoluene	<10	<10									<10	ug/kg	TM16/PM8
2,6-Dinitrotoluene	<10	<10									<10	ug/kg	TM16/PM8
3-Nitroaniline	<10	<10									<10	ug/kg	TM16/PM8
4-Bromophenylphenylether #	<10	<10									<10	ug/kg	TM16/PM8
4-Chloroaniline	<10	<10									<10	ug/kg	TM16/PM8
4-Chlorophenylphenylether	<10	<10									<10	ug/kg	TM16/PM8
4-Nitroaniline	<10	<10									<10	ug/kg	TM16/PM8
Azobenzene	<10	<10									<10	ug/kg	TM16/PM8
Bis(2-chloroethyl)ethor	<10	<10									<10	ug/kg	TM16/PM8
Carbazole	50	<10									<10	ug/kg	TM16/PM8
Dibenzofuran #	80	12									<10	ua/ka	TM16/PM8
Hexachlorobenzene	<10	<10									<10	ug/kg	TM16/PM8
Hexachlorobutadiene#	<10	<10									<10	ug/kg	TM16/PM8
Hexachlorocyclopentadiene	<10	<10									<10	ug/kg	TM16/PM8
Hexachloroethane	<10	<10									<10	ug/kg	TM16/PM8
Isophorone #	<10	<10									<10	ug/kg	TM16/PM8
N-nitrosodi-n-propylamine [#]	<10	<10									<10	ug/kg	TM16/PM8
Nitrobenzene *	<10	<10									<10	ug/kg	TM16/PM8
Surrogate Recovery 2-Fluorobiphenyl	109	107									<0	%	TM16/PM8
Surroyate Recovery p-Terpnenyl-d14	131	103									< <u>U</u>	70	PINI O/PINI8
	1	1	1	1	1	1	1	1	1	1			1

Element Material	s Tech	nology								
Client Name: Reference: Location: Contact: FMT.lob No:	Ramboll 16200153 Stairfoot Michael H 23/17063	371-002 łazlehurst			VOC Rep	ort :	Solid			
EMT Comple No.	20/11000	4.5						1		
EM I Sample No.	1-2	4-5								
Sample ID	WS103_2.8	WS109_0.9								
Depth	2.80	0.90						Please see abbrevia	e attached i ations and a	notes for all acronyms
Containers	VJ	VJ								
Sample Date	11/10/2023 08:15	11/10/2023 09:55								
Sample Type	Soil	Soil								
Date of Receipt	13/10/2023	13/10/2023						LOD/LOR	Units	Nethod No.
VOC MS	10/10/2020	10/10/2020								
Dichlorodifluoromethane	<2	<2						<2	ug/kg	TM15/PM10
Methyl Tertiary Butyl Ether #	<2	<2						<2	ug/kg	TM15/PM10
Chloromethane #	<3	<3						<3	ug/kg	TM15/PM10
Vinyl Chloride	<2	<2						<2	ug/kg	TM15_A/PM10
Bromomethane	<1	<1						<1	ug/kg	TM15/PM10
Trichlorofluoromethane #	<2	<2						<2	ug/kg	TM15/PM10
1,1-Dichloroethene (1.1 DCF)#	<6	<6						- <u>-</u> <6	ug/ka	TM15/PM10
Dichloromethane (DCM) [#]	<7	<7						<7	ug/kg	TM15/PM10
trans-1-2-Dichloroethene #	<3	<3						<3	ug/kg	TM15/PM10
1,1-Dichloroethane #	<3	<3						<3	ug/kg	TM15/PM10
cis-1-2-Dichloroethene#	<3	<3						<3	ug/kg	TM15/PM10
2,2-Dichloropropane	<4	<4						<4	ug/kg	TM15/PM10
Bromochloromethane "	<3	<3						<3	ug/kg	TM15/PM10
1 1 1-Trichloroethane [#]	<3	<3						<3	ug/kg	TM15/PM10
1.1-Dichloropropene [#]	<3	<3						<3	ug/kg	TM15/PM10
Carbon tetrachloride [#]	<4	<4						<4	ug/kg	TM15/PM10
1,2-Dichloroethane#	<4	<4						<4	ug/kg	TM15/PM10
Benzene #	7	<3						<3	ug/kg	TM15/PM10
Trichloroethene (TCE)#	<3	<3						<3	ug/kg	TM15/PM10
1,2-Dichloropropane#	<6	<6						<6	ug/kg	TM15/PM10
Dibromomethane"	<3	<3						<3	ug/kg	TM15/PM10
cis-1-3-Dichloropropene	<4	<4						<4	ug/kg	TM15/PM10
Toluene [#]	20	<3						<3	ug/kg	TM15/PM10
trans-1-3-Dichloropropene	<3	<3						<3	ug/kg	TM15/PM10
1,1,2-Trichloroethane#	<3	<3						<3	ug/kg	TM15/PM10
Tetrachloroethene (PCE)#	<3	<3						<3	ug/kg	TM15/PM10
1,3-Dichloropropane#	<3	<3						<3	ug/kg	TM15/PM10
Dibromochloromethane #	<3	<3						<3	ug/kg	TM15/PM10
1,2-Dibromoethane "	<3	<3						<3	ug/kg	TM15/PM10
1 1 1 2-Tetrachloroethane#	<3	<3						<3	ug/kg	TM15/PM10
Ethylbenzene [#]	6	<3						<3	ug/kg	TM15/PM10
m/p-Xylene [#]	19	<5						<5	ug/kg	TM15/PM10
o-Xylene [#]	8	<3						<3	ug/kg	TM15/PM10
Styrene	<3	<3						<3	ug/kg	TM15_A/PM10
Bromoform	<3	<3						<3	ug/kg	TM15/PM10
Isopropylbenzene#	<3	<3						<3	ug/kg	TM15/PM10
1,1,2,2-Tetrachloroethane"	<3	<3						<3	ug/kg	TM15/PM10
1 2 3-Trichloropropage #	<2	<4						<2 <4	ug/kg ug/kg	TM15/PM10
Propylbenzene [#]	<4	<4						<4	ug/kg	TM15/PM10
2-Chlorotoluene	<3	<3						<3	ug/kg	TM15/PM10
1,3,5-Trimethylbenzene#	13	<3						<3	ug/kg	TM15/PM10
4-Chlorotoluene	<3	<3						<3	ug/kg	TM15/PM10
tert-Butylbenzene #	20	<5						<5	ug/kg	TM15/PM10
1,2,4-Trimethylbenzene*	77	<6						<6	ug/kg	TM15/PM10
sec-Butylbenzene "	13	<4						<4 ~1	ug/kg	TM15/PM10
1.3-Dichlorobenzene [#]	<4	<4						<4	ug/kg	TM15/PM10
1.4-Dichlorobenzene [#]	<4	<4						<4	ug/ka	TM15/PM10
n-Butylbenzene	8	<4						<4	ug/kg	TM15/PM10
1,2-Dichlorobenzene#	<4	<4						<4	ug/kg	TM15/PM10
1,2-Dibromo-3-chloropropane	<4	<4						<4	ug/kg	TM15/PM10
1,2,4-Trichlorobenzene	<7	<7						<7	ug/kg	TM15/PM10
Hexachlorobutadiene	<4	<4						<4	ug/kg	TM15/PM10
Naphthalene	44	<27						<27	ug/kg	TM15/PM10
Surrogate Recovery Toluene De	</td <td><!--<br-->07</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><!--</td--><td>ug/kg</td><td>TM15/PM10</td></td>	<br 07						</td <td>ug/kg</td> <td>TM15/PM10</td>	ug/kg	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	58	91						<0	%	TM15/PM10

CEN 10:1 LEACHATE RESULTS BS EN 12547-2

Mass of sample taken (kg)	0.0
Mass of dry sample (kg) =	0.0
Particle Size <4mm =	>9

0.0995 0.09 >95% Moisture Content Ratio (%) = Dry Matter Content Ratio (%) = 10.1 90.8

EMT Job No			23/17063	Landfill Waste Acceptance				
Sample No			6		Criteria Lin	nits		
Client Sample No			WS108_0.3		Stable			
Depth/Other			0.30	Inert	Non-reactive	Hazardous		
Sample Date			11/10/2023 11:10	Waste	Hazardous Waste in Non-	Waste		
Batch No			1	Landfill	Hazardous	Landfill		
Solid Waste Analysis		_			Landfill			
Total Organic Carbon (%)	0.74			3	5	6		
Loss on Ignition (%)	1.9			-	-	10		
Sum of BTEX (mg/kg)	<0.025			6	-	-		
Sum of 7 PCBs (mg/kg)	<0.035			1	-	-		
Mineral Oil (mg/kg) (EH_CU_1D_AL)	<30			500	-	-		
PAH Sum of 17(mg/kg)	8.59			100	-	-		
pH (pH Units)	9.57			-	>6	-		
ANC to pH 7 (mol/kg)	0.05			-	to be evaluated	to be evaluated		
ANC to pH 4 (mol/kg)	1.33			-	to be evaluated	to be evaluated		
Eluate Analysis	C ₄₀	conc ched		leaching test using BS EN 12457-2 at L/S 10 l/kg				
	mg/l	mg/kg			mg/kg			
Arsenic	< 0.0025	< 0.025		0.5	2	25		
Barium	0.013	0.13		20	100	300		
Cadmium	<0.0005	<0.005		0.04	1	5		
Chromium	<0.0015	<0.015		0.5	10	70		
Copper	<0.007	<0.07		2	50	100		
Mercury	<0.001	<0.01		0.01	0.2	2		
Molybdenum	<0.002	<0.02		0.5	10	30		
Nickel	<0.002	<0.02		0.4	10	40		
Lead	<0.005	<0.05		0.5	10	50		
Antimony	<0.002	<0.02		0.06	0.7	5		
Selenium	< 0.003	<0.03		0.1	0.5	7		
Zinc	< 0.003	<0.03		4	50	200		
Chloride	0.8	8		800	15000	25000		
Fluoride	0.5	5		10	150	500		
Sulphate as SO4	3.3	33		1000	20000	50000		
Total Dissolved Solids	60	600		4000	60000	100000		
Phenol	<0.01	<0.1		1	-	-		
Dissolved Organic Carbon	<2	<20		500	800	1000		

Client Name:	Ramboll
Reference:	1620015371-002
Location:	Stairfoot
Contact:	Michael Hazlehurst

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
23/17063	1	WS109_0.4	0.40	3	Anthony Carman	24/10/2023	General Description (Bulk Analysis)	Brown Soil/Stones
					Anthony Carman	24/10/2023	Asbestos Fibres	NAD
					Anthony Carman	24/10/2023	Asbestos ACM	NAD
					Anthony Carman	24/10/2023	Asbestos Type	NAD
23/17063	1	WS110_0.3	0.30	9	Charlotte Taylor	25/10/2023	General Description (Bulk Analysis)	brown soil/stones
					Charlotte Taylor	25/10/2023	Asbestos Fibres	NAD
					Charlotte Taylor	25/10/2023	Asbestos ACM	NAD
					Charlotte Taylor	25/10/2023	Asbestos Type	NAD

Client Name:	Ramboll
Reference:	1620015371-002
Location:	Stairfoot
Contact	Michael Hazlehu

Contact: Michael Hazlehurst

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason				
	No deviating sample report results for job 23/17063									

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

It is a requirement under ISO 17025 that we inform clients if samples are deviating i.e. outside what is expected. A deviating sample indicates that the sample 'may' be compromised but not necessarily will be compromised. The result is still accredited and our analytical reports will still show accreditation on the relevant analytes.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/17063

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at $35^{\circ}C \pm 5^{\circ}C$ unless otherwise stated. Moisture content for CEN Leachate tests are dried at $105^{\circ}C \pm 5^{\circ}C$. Ash samples are dried at $37^{\circ}C \pm 5^{\circ}C$.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a requirement of our Accreditation Body for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation. Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range
AA	x5 Dilution

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
-	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details	Yes		AR	Yes
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM15	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM16	Modified USEPA 8270D v5:2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.			AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.			AD	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Preparation of Soil and Marine Sediment Samples for Total Organic Carbon.	Yes		AD	Yes
TM22	Modified BS1377-3:1990 Gravimetric determination of Loss on Ignition by temperature controlled Muffle Furnace (35C-440C). On request modified ASTM D2974-00 LOI (105C- 440C)	PM0	No preparation is required.	Yes		AD	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21B	As Received samples are extracted in Methanol: Water (60:40) by reciprocal shaker.			AR	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID co- elutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013I	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377- 3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes		AD	Yes
TM77	Modified DDCEN/TS method 15364:2006. Determination of Acid Neutralization Capacity by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	No

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM89	Modified USEPA method OIA-1667 (1999). Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide, Sulphide and Thiocyanate analysis.	Yes		AR	Yes
TM170	Determination of Trace Metals by ICP-MS (Inductively Coupled Plasma – Mass Spectrometry): Modified USEPA Method 200.8, Rev. 5.4, 1994; Modified EPA Method 6020A, Rev.1, Feb 2007; Modified BS EN ISO 17294-2:2016	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes		AR	Yes
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.				
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	
TM15_A	Modified USEPA 8260B v2:1996. Quantitative Determination of Volatile Organic Compounds, Vinyl Chloride & Styrene by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes

Appendix 7 Gas Screening

Ground Gas Risk Assessment 1620015371-002 Former Stairfoot Brickworks

Notes: Assessment based on Guidance published in CIRIA C665 "Assessing risks posed by hazardous ground gases to buildings" and BS8485 "Code of practice for design of protective measures for methane and carbon dioxide ground gases for new buildings"

Information from Table 8.5 of CIRIA C665, and Table 2 of BS8485	Hazard Potential	
Characteristsic Situiation 1 Conditons	Very Low	
Gas Screening Value (CH4 of CO2) <0.07		
Typically methane <1% by volume		
Typically carbon dioxide <5% by volume		
Characteristic Situation 2 Conditions	Low	
Gas screening values (CH4 or CO2) 0.07 to <0.7		Key for Shading
Borehole air flow rate <701/h		CO2 > 5% by volume
		CH4 > 1% by volume
Characteristic Situation 3 Conditions	Moderate	
Gas screening values (CH4 or CO2) 0.7 to <3.5		GSV < 0.071/hr i.e. CS1
		GSV > or = 0.071/hr i.e. CS2
Approach		GSV> or = 0.7l/hr i.e. CS3 or above
Maximum concentrations and steady state flow rates are used in	the assessment below	
Where no detectable flow the instrument limit of detection is use	d (0.1l/hr)	Red text indicates negative flows

Maximum concentrations and steady state flow rates are used in the assessment below. Where no detectable flow the instrument limit of detection is used (0.11/hr) Where concentrations are recorded below LoD, the instrument LoD is used in the assessment (0.1%)

Monitoring undertaken using a GFM430 Gas Analyser

вніс	Respor	nse Zone m)	Response Zone Strata	Comments	Water Depth	Borehole Flooded	Date	Atmopsheric Pressure	Gas Flow (SS)	CH4	CO2	GSV CH4	GSV CO2	Characteristic Situation CH4 (from GSV)	Characteristic Situation CO2 (from GSV)
	Тор	Bottom			mbgl			mB	l/h	%v/v	%v/v			((
					1.10	No	12/10/2023	1012	0.2	0	1.1	0.0000	0.0022	1	1
					1.06	No	26/10/2023	987	0	0	0.4	0.0000	0.0004	1	1
WS101/	0.5	1.2	Weathered Coal Measures		1.05	No	02/11/2023	959	0	0	0.4	0.0000	0.0004	1	1
			Wedsures		1.12	No	09/11/2023	991	0	0	0	0.0000	0.0000	1	1
					DRY	NO	23/11/2023	1018	0.1	0	0	0.0000	0.0000	1	1
					0.96	NO	30/11/2023	1011	0.1	0	12.2	0.0000	0.0000	1	1
					DRY	No	26/10/2023	097	0	0	13.3	0.0000	0.0133	1	1
					DRY	No	02/11/2023	959	0	0	11.4	0.0000	0.0113	1	1
WS102	1.0	3.0	Made Ground		DRY	No	09/11/2023	991	0	0	7.8	0.0000	0.0078	1	1
					DRY	No	23/11/2023	1017	0	0	6.5	0.0000	0.0065	1	1
					3.14	No	30/11/2023	1004	-0.3	0	0	0.0000	0.0000	1	1
					DRY	No	12/10/2023	1012	0	36.7	22.9	0.0367	0.0229	1	1
					DRY	No	26/10/2023	987	0.5	42.2	24.1	0.2110	0.1205	2	2
					DRY	No	02/11/2023	958	1	45.4	23.8	0.4540	0.2380	2	2
WS103	1.0	4.0	Made Ground		DRY	No	09/11/2023	991	0.7	37.4	18.9	0.2618	0.1323	2	2
					DRY	No	23/11/2023	1017	3.1	29.2	15.8	0.9052	0.4898	3	2
					DRY	No	30/11/2023	1004	-0.4	31.7	16.5	0.1268	0.0660	2	1
					2.50	No	12/10/2023	1012	0	0	7.3	0.0000	0.0073	1	1
					2.51	No	26/10/2023	988	0	0	8.9	0.0000	0.0089	1	1
WS104	1.0	3.0	Made Ground		2.41	No	02/11/2023	958	0	0	9	0.0000	0.0090	1	1
					2.51	No	09/11/2023	991	0	0	5	0.0000	0.0050	1	1
					2.51	No	23/11/2023	1017	0	0	3.3	0.0000	0.0033	1	1
					2.53	No	30/11/2023	1004	0	0	4.1	0.0000	0.0041	1	1
					DRY	No	12/10/2023	1010	0	0	0	0.0000	0.0000	1	1
					1.37	No	26/10/2023	988	0	0	0.5	0.0000	0.0005	1	1
WS105	0.4	1.4	Made Ground		1.10	No	02/11/2023	959	0	0	1	0.0000	0.0010	1	1
					1.16	No	09/11/2023	991	0	0	0	0.0000	0.0000	1	1
					1.03	NO	23/11/2023	1017	0	0	0	0.0000	0.0000	1	1
					0.94	NO No	30/11/2023	1002	0	0	0	0.0000	0.0000	1	1
					0.40	NO	12/10/2023	1010	0.8	0	0.5	0.0000	0.0000	1	1
				Rerebole flooded not monitored	0.40	Vos	02/11/2023	900	-0.8	0	0.5	0.0000	0.0040	1	1
WS106	0.3	0.7	Made Ground		0.27	No	09/11/2023	991	0.2	0	0	0.0000	0.0000	1	1
					0.69	No	23/11/2023	1017	0	0	0	0.0000	0.0000	1	1
					0.69	No	30/11/2023	1003	0	0	0	0.0000	0.0000	1	1
					DRY	No	12/10/2023	1009	0	0	3.5	0.0000	0.0035	1	1
			Weathered Coal Measures		1.49	No	26/10/2023	988	0	0	3.9	0.0000	0.0039	1	1
					1.47	No	02/11/2023	959	0	0	1.0	0.0000	0.001	1	1
WS107	1.4	2.8			1.54	No	09/11/2023	991	0	0	2.4	0.0000	0.0024	1	1
					1.94	No	23/11/2023	1017	0	0	2.5	0.0000	0.0025	1	1
					1.93	No	30/11/2023	1002	0	0	2.1	0.0000	0.0021	1	1
					1.26	No	12/10/2023	1008	0	0	2.1	0.0000	0.0021	1	1
					1.13	No	26/10/2023	987	0	0	6.9	0.0000	0.0069	1	1
W\$108	0.3	1.3	Made Ground		1.08	No	02/11/2023	960	0	0	1.1	0.0000	0.0011	1	1
					1.28	No	09/11/2023	990	0	0	0.6	0.0000	0.0006	1	1
1					1.28	No	23/11/2023	1017	0	0	0.8	0.0000	0.0008	1	1
<u> </u>					1.29	No	30/11/2023	1002	-0.1	0	0.6	0.0000	0.0006	1	1
1		1			0.72	No	12/10/2023	1007	0	0	0.5	0.0000	0.0005	1	1
					0.47	Yes	26/10/2023	987	0	0	0	0.0000	0.0000	1	1
WS109	0.5	1.0	Made Ground		0.41	Yes	02/11/2023	961	0	0	1.2	0.0000	0.0012	1	1
1					0.63	NO N-	09/11/2023	990	0	0	0	0.0000	0.0000	1	1
1					0.65	NO No	23/11/2023	1017	01	0	0	0.0000	0.0000	1	1
-	+				0.03	NO	12/10/2022	1002	0.1	0.1	1.4	0.0000	0.0000	1	1
					0.42	Vec	26/10/2023	004	0	0.1	2.9	0.0001	0.0014	1	1
1					0.43	Ves	20/10/2023	960	0	0.1	2.2	0.0001	0.0022	1	1
WS110	1.5	2.8	Clay	Borehole flooded not monitored	0.30	Yes	09/11/2023		-	-	2.0	0.0000	0.0025	-	-
				Borehole flooded not monitored	0.39	Yes	23/11/2023		_	_	-	_	_		-
1				Borehole flooded not monitored	0.88	Yes	30/11/2023	-	-	-	-	-	-	-	-
	1	1			DRY	No	12/10/2023	1006	0	0	3.7	0.0000	0.0037	1	1
1					1.68	No	26/10/2023	986	0	0	9.1	0.0000	0.0091	1	1
					1.71	No	02/11/2023	960	0	0	4.8	0.0000	0.0048	1	1
WS111	0.5	2.5	Made Ground		1.82	No	09/11/2023	989	0	0	5.7	0.0000	0.0057	1	1
1					1.84	No	23/11/2023	1017	0	0	4.2	0.0000	0.0042	1	1
1					1.80	No	30/11/2023	1002	0.5	0	0	0.0000	0.0000	1	1

	Response Zor							Atmopsheric	Gas Flow	0114				Characteristic	Characteristic
BH ID	(1	m)	Response Zone Strata	Comments	water Depth	Borehole Flooded	Date	Pressure	(SS)	CH4	002	GSV CH4	GSV CO2	Situation CH4 (from GSV)	Situation CO2 (from GSV)
	Top	Bottom			mbgl	N	12/10/2022	mB	l/h	%v/v	%v/v	0.0000	0.0000		
					0.45	Yes	26/10/2023	986	0	0	2.2	0.0000	0.0022	1	1
			Weathered Coal		0.36	Yes	02/11/2023	960	0	0	4.1	0.0000	0.0041	1	1
WS112	1.3	2.0	Measures	Borehole flooded not monitored	0.15	Yes	09/11/2023	-	-	-	-	-	-	-	-
				Borehole flooded not monitored	0.24	Yes	23/11/2023	-	-	-	-	-	-	-	-
				Borehole flooded not monitored	0.27	Yes	30/11/2023	-	-	-	-	-	-	-	-
					7.82	No	12/10/2023	1010	1	23.6	18.9	0.2360	0.1890	2	2
					7.64	No	26/10/2023	986	0	21.6	18.2	0.0216	0.0182	1	1
CP1	1.0	7.0	Made Ground		7.36	NO	02/11/2023	900	0	10.1	14	0.0210	0.0101	1	1
					7.03	No	23/11/2023	1015	3.5	26.6	13.8	0.9310	0.4830	3	2
					7.02	No	30/11/2023	1004	0.1	31.1	16.3	0.0311	0.0163	1	1
					DRY	No	12/10/2023	1010	0	1	2.3	0.0010	0.0023	1	1
					DRY	No	26/10/2023	986	0	6.2	16.9	0.0062	0.0169	1	1
CP2	1.0	9.0	Made Ground		DRY	No	02/11/2023	961	0	11.2	15.2	0.0112	0.0152	1	1
012	1.0	7.0	made orband		DRY	No	09/11/2023	988	0	0	9.7	0.0000	0.0097	1	1
					DRY	No	23/11/2023	1015	0	0	4.7	0.0000	0.0047	1	1
					6.45	No	30/11/2023	0	0	0	5.4	0.0000	0.0054	1	1
					0.93	NO	12/10/2023	1009	0	0	0.2	0.0000	0.0000	1	1
			Made Ground /	Borehole flooded not monitored	0.00	Yes	02/11/2023	960	-	-	-	0.0000	0.0002	-	-
CP7	0.5	3.0	Clay / Siltstone	Borehole flooded not monitored	0.49	Yes	09/11/2023	-	-	-	-	-	-	-	-
					0.65	No	23/11/2023	1017	0	0	0	0.0000	0.0000	1	1
					0.66	No	30/11/2023	1004	0	0	0	0.0000	0.0000	1	1
					1.22	No	12/10/2023	1005	0	0	0	0.0000	0.0000	1	1
					1.15	No	26/10/2023	986	0	0	1.5	0.0000	0.0015	1	1
CP11	0.5	3.0	Made Ground /		0.93	No	02/11/2023	960	0	0	0	0.0000	0.0000	1	1
			Clay		0.91	No	09/11/2023	988	0	0	0	0.0000	0.0000	1	1
					0.95	NO	23/11/2023	1017	0	0	0	0.0000	0.0000	1	1
					DRY	No	12/10/2023	1005	0	0	0.4	0.0000	0.0004	1	1
					2.49	No	26/10/2023	986	0	0	0.6	0.0000	0.0006	1	1
			Made Ground /		2.33	No	02/11/2023	960	0	0	0	0.0000	0.0000	1	1
WS6	1.0	3.0	Siltstone		2.45	No	09/11/2023	988	0	0	0	0.0000	0.0000	1	1
					2.55	No	23/11/2023	1016	0	0	0	0.0000	0.0000	1	1
					2.07	No	30/11/2023	1002	0.1	0	0	0.0000	0.0000	1	1
					1.91	No	12/10/2023	1005	0	0.1	0	0.0001	0.0000	1	1
					1.87	No	26/10/2023	986	0	0	0.5	0.0000	0.0005	1	1
WS7	1.0	2.0	Made Ground		1.88	NO	02/11/2023	960	-0.6	0	0	0.0000	0.0000	1	1
					1.89	No	23/11/2023	1016	0	0	0	0.0000	0.0000	1	1
					1.49	No	30/11/2023	1002	0.1	0	0	0.0000	0.0000	1	1
					3.12	No	12/10/2023	1006	0	0.1	1.3	0.0001	0.0013	1	1
					2.67	No	26/10/2023	986	0	0	9.2	0.0000	0.0092	1	1
WS8	1.0	6.5	Made Ground		2.38	No	02/11/2023	960	0	0	5.5	0.0000	0.0055	1	1
					2.25	No	09/11/2023	988	0	0	2.5	0.0000	0.0025	1	1
					2.40	No	23/11/2023	1015	0	0	0	0.0000	0.0000	1	1
					2.66	NO	30/11/2023	1002	0	0	0.3	0.0000	0.0000	1	1
					0.38	Yes	26/10/2023	986	0	0	0.3	0.0000	0.0003	1	1
			Made Ground /	Borehole flooded not monitored	0.38	Yes	02/11/2023	-	-	-	-	-	-	-	-
WS9	1.0	3.5	Clay / Siltstone	Borehole flooded not monitored	0.39	Yes	09/11/2023	-	-	-	-	-	-	-	-
				Borehole flooded not monitored	0.71	Yes	23/11/2023	-	-	-	-	-	-	-	-
				Borehole flooded not monitored	0.54	Yes	30/11/2023	-	-	-	-	-	-	-	-
					0.63	No	12/10/2023	1005	0	0	0.2	0.0000	0.0002	1	1
					0.50	Yes	26/10/2023	986	0	0	0	0.0000	0.0000	1	1
WS12	0.6	1.3	Made Ground /		0.50	Yes	02/11/2023	958	0	0	0	0.0000	0.0000	1	1
			Sidy / Sitistoffe	Burehole flooded not monitored	0.51	Yes	09/11/2023	-	-	-	-	-	-	-	-
				Borehole flooded not monitored	0.57	Yes	30/11/2023	-	-	-	-	-	-	-	-
L	1	1	1	corenoie noued nor monitorea 0.54 tes 30/11/2023 -						-		1	-	-	
				Wors	t Case (incl	uding negative	flow)	3.5	45.4	24.1	1.5890	0.8435	3	2	
									·						
					Worst	Case (positi	ve flow reading	s only)	3.5	45.4	24.1	1.5890	0.8435	3	2

Appendix 8 Waste Assessment

HazWasteOnline[™] classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)

RAMBOLL

- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

Former Stairfoot Brickworks

Description/Comments

Project 1620015371-002

Classified by

-	
Name:	Company:
Euan Riddle	Ramboll UK Ltd
Date:	1 Broad Gate
03 Nov 2023 12:50 GMT	The Headrow
Telephone:	Leeds
+44 7814 938 997	LS1 8EQ

Site Stairfoot

HazWasteOnline[™] provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification: Course

Hazardous Waste Classification

Post Code S70 3NS

Purpose of classification

2 - Material Characterisation

Address of the waste

Former Stairfoot Brickworks, Wombwell Lane, Barnsley

SIC for the process giving rise to the waste

Description of industry/producer giving rise to the waste Redevelopment of the site as a recycling factory

Description of the specific process, sub-process and/or activity that created the waste Waste created during Phase II site investigation

Description of the waste

Made Ground comprising mainly part brick waste and reworked clays

RAMBOLL

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	WS111_2.2	2.2	Non Hazardous		3
2	WS106_0.6	0.6	Non Hazardous		5
3	WS106_1.4	1.4	Non Hazardous		8
4	WS105_0.8	0.8	Non Hazardous		9
5	WS107_0.2	0.2	Non Hazardous		12
6	HD1	0.25-0.30	Non Hazardous		15
7	HD2	0.20-0.30	Non Hazardous		18
8	HD3	0.20-0.30	Non Hazardous		21
9	HD4	0.10-0.30	Non Hazardous		24
10	HD5	0.00-0.20	Non Hazardous		27
11	HD6	0.15-0.30	Non Hazardous		30
12	HD7	0.15-0.30	Non Hazardous		33
13	HD8	0.20-0.30	Non Hazardous		36
14	HD9	0.10-0.25	Non Hazardous		39
15	TP101	+1.50-0.00	Non Hazardous		42
16	TP102	2.20-2.40	Non Hazardous		45
17	TP103	+0.90-0.00	Non Hazardous		48
18	WS102_3.8	3.8	Non Hazardous		51
19	WS112_1.7	1.7	Non Hazardous		54
20	WS112_0.2	0.2	Non Hazardous		57
21	TP105	+1.30-0.00	Non Hazardous		58
22	TP104	+0.90-0.00	Non Hazardous		61
23	TP107	0.60-0.70	Non Hazardous		64
24	TP108	0.30-0.60	Non Hazardous		67
25	TP106	+1.40-0.00	Non Hazardous		70
26	WS101A_0.1	0.1	Non Hazardous		73
27	WS101A_1.0	1	Non Hazardous		74
28	WS104_0.4	0.4	Hazardous	HP 7, HP 11	77
29	WS104_2.7	2.7	Hazardous	HP 7, HP 11	81
30	WS103_2.8	2.8	Non Hazardous		83
31	WS109_0.4	0.4	Non Hazardous		86
32	WS109_0.9	0.9	Non Hazardous		87
33	WS108_0.3	0.3	Non Hazardous		90
34	WS108_3.4	3.4	Non Hazardous		92
35	WS110_3.4	0.3	Non Hazardous		95
36	WS110_2.7	2.7	Non Hazardous		96

Related documents

#	Name	Description
1	Former Stairfoot Brickworks	waste stream template used to create this Job

Report

Created by: Euan Riddle

Created date: 03 Nov 2023 12:50 GMT

Appendices	Page
Appendix A: Classifier defined and non GB MCL determinands	99
Appendix B: Rationale for selection of metal species	101
Appendix C: Version	102

Classification of sample: WS111_2.2

Sample details

Sample name:	LoW Code:	
WS111_2.2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.2 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
12.4%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 12.4% Dry Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entere	ed data	Conv. Factor	Compound	Classification value	1C Applied	Conc. Not Used	
		number			0							2	
1	8	рН	1			8.27	pН		8.27	pН	8.27 pH		
		confirm TPH has N	IOT arisen from die	esel or petrol									
2					1								
3		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane				<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
4		benzene 601-020-00-8	200-753-7	71-43-2	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
5		toluene				<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
6	8	ethylbenzene		400.44		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4	202-849-4	100-41-4									
7		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
8		naphthalene	U			0.15	ma/ka		0.133	ma/ka	0.0000133 %	1	
Ĵ		601-052-00-2	202-049-5	91-20-3								ľ	
9	۲	acenaphthylene	005 047 4			<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		acenanbthene	205-917-1	208-96-8									
10	۲	acenaphinene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
11	8	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %	Γ	<lod< td=""></lod<>
12	8	phenanthrene		00101		0.2	ma/ka		0 178	ma/ka	0.0000178 %		
			201-581-5	85-01-8		0.2			0.170			Ň	
13	۲	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
14	8	fluoranthene				0.11	mg/kg		0.0979	mg/kg	0.00000979 %	\checkmark	
			205-912-4	206-44-0								Ľ	
15	8	pyrene	204-927-3	129-00-0		0.1	mg/kg		0.089	mg/kg	0.0000089 %	\checkmark	

#		Determinand			Note	User entered data	Conv.	Compound co	onc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 dotor					0000
16		benzo[a]anthracen	e			0.09 ma/ka		0.0801	ma/ka	0.0000801 %		
		601-033-00-9	200-280-6	56-55-3		0.00 mg/kg		0.0001	iiig/itg	0.0000001 /0	v	
17		chrysene				0.1 ma/ka		0.089	ma/ka	0 000089 %	1	
		601-048-00-0	205-923-4	218-01-9		0.1 Ing/kg		0.009	шу/ку	0.0000003 /8	~	
18	benzo[b]fluoranthene			0.09 mg/kg		0.0801	mg/kg	0.00000801 %	1			
		601-034-00-4	205-911-9	205-99-2							*	
19	benzo[k]fluoranthene				0.03 mg/kg		0.0267	mg/kg	0.00000267 %	\checkmark		
		601-036-00-5	205-916-6	207-08-9								
20		benzo[a]pyrene; be	enzo[def]chrysene			<0.04 ma/ka		< 0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8	1							
21	۲	indeno[123-cd]pyre	ene			~0.04 ma/ka		<0.04	ma/ka	~0 000004 %		
21			205-893-2	193-39-5	NO.04			<0.04	iiig/itg	<0.00004 %		LOD
22		dibenz[a,h]anthrac	ene			<0.04 mg/kg		<0.04	ma/ka	~0 000004 %		
22		601-041-00-2	200-181-8	53-70-3				<0.04	iiig/kg	<0.000004 /0		LOD
23		benzo[ghi]perylene	9			<0.04 ma/ka		<0.04	ma/ka	<0.000004 %		<lod< th=""></lod<>
			205-883-8	191-24-2								
24	۲	coronene				<0.04 ma/ka		<0.04	ma/ka	<0 000004 %		<1.0D
			205-881-7	191-07-1		to.or mg/kg		0.01	ing/kg			.200
25		polychlorobiphenyl	ls; PCB			<35 ug/kg		<0.035	ma/ka	~0.000035 %		
25		602-039-00-4	215-648-1	1336-36-3	1	~33 µg/kg		<0.000	ing/kg	CO.0000000 //		
									Total:	0.00011 %		

Key

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

User supplied data

Classification of sample: WS106_0.6

Sample details

Sample name:	LoW Code:	
WS106_0.6	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.6 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
21.8%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 21.8% Dry Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	Classification value	AC Applied	Conc. Not Used	
		number										2	
1			1	PH		8.72	рН		8.72	pН	8.72 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> }	1		42.3	ma/ka	1 32	45 854	ma/ka	0 00459 %		
		033-003-00-0	215-481-4	1327-53-3	1		ing/kg	1.02		iiig/itg	0.00400 //	~	
3	4	beryllium { berylliu	m oxide }	T		1.9	mg/kg	2.775	4.329	mg/kg	0.000433 %	\checkmark	
		004-003-00-8	215-133-1	1304-56-9	-							\vdash	
4	44	005-007-00-2	[1] DOFIC ACID [2] }	100/3-35-3 [1]		0.4	mg/kg	5.719	1.878	mg/kg	0.000188 %	1	
		000 007 00 2	234-343-4 [2]	11113-50-1 [2]									
5	4	cadmium {	<mark>m oxide</mark> }			<0.1	ma/ka	1.142	<0.114	ma/ka	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0									
6	4	chromium in chron	nium(III) compound	s { 🔍		30	ma/ka	1 462	35 000	ma/ka	0.0036.%	,	
			215-160-9	1308-38-9			30 mg/kg		55.555	iiig/kg	0.0030 /8	~	
		chromium in chron	nium(VI) compound	ls { chromium(VI)								H	
7	~	<mark>oxide</mark> }		•		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
8	4	copper { dicopper }	oxide; copper (I) ox	ide }		51	mg/kg	1.126	47.143	mg/kg	0.00471 %	\checkmark	
	-9	029-002-00-X	215-270-7	1317-39-1	+							+	
9	*	specified elsewher	pounds with the exe e in this Annex }	ception of those	1	12	mg/kg		9.852	mg/kg	0.000985 %	\checkmark	
		082-001-00-6	, 										
10	4	mercury { mercury	dichloride }			<01	ma/ka	1 353	<0.135	ma/ka	<0.0000135 %	Г	<1.0D
		080-010-00-X	231-299-8	7487-94-7	1								
	4	nickel { nickel(II) o	kide (nickel monoxid	<mark>de)</mark>									
11		028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2]		27.1	mg/kg	1.273	28.315	mg/kg	0.00283 %	\checkmark	
		selenium { <mark>seleniu</mark>	m compounds with	the exception of	+							۲	
12	~	cadmium sulphose	elenide and those s	pecified		-1	ma/ka	1 405	~1.405	ma/ka	~0 000141 %		
		elsewhere in this A	Annex }	1			mg/ng	1.100		iiig/itg			.205
		034-002-00-8			\vdash							⊣	
13		vanadium { <pre> diva vanadium { <pre> diva vanadium { </pre></pre>	inadium pentaoxide	; vanadium		46	mg/kg	1.785	67.421	mg/ka	0.00674 %	\checkmark	
		023-001-00-8	215-239-8	1314-62-1	-		0.9			5.3			
		023-001-00-8	215-239-0	1314-02-1									

RAMBOLL

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		Determinand EU CLP index EC Number CAS Number		CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	AC Applied	Conc. Not Used
		number		0					2	
14	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 7446- 231-793-3 [2] 7733-	·19-7 [1]		33 mg/kg	2.469	66.902 mg/kg	0.00669 %	~	
15	4	cyanides { salts of hydrogen cyanide with exception of complex cyanides such as ferri ferricyanides and mercuric oxycyanide and specified elsewhere in this Annex }	the ocyanides, those		<0.5 mg/kg	1.884	<0.942 mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol	5.0		<0.15 mg/kg		<0.15 mg/kg	<0.000015 %		<lod< td=""></lod<>
17	8	TPH (C6 to C40) petroleum group	10-2		<38 mg/kg		<38 mg/kg	<0.0038 %		<lod< td=""></lod<>
		TPH	netrol							
18	CONTIRM TPH has NOT arisen from diesel or petrol									
19		naphthalene			<0.04 ma/ka		<0.04 ma/ka	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5 91-20	-3			ļ			\square	
20	۲	acenaphthylene	6-8		<0.03 mg/kg		<0.03 mg/kg	<0.000003 %		<lod< td=""></lod<>
21	8	acenaphthene			<0.05 mg/kg		<0.05 mg/kg	<0.000005 %		<lod< td=""></lod<>
22	8	fluorene	-3		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
23	8	phenanthrene	-/		<0.03 mg/kg		<0.03 mg/kg	<0.00003 %		<lod< td=""></lod<>
-		anthracene	-0	_						
24		204-371-1 120-1	2-7		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
25	8	fluoranthene 205-912-4 206-4	4-0		0.07 mg/kg		0.0575 mg/kg	0.00000575 %	\checkmark	
26	8	pyrene 204-927-3 129-0	0-0		0.06 mg/kg		0.0493 mg/kg	0.00000493 %	\checkmark	
27		benzo[a]anthracene			<0.06 ma/ka		<0.06 ma/ka	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9 200-280-6 56-55 chrysene	-3							
28		601-048-00-0 205-923-4 218-0	1-9		0.06 mg/kg		0.0493 mg/kg	0.00000493 %	\checkmark	
29		benzo[b]fluoranthene			0.08 mg/kg		0.0657 mg/kg	0.00000657 %	\checkmark	
20		601-034-00-4 205-911-9 205-99-2 benzo[k]fluoranthene			0.03 ma/ka		0.0246 ma/ka	0.0000246.%		
50		601-036-00-5 205-916-6 207-0	8-9		0.03 mg/kg		0.0240 mg/kg	0.00000240 %	~	
31		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32	-8		0.06 mg/kg		0.0493 mg/kg	0.00000493 %	\checkmark	
32	8	indeno[123-cd]pyrene 205-893-2 193-3	9-5		0.05 mg/kg		0.0411 mg/kg	0.00000411 %	\checkmark	
33		dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70	-3		<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< td=""></lod<>
34	0	benzo[ghi]perylene	4.0		0.05 mg/kg		0.0411 mg/kg	0.00000411 %	\checkmark	
25	0	205-883-8 191-2 4-isopropyltoluene	:4-2				<0.004 mm//	<0.000004.0/	\mid	
35		202-796-7 99-87	-6		<4 µg/кg		<0.004 mg/Kg	<0.000004 %	Ц	<lud< td=""></lud<>
36	۲	n-butylbenzene 203-209-7 104-5	1-8		<4 µg/kg		<0.004 mg/kg	<0.000004 %		<lod< td=""></lod<>
37		cumene; [1] propylbenzene [2] 601-024-00-X 202-704-5 [1] 98-82 203-132 913 403-63	2-8 [1]		<3 µg/kg		<0.003 mg/kg	<0.000003 %		<lod< td=""></lod<>
38	8	sec-butylbenzene	18-8		<4 µg/kg		<0.004 mg/kg	<0.000004 %		<lod< td=""></lod<>
39	۵	4-Bromofluorobenzene; 1-bromo-4-fluorobe	nzene		81 µg/kg		0.0665 mg/kg	0.00000665 %	~	
40	۲	207-300-2 460-0 tert-butylbenzene	0-4		<5 ua/ka		<0.005 ma/ka	<0.000005 %		<lod< td=""></lod<>
		202-632-4 98-06	i-6		P9/19		10.000 mg/kg			-200

#	5	EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User e	ntered data	Conv. Factor	Compound	l conc.	Classification value	MC Applied	Conc. Not Used
4	1 🔍	carbazole				<10	ua/ka		<0.01	ma/ka	<0.000001 %		<lod< th=""></lod<>
			201-696-0	86-74-8			P-55						
42	2 0	dibenzofuran				<10	ua/ka		<0.01	ma/ka	<0.000001 %		<lod< td=""></lod<>
	-		205-071-3	132-64-9			P9/19						
4	3	bis(2-ethylhexyl) phthalate; di-(2-ethylhexyl) phthalate; DEHP				<100	µg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		607-317-00-9	204-211-0	117-81-7									
4	4	dibutyl phthalate; DBP			<100	ua/ka		<01	ma/ka	<0.00001 %		<lod< td=""></lod<>	
		607-318-00-4	201-557-4	84-74-2			P9/19						
								Total:	0.035 %				

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

4-Bromofluorobenzene; 1-bromo-4-fluorobenzene: (conc.: 6.65e-06%)

Classification of sample: WS106_1.4

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS106_1.4	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.4 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand			Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP		1 actor		Value	MC /	USEU
1	8	confirm TPH has N	OT arisen from die	sel or petrol							
								Total:	0%		<u> </u>

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS105_0.8

Sample details

Sample name:	LoW Code:	
WS105_0.8	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.8 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15.6%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 15.6% Dry Weight Moisture Correction applied (MC)

#		ELLCI P index	Determinand	CAS Number	P Note	User entered data		Conv. Factor	Conv. Factor		Classification value	C Applied	Conc. Not Used
		number	EC Number		5							ž	
1	9	рН	1	рн		8.07	рН		8.07	рН	8.07 pH		
2	æ	arsenic { arsenic tr	<mark>'ioxide</mark> }	p 11		24.0		1.00	26.22		0.00262.0/	,	
2		033-003-00-0	215-481-4	1327-53-3		31.0	mg/kg	1.32	30.32	mg/kg	0.00363 %	~	
3	4	beryllium {	<mark>m oxide</mark> }			2	ma/ka	2.775	4.802	ma/ka	0.00048 %	1	
		004-003-00-8	215-133-1	1304-56-9								ľ	
1	4	boron { boric acid;	[1] boric acid [2] }			0.7	ma/ka	5 710	2 /62	ma/ka	0.000346.94	,	
-		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.7	iiig/kg	5.715	3.403	iiig/kg	0.000340 78	Ŷ	
5	4	cadmium {	<mark>m oxide</mark> }			<0.1	ma/ka	1.142	<0.114	ma/ka	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0						0.0		-	
6	4	chromium in chrom	nium(III) compound	n(III) compounds {		39.9	mg/kg	1.462	50.446	mg/kg	0.00504 %	1	
			215-160-9	1308-38-9			00			0 0			
	æ	chromium in chromium(VI) compounds {											
7		oxide }			<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>	
		024-001-00-0	215-607-8	1333-82-0	-							-	
8	~		215-270-7	1317_30_1		47	mg/kg	1.126	45.776	mg/kg	0.00458 %	\checkmark	
	æ				+								
9	~	specified elsewher	e in this Annex }	ception of those	1	119	mg/kg		102.941	mg/kg	0.0103 %	\checkmark	
		082-001-00-6											
10	4	mercury { mercury	dichloride }			<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7	1								
	4	nickel { nickel(II) o	kide (nickel monoxi	de) }									
11		028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		21	mg/kg	1.273	23.118	mg/kg	0.00231 %	~	
	4	selenium { seleniu	m compounds with	the exception of									
12		cadmium sulphose	elenide and those s Annex }	pecified		1	mg/kg	1.405	1.215	mg/kg	0.000122 %	\checkmark	
		034-002-00-8			1								
	4	vanadium { 🏾 diva	nadium pentaoxide	; vanadium									
13		pentoxide }				46	mg/kg	g 1.785	1.785 71.037 mg/ł	mg/kg	/kg 0.0071 %	\checkmark	
		215-239-8 1314-62-1											

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index EC Number CAS Number		CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used	
14	4	zinc { zinc sulphate	> } 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]	-	46	mg/kg	2.469	98.259	mg/kg	0.00983 %	~	
15	4	cyanides { salts exception of compl ferricyanides and n specified elsewhere 006-007-00-5	of hydrogen cyani ex cyanides such nercuric oxycyanid e in this Annex }	de with the as ferrocyanides, e and those	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol 604-001-00-2	203-632-7	108-95-2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	۲	TPH (C6 to C40) p	etroleum group	TPH		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
18	۵	confirm TPH has N	IOT arisen from di	esel or petrol		Ø							
19		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20	۲	acenaphthylene	205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
21	8	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
22	0	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
23	8	phenanthrene	201-581-5	85-01-8		0.08	mg/kg		0.0692	mg/kg	0.00000692 %	\checkmark	
24	۲	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
25	۲	fluoranthene	205-912-4	206-44-0		0.13	mg/kg		0.112	mg/kg	0.0000112 %	\checkmark	
26	۲	pyrene	204-927-3	129-00-0		0.1	mg/kg		0.0865	mg/kg	0.00000865 %	\checkmark	
27		benzo[a]anthracen	e 200-280-6	56-55-3		0.09	mg/kg		0.0779	mg/kg	0.00000779 %	~	
28		chrysene	200-200-0	218.01.0		0.1	mg/kg		0.0865	mg/kg	0.00000865 %	~	
29		benzo[b]fluoranthe	ne	210-01-9		0.09	mg/kg		0.0779	mg/kg	0.00000779 %	~	
30		benzo[k]fluoranthe	205-911-9 ne	205-99-2		0.04	mg/kg		0.0346	mg/kg	0.00000346 %	~	
31		benzo[a]pyrene; be	205-916-6 enzo[def]chrysene	207-08-9		0.08	mg/kg		0.0692	mg/kg	0.00000692 %	√	
32	0	601-032-00-3 indeno[123-cd]pyre	200-028-5 ene	50-32-8	╞	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
33		dibenz[a,h]anthrac	205-893-2 ene	193-39-5	$\left \right $	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
34	۲	601-041-00-2 benzo[ghi]perylene	200-181-8	53-70-3		<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
35	0	4-isopropyltoluene	205-883-8	191-24-2		<4			<0.004	 ma/ka	<0.000004 %		<lod< td=""></lod<>
36		n-butylbenzene	202-796-7	99-87-6		<4	ua/ka		<0.004	ma/ka	<0.0000004 %		
37		cumene; [1] propyl	203-209-7 benzene [2] 202-704-5 [1]	98-82-8 [1]		<3	µg/kg		<0.003	mg/kg	<0.0000003 %		<lod< td=""></lod<>
	0	sec-butylbenzene	203-132-9 [2]	103-65-1 [2]							0.000000.00	Ц	
38		4-Bromofluorobenz	205-227-0 zene: 1-bromo-4-fl	135-98-8 Jorobenzene		<4	µg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>
39	-	tert-hutvlhenzono	207-300-2	460-00-4		92	µg/kg		0.0796	mg/kg	0.00000796 %	√	
40	8		202-632-4	98-06-6	-	<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User e	User entered data		Compound	l conc.	Classification value	MC Applied	Conc. Not Used
4		carbazole		·		<10	ua/ka		<0.01	ma/ka	<0.000001 %		<lod< th=""></lod<>
			201-696-0	86-74-8			P-99						
42		dibenzofuran				<10	ua/ka		<0.01	ma/ka	<0.000001 %		<lod< th=""></lod<>
			205-071-3	132-64-9			P-99						
43	3	bis(2-ethylhexyl) pl DEHP	hthalate; di-(2-ethy	lhexyl) phthalate;		<100	µg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		607-317-00-9	204-211-0	117-81-7									
44	1	dibutyl phthalate;	DBP			<100	ua/ka		<0.1	ma/ka	<0.00001 %		<lod< th=""></lod<>
44		607-318-00-4	201-557-4	84-74-2			P9/19		<0.1	ilig/kg	J <0.00001 %		
									Total:	0.0479 %			

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

4-Bromofluorobenzene; 1-bromo-4-fluorobenzene: (conc.: 7.96e-06%)

Classification of sample: WS107_0.2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS107_0.2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
).2 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
20.4%		
dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 20.4% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	8	рН				7.8	рН		7.8	рН	7.8 pH		
2	-	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark>	1327-53-3		49.6	mg/kg	1.32	54.392	mg/kg	0.00544 %	~	
3	4	beryllium { berylliun 004-003-00-8	<mark>m oxide</mark> } 215-133-1	1304-56-9		3.7	mg/kg	2.775	8.529	mg/kg	0.000853 %	~	
4	4	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.9	mg/kg	5.719	4.275	mg/kg	0.000428 %	\checkmark	
5	4	cadmium {	m oxide } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< th=""></lod<>
6	4	chromium in chrom chromium(III) oxide	hium(III) compound (worst case) }	s {		37.7	mg/kg	1.462	45.765	mg/kg	0.00458 %	~	
7	4	chromium in chromium(VI) compounds { chromium(VI) oxide }				<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< th=""></lod<>
8	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	ide } 1317-39-1		86	mg/kg	1.126	80.421	mg/kg	0.00804 %	~	
9	4	lead { <pre>lead comp specified elsewher 082-001-00-6</pre>	counds with the exe e in this Annex }	ception of those	1	27	mg/kg		22.425	mg/kg	0.00224 %	~	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
11	*	nickel { nickel(II) ox 028-003-00-2	<mark>kide (nickel monoxic</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]	_	36.1	mg/kg	1.273	38.157	mg/kg	0.00382 %	~	
12	4	selenium { seleniur cadmium sulphose elsewhere in this A 034-002-00-8	n compounds with lenide and those s nnex }	the exception of pecified		2	mg/kg	1.405	2.334	mg/kg	0.000233 %	~	
13	4	vanadium { ^a diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		66	mg/kg	1.785	97.859	mg/kg	0.00979 %	~	

Page 12 of 102

#		EU CLP index EC Number CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
	•		-								
14	44	030-006-00-9 231-793-3 [1] 7446-19-7 [1]		52	mg/kg	2.469	106.647	mg/kg	0.0107 %	\checkmark	
		231-793-3 [2] 7733-02-0 [2]									
15	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		phenol	\vdash								
16		604-001-00-2 203-632-7 108-95-2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	0	TPH (C6 to C40) petroleum group		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
			-								
18	۲	confirm TPH has NOT arisen from diesel of petrol									
		tert-butyl methyl ether: MTBE:									
19		2-methoxy-2-methylpropane		<5	µg/kg		< 0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4									
20		benzene		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8 200-753-7 71-43-2	-								
21		toluene 601-021-00-3 203-625-9 108-88-3		8	µg/kg		0.0066	mg/kg	0.00000664 %	\checkmark	
22	0	ethylbenzene		<5	ua/ka		<0.005	ma/ka	<0.0000005 %		<lod< td=""></lod<>
		601-023-00-4 202-849-4 100-41-4			-55						
23		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene		0.73	ma/ka		0.606	ma/ka	0.0000606 %	7	
		601-052-00-2 202-049-5 91-20-3	1							*	
25	۲	acenaphthylene		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	_	205-917-1 208-96-8									
26		201-469-6 83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27		fluorene		<0.04	ma/ka		<0.04	ma/ka	<0.00004.%		
21		201-695-5 86-73-7		<0.04	шу/ку		\0.04	шу/ку	<0.000004 /0		
28	0	phenanthrene		0.42	mg/kg		0.349	mg/kg	0.0000349 %	\checkmark	
		201-581-5 85-01-8	-								
29	۲	204-371-1 120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		fluoranthene									
30		205-912-4 206-44-0		0.14	mg/kg		0.116	mg/kg	0.0000116 %	\checkmark	
31	0	pyrene		0.13	ma/ka		0.108	ma/ka	0.0000108 %	1	
Ľ		204-927-3 129-00-0	1		39			99		Ľ	
32		benzo[a]anthracene		0.12	mg/kg		0.0997	mg/kg	0.00000997 %	\checkmark	
-		oui-uso-uu-a kuu-zou-o po-55-3	\vdash							\vdash	
33		601-048-00-0 205-923-4 218-01-9		0.12	mg/kg		0.0997	mg/kg	0.00000997 %	\checkmark	
24		benzo[b]fluoranthene	\square	0.1	ma/ka		0.0004	mallia	0.0000024.0/	,	
34		601-034-00-4 205-911-9 205-99-2		0.1	ту/ку		0.0631	шу/ку	0.00000031 %	~	
35		benzo[k]fluoranthene		0.04	mg/kg		0.0332	mg/kg	0.00000332 %	\checkmark	
		601-036-00-5 205-916-6 207-08-9	\vdash		-		· · · · ·				
36		601-032-00-3 000-028-5 50-32-8	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
~-	۵	indeno[123-cd]pyrene	+	0.04			0.04		0.000004.04		1.00
31		205-893-2 193-39-5		<0.04	та/кд		<0.04	mg/kg	<0.000004 %		
38		dibenz[a,h]anthracene		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	-	601-041-00-2 200-181-8 53-70-3	$\left \right $							\square	
39	0	205-883-8 191-24-2	-	0.06	mg/kg		0.0498	mg/kg	0.00000498 %	\checkmark	
			-			<u> </u>		Total:	0.0503 %		

www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
44	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 6.64e-07%)

Classification of sample: HD1

Sample details

Sample name:	LoW Code:	
HD1	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.25-0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19.6%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 19.6% Dry Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor		Classification value	AC Applied	Conc. Not Used	
		number										2	
1	8	рн		PH		6.66	pН		6.66	рН	6.66 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> }	F		14 9	ma/ka	1 32	16 449	ma/ka	0.00164 %		
		033-003-00-0	215-481-4	1327-53-3	1		iiig/kg	1.52	10.443	iiig/kg	0.00104 /8	~	
3	4	beryllium { berylliu	m oxide }			1.3	mg/kg	2.775	3.017	mg/kg	0.000302 %	\checkmark	
		004-003-00-8	215-133-1	1304-56-9	-								
4	44	boron { boric acid;	[1] boric acid [2] }	40042 25 2 [4]		0.6	ma/ka	5 719	2 869	69 mg/kg	0.000287 %	\checkmark	
		005-007-00-2	233-139-2 [1] 234-343-4 [2]	11113-50-1 [2]		010		0.1.10	2.000		0.000207.70	ľ	
5	4	cadmium {	<mark>m oxide</mark> }			0.1	ma/ka	1.142	0.0955	ma/ka	0.00000955 %	1	
		048-002-00-0	215-146-2	1306-19-0						5.5		•	
6	4	chromium in chron chromium(III) oxide	nium(III) compound e (worst case) }	s {		40.6	mg/kg	1.462	49.615	mg/kg	0.00496 %	~	
			215-160-9	1308-38-9									
	4	chromium in chromium(VI) compounds {											
7	oxide }		045 007 0	4000.00.0		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0	-					_		-	
8	~	029-002-00-X	215-270-7	1317-39-1		26	mg/kg	1.126	24.476	mg/kg	0.00245 %	\checkmark	
	æ	lead {	pounds with the exc	ception of those									
9	ľ	specified elsewher	e in this Annex }		1	35	mg/kg		29.264	mg/kg	0.00293 %	\checkmark	
		082-001-00-6											
10	4	mercury { mercury	dichloride }			0.2	mg/kg	1.353	0.226	mg/kg	0.0000226 %	\checkmark	
		080-010-00-X	231-299-8	7487-94-7								-	
	4	nickel { nickel(II) ox	kide (nickel monoxid	de) }									
11		020-003-00-2	234-323-5 [2] - [3]	11099-02-8 [2] 34492-97-2 [3]		32.1	mg/kg	1.273	34.156	mg/kg	0.00342 %	~	
	4	selenium { seleniu	m compounds with	the exception of	\uparrow						·		
12		cadmium sulphoselenide and those specified elsewhere in this Annex }				1	mg/kg	1.405	1.175	mg/kg	0.000117 %	\checkmark	
		034-002-00-8											
13	4	vanadium {	nadium pentaoxide	; vanadium		38	ma/ka	1 785	56 72	ma/ka	0 00567 %	./	
		023-001-00-8	215-239-8	1314-62-1	-	00	ing/kg	1.705	00.72	iiig/kg	0.00007 /0	ľ	
		020 001 00-0	3-001-00-8 215-239-8 1314-62-1								l	1	

www.hazwasteonline.com

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index	Determinand EU CLP index number EC Number CAS Number		CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	AC Applied	Conc. Not Used
		number			0							2	
14	4	zinc { zinc sulphate 030-006-00-9	e } 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1]		105	mg/kg	2.469	216.786	mg/kg	0.0217 %	~	
15	4	cyanides { [•] salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol	203-632-7	108-95-2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	8	TPH (C6 to C40) p	etroleum group			<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
	_	confirm TPH has N	I IOT arisen from di	esel or petrol									
18	9				{								
		tert-butyl methyl et	her; MTBE;	1									
19		2-methoxy-2-methy	ylpropane			<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	-								
20		benzene	000 750 7	H (10.0		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
21		601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		ethylbenzene	200 020 0	100 00 0									
22	-	601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xylene											
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene 601-052-00-2	202-049-5	91-20-3		0.05	mg/kg		0.0418	mg/kg	0.00000418 %	\checkmark	
25	0	acenaphthylene	205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
26	8	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27	0	fluorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
28	0	phenanthrene				0.08	ma/ka		0.0669	ma/ka	0.00000669 %	1	
29	8	anthracene	201-581-5	85-01-8		<0.04			<0.04		<0.000004 %	•	
Ľ			204-371-1	120-12-7	1	10.0T						Ц	
30	۲	fluoranthene	205-912-4	206-44-0		0.12	mg/kg		0.1	mg/kg	0.00001 %	\checkmark	
31	8	pyrene	204-927-3	129-00-0		0.1	mg/kg		0.0836	mg/kg	0.00000836 %	~	
32		benzo[a]anthracen 601-033-00-9	e 200-280-6	56-55-3		0.1	mg/kg		0.0836	mg/kg	0.00000836 %	\checkmark	
33		chrysene 601-048-00-0	205-923-4	218-01-9		0.08	mg/kg		0.0669	mg/kg	0.00000669 %	\checkmark	
34		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		0.09	mg/kg		0.0753	mg/kg	0.00000753 %	\checkmark	
35		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		0.04	mg/kg		0.0334	mg/kg	0.00000334 %	\checkmark	
36		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		0.07	mg/kg		0.0585	mg/kg	0.00000585 %	\checkmark	
37	8	indeno[123-cd]pyre	ene 205-893-2	193-39-5		0.06	mg/kg		0.0502	mg/kg	0.00000502 %	\checkmark	
38		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39	8	benzo[ghi]perylene	205-883-8	191-24-2		0.06	mg/kg		0.0502	mg/kg	0.00000502 %	~	
										Total:	0.0475 %	Γ	

Page 16 of 102

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: HD2

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	LoW Code: Chapter: Entry:

Hazard properties

None identified

Determinands

Moisture content: 7.8% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	pН				6.32	pН		6.32	рН	6.32 pH		
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark>	1327-53-3		7.3	mg/kg	1.32	8.941	mg/kg	0.000894 %	\checkmark	
3	-4	beryllium { berylliun 004-003-00-8	<mark>m oxide</mark> } 215-133-1	1304-56-9		2	mg/kg	2.775	5.149	mg/kg	0.000515 %	\checkmark	
4	4	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.9	mg/kg	5.719	4.775	mg/kg	0.000477 %	\checkmark	
5	4	cadmium {	m oxide } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< th=""></lod<>
6	4	chromium in chrom chromium(III) oxide	hium(III) compound e (worst case) } 215-160-9	s {		14.8	mg/kg	1.462	20.066	mg/kg	0.00201 %	~	
7	4	chromium in chrom oxide 024.001.00.0	hium(VI) compound	Is { chromium(VI)		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< th=""></lod<>
8	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	ide } 1317-39-1		24	mg/kg	1.126	25.066	mg/kg	0.00251 %	~	
9	4	lead { <pre>lead comp specified elsewher 082-001-00-6</pre>	pounds with the exe e in this Annex }	ception of those	1	16	mg/kg		14.842	mg/kg	0.00148 %	~	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.1	mg/kg	1.353	0.126	mg/kg	0.0000126 %	\checkmark	
11	4	nickel { nickel(II) o> 028-003-00-2	<mark>kide (nickel monoxia</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		27.3	mg/kg	1.273	32.228	mg/kg	0.00322 %	~	
12	4	selenium { seleniun cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s unnex }	the exception of pecified		2	mg/kg	1.405	2.607	mg/kg	0.000261 %	~	
13	4	vanadium { [●] diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		20	mg/kg	1.785	33.12	mg/kg	0.00331 %	~	

Page 18 of 102

#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number			Ū							Σ	
	4	zinc {	• }										
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		93	mg/kg	2.469	213.028	mg/kg	0.0213 %	\checkmark	
15	4	cyanides { salts exception of complete ferricyanides and methods specified elsewhere 006-007-00-5	of hydrogen cyani ex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol	boo coo 7	400.05.0		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	0	TPH (C6 to C40) p	etroleum group	108-95-2		<38	ma/ka		<38	ma/ka	<0.0038 %		<lod< td=""></lod<>
				TPH						5.5			
18	۲	confirm TPH has N	IOT arisen from di	esel or petrol	-	\checkmark							
		tert-butyl methyl et	her: MTRE:		-								
19		2-methoxy-2-methy	/lpropane			<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
20		benzene				<5	µq/kq		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2									
21		toluene	002 025 0	400.00.0		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		ethylbenzene	203-023-9	100-00-3									
22		601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xylene											
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		naphthalene	1			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3									
25	8	acenapriciyiene	205-917-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
26	0	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27	0	fluorene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		nhananthrana	201-695-5	86-73-7	-								
28	8	prienantmene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		anthracene			T	0.04			0.04		0.000004.0/		1.00
29			204-371-1	120-12-7		<0.04	тg/кg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
30	0	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
04	0	pyrene	200 312 4	200 44 0		0.00			0.00		0.000000.0/		1.00
31			204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
32		benzo[a]anthracene	e			<0.06	mg/ka		<0.06	mg/ka	<0.000006 %		<lod< td=""></lod<>
\vdash		601-033-00-9	200-280-6	56-55-3								_	
33		chrysene	005 000 4	b19.04.0		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
<u> </u>	\vdash	benzo[b]fluoranthei	1203-923-4 ne	410-01-3	\vdash							-	
34		601-034-00-4	205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
35		benzo[k]fluoranther		007.09.0		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[a]pyrene: be	205-916-6 enzoldeflchrvsene	207-08-9									
36		601-032-00-3	200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
37	0	indeno[123-cd]pyre	ene			<0.04	mg/ka		<0.04	mg/ka	<0.000004 %		<lod< td=""></lod<>
		dihanafa bir ti	205-893-2	193-39-5	-							-	
38		albenz[a,h]anthrace 601-041-00-2	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20		benzo[ghi]perylene		1		-0.04	m = //		.0.04	m ~ //	-0.000004.00		4.05
39			205-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
										Total:	0.04 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: HD3

Sample details

Sample name:	LoW Code:	
HD3	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.20-0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17.1%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 17.1% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	pH	1			7.12	pН		7.12	рН	7.12 pH		
	<u>.</u>	arsenic { arsenic tr	ioxide }	PH	\vdash								
2	~	033-003-00-0	215-481-4	1327-53-3		12.8	mg/kg	1.32	14.432	mg/kg	0.00144 %	\checkmark	
3	4	beryllium { <mark>berylliu</mark>	<mark>m oxide</mark> }			1.5	mg/kg	2.775	3.555	ma/ka	0.000356 %	1	
		004-003-00-8	215-133-1	1304-56-9									
4	*	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		1.1	mg/kg	5.719	5.372	mg/kg	0.000537 %	\checkmark	
5	4	cadmium { cadmiu	m oxide }	4200 40 0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
6	4	chromium in chrom chromium(III) oxide	pium(III) compound (worst case) }	s {		43.7	mg/kg	1.462	54.543	mg/kg	0.00545 %	~	
			215-160-9	1308-38-9	_								
7	4	<pre>chromium in chromium(VI) compounds { chromium(VI) oxide }</pre>				<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
8	4	copper { dicopper (029-002-00-X	oxide; copper (I) ox 215-270-7	<mark>ide</mark> } 1317-39-1		34	mg/kg	1.126	32.69	mg/kg	0.00327 %	\checkmark	
9	\$	lead { <pre>lead complete lead { <pre>lead complete lead c</pre></pre>	pounds with the exe e in this Annex }	ception of those	1	44	mg/kg		37.575	mg/kg	0.00376 %	~	
10	2	mercury { mercury	dichloride }	1	1	0.4		4.050	0.405		0.00004.05.0/	F	1.00
10	-	080-010-00-X	231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
11	4	nickel { nickel(II) 02 028-003-00-2	<mark>xide (nickel monoxic</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		37.4	mg/kg	1.273	40.645	mg/kg	0.00406 %	~	
12	*	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s annex }	the exception of pecified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	4	vanadium { ^a diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1	_	37	mg/kg	1.785	56.406	mg/kg	0.00564 %	~	

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	1C Applied	Conc. Not Used
		number			O							≥	
	4	zinc { zinc sulphate	e }										
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		142	mg/kg	2.469	299.436	mg/kg	0.0299 %	\checkmark	
15	*	cyanides { salts exception of compl ferricyanides and r specified elsewher 006-007-00-5	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol	002 622 7	109.05.2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	۲	TPH (C6 to C40) p	etroleum group	100-33-2		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
		<i>(</i> , <u></u>		ТРН									
18	۲	confirm TPH has N	IOT arisen from di	esel or petrol									
		4			-								
19		tert-butyl methyl et	her; MIBE;			~5	ua/ka		<0.005	ma/ka	~0.000005 %		
		603-181-00-X	216-653-1	1634-04-4	-	~ ~ ~	pg/ng		<0.000	mg/ng			LOD
		benzene	210 000 1	1004 04 4								H	
20		601-020-00-8	200-753-7	71-43-2	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		toluene	200 100 1	11 40 2								H	
21		601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		ethvlbenzene	200 020 0		-								
22	-	601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xylene											
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene				0.09	ma/ka		0 0769	ma/ka	0 00000769 %	./	
<u> </u>		601-052-00-2	202-049-5	91-20-3		0.00	ing/kg				0.00000700 //	×	
25	8	acenaphthylene				<0.03	ma/ka		<0.03	ma/ka	<0.000003 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
26	8	acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
27	0	fluorene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			201-695-5	86-73-7									
28	0	phenanthrene				0.2	mg/kg		0.171	mg/kg	0.0000171 %	\checkmark	
			201-581-5	85-01-8									
29	8	anthracene	004.074	100.10 -		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
\mid		0	204-371-1	120-12-7	\vdash							\square	
30	8	TIUOTANTHENE	205-912-4	206-44-0		0.19	mg/kg		0.162	mg/kg	0.0000162 %	\checkmark	
31	۲	pyrene	204-927-3	129-00-0		0.16	mg/kg		0.137	mg/kg	0.0000137 %	\checkmark	
20		benzo[a]anthracen	e			0.40	m a //		0.444	m~//	0.0000111.0/		
32		601-033-00-9	200-280-6	56-55-3	1	0.13	ту/кд		0.111	шу/кд	0.0000111%		
33		chrysene				0.14	mg/kg		0.12	mg/kg	0.000012 %	\checkmark	
		601-048-00-0	205-923-4	218-01-9	-								
34		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		0.17	mg/kg		0.145	mg/kg	0.0000145 %	\checkmark	
35		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		0.06	mg/kg		0.0512	mg/kg	0.00000512 %	\checkmark	
		benzo[a]pvrene: he	enzoldeflchrvsene		+							\square	
36		601-032-00-3	200-028-5	50-32-8	1	0.13	mg/kg		0.111	mg/kg	0.0000111 %	\checkmark	
6-		indeno[123-cd]pvre	ene	1	\vdash				0.5		0.0000000000000000000000000000000000000		
37			205-893-2	193-39-5	1	0.08	mg/kg		0.0683	mg/kg	0.0000683 %	\checkmark	
20		dibenz[a,h]anthrac	ene		1	.0.04	mallin		.0.04	m ~//	-0.00004.0/	Π	4.00
30		601-041-00-2	200-181-8	53-70-3	1	<0.04	ту/кд		<0.04	тід/кд	<0.000004 %		<lod< td=""></lod<>
39		benzo[ghi]perylene	9			0.09	ma/ka		0 0769	ma/ka	0.00000769 %	./	
			205-883-8	191-24-2	1	0.03	ing/ity		0.0709		0.0000103 /8	×	
										Total:	0.0587 %		

Page 22 of 102

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: HD4

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
HD4	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.10-0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
7.2%		
dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 7.2% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	рН		PH		8.36	рН		8.36	рН	8.36 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> }	1327-53-3		3.6	mg/kg	1.32	4.434	mg/kg	0.000443 %	\checkmark	
3	4	beryllium { berylliun	m oxide } 215-133-1	1304-56-9		<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
4	4	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.3	mg/kg	5.719	1.601	mg/kg	0.00016 %	~	
5	4	cadmium {	m oxide } 215-146-2	1306-19-0		0.5	mg/kg	1.142	0.533	mg/kg	0.0000533 %	\checkmark	
6	*	chromium in chrom chromium(III) oxide	hium(III) compound e (worst case) } 215-160-9	s {		17.5	mg/kg	1.462	23.859	mg/kg	0.00239 %	~	
7	4	chromium in chrom oxide 024-001-00-0	hium(VI) compound	Is { chromium(VI)		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>
8	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	ide } 1317-39-1		15	mg/kg	1.126	15.754	mg/kg	0.00158 %	~	
9	4	lead { lead comp specified elsewher 082-001-00-6	pounds with the exe e in this Annex }	ception of those	1	40	mg/kg		37.313	mg/kg	0.00373 %	~	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
11	*	nickel { nickel(II)	<mark>kide (nickel monoxic</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		4.5	mg/kg	1.273	5.342	mg/kg	0.000534 %	~	
12	4	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s nnex }	the exception of pecified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
13	4	vanadium { [•] diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		9	mg/kg	1.785	14.988	mg/kg	0.0015 %	~	

Page 24 of 102

#		EU CLP index EC Number CAS Nur	nber U		User entered data		Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number		1							~	
11	4	zinc { zinc sulphate }			85 mg/kg		2 460	105 702	ma/ka	0.0106.94	,	
14		030-006-00-9 231-793-3 [1] 7446-19-7 [231-793-3 [2] 7733-02-0 [1] 2]		65 Hig/kg		2.409	195.795	шу/ку	0.0190 %	V	
15	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyaniderricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }	des,		<0.5 mg/kg	3	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol			<0.15 ma/ka	,		<0.15	ma/ka	<0.000015 %		<lod< td=""></lod<>
	_	604-001-00-2 203-632-7 108-95-2		-								
17		ТРН			123 mg/kg	3		114.739	mg/kg	0.0115 %	\checkmark	
18	0	confirm TPH has NOT arisen from diesel or petro	1									
		tert-butyl methyl ether; MTBE;			- "							
19		2-methoxy-2-methylpropane			<5 µg/kg			<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4										
20					<5 µg/kg			<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
<u> </u>		601-020-00-8 200-753-7 71-43-2				1					-	
21					<5 µg/kg			<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3 203-625-9 108-88-3				-						
22	0	601-023-00-4 202-849-4 100-41-4			<5 µg/kg			<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		201-023-00-4 <u>202-049-4</u> 100-41-4		+		-						
23		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2 203-576-3 [3] 108-38-3 [3 215-535-7 [4] 1330-20-7 []] 4]		<5 µg/kg			<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene			0.17 mg/kg	,		0.159	mg/kg	0.0000159 %	~	
25	8	acenaphthylene			0.06 mg/kg	,		0.056	ma/ka	0.000056 %		
		205-917-1 208-96-8				,					×	
26	0	acenaphthene			<0.05 mg/kg	3		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	_	fluorene										
27		201-695-5 86-73-7			0.05 mg/kg	3		0.0466	mg/kg	0.00000466 %	\checkmark	
		phenanthrene										
28		201-581-5 85-01-8			0.86 mg/kg	3		0.802	mg/kg	0.0000802 %	\checkmark	
-		anthracene		+		1						
29	1	204-371-1 120-12-7			0.25 mg/kg	3		0.233	mg/kg	0.0000233 %	\checkmark	
00		fluoranthene		+	4.04			4 = 10		0.000170.00		
30		205-912-4 206-44-0			1.84 mg/kg	3		1.716	mg/kg	0.000172%	\checkmark	
31	0	pyrene		Ì	1.51 mg/ka	,		1.409	mg/ka	0.000141 %	✓	
		204-927-3 129-00-0									Ĺ	
32		benzo[a]anthracene			1 mg/kg	,		0.933	mg/kg	0.0000933 %	\checkmark	
<u> </u>		601-033-00-9 200-280-6 56-55-3				1						
33		chrysene			1.08 mg/kg	,		1.007	mg/kg	0.000101 %	\checkmark	
<u> </u>		601-048-00-0 205-923-4 218-01-9		4		-			-		-	
34		benzo[b]fluoranthene			1.33 mg/kg	3		1.241	mg/kg	0.000124 %	\checkmark	
		bonzo[k]fluoronthono										
35		601-036-00-5 205-916-6 207-08-9			0.52 mg/kg	3		0.485	mg/kg	0.0000485 %	\checkmark	
		benzo[a]pyrene; benzo[def]chrysene		+	1.40			4 05 4		0.000105.00		
30		601-032-00-3 200-028-5 50-32-8			1.13 mg/kg	1		1.054	під/кд	0.000105 %	\checkmark	
37		indeno[123-cd]pyrene	T	Ĩ	0.75 mg/kg	, [T	07	ma/ka	0 00007 %	./	
<u> </u>		205-893-2 193-39-5				2		5.7		5.00007 /0	v	
38		dibenz[a,h]anthracene			0.21 mg/kg	3		0.196	mg/kg	0.0000196 %	\checkmark	
	-	benzolahilberylene		+		+				<u> </u>	-	
39		205-883-8 191-24-2			0.68 mg/kg	3		0.634	mg/kg	0.0000634 %	\checkmark	
			[[Total:	0.043 %		

www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
44	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0115%)

Classification of sample: HD5

Sample details

Sample name:	LoW Code:	
HD5	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.00-0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11.5%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 11.5% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	8	рН	1			6.65	pН		6.65	pН	6.65 pH		
		arsenic { arsenic tr	rioxide }	РН								-	
2	•••	033-003-00-0	215-481-4	1327-53-3		26.1	mg/kg	1.32	30.906	mg/kg	0.00309 %	\checkmark	
3	8	beryllium { berylliu	<mark>m oxide</mark> }	1		17	ma/ka	2 775	1 231	ma/ka	0.000/23 %		
5		004-003-00-8	215-133-1	1304-56-9		1.7	iiig/kg	2.115	4.201	iiig/kg	0.000423 /8	v	
	4	boron { <mark>boric acid;</mark>	[1] boric acid [2] }			0.0	m a /l ca	E 710	4 4 0 2	malle	0.00044.9/	,	
4		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.8	mg/kg	5.719	4.103	mg/kg	0.00041 %	V	
5	4	cadmium { <mark>cadmiu</mark>	<mark>m oxide</mark> }			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0	_							-	
6	4	chromium in chron	nium(III) compound	s {		43	ma/ka	1 462	56 365	ma/ka	0.00564 %	./	
Ŭ			215-160-9	1308-38-9		10	iiig/iig	1.102	00.000	iiig/kg	0.0000170	ľ	
	æ	chromium in chromium(VI) compounds { chromium(VI)										F	
7	-	oxide }			<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>	
		024-001-00-0	215-607-8	1333-82-0								-	
8	4	copper { dicopper }	oxide; copper (I) ox	ide }		36	mg/kg	1.126	36.352	mg/kg	0.00364 %	\checkmark	
	æ	029-002-00-X	215-270-7	1317-39-1									
9	•	specified elsewher	pounds with the exercise in this Annex }	ception of those	1	56	mg/kg		50.224	mg/kg	0.00502 %	\checkmark	
		082-001-00-6			-								
10	\$	mercury { mercury	dichloride }			<0.1	ma/ka	1 353	<0 135	ma/ka	<0.0000135 %		<lod< td=""></lod<>
		080-010-00-X	231-299-8	7487-94-7									
	4	nickel { nickel(II) o	xide (nickel monoxi	de) }									
11		028-003-00-2	234-323-5 [2] - [3]	11099-02-8 [2]		32.7	mg/kg	1.273	37.322	mg/kg	0.00373 %	\checkmark	
		selenium { <mark>seleniu</mark>	m compounds with	the exception of	\vdash							\vdash	
12	*	cadmium sulphose	elenide and those s	pecified		2	ma/ka	1 405	2 5 2	ma/ka	0.000252 %	./	
		elsewhere in this A	Annex }	1		-	iiig/iig	1.100	2.02	iiig/kg	0.000202 /0	ľ	
		034-002-00-8			\vdash							-	
13	*	vanadium { [•] diva	inadium pentaoxide	; vanadium		42	mg/kg	1.785	67.245	mg/kg	0.00672 %	\checkmark	
		023-001-00-8	215-239-8	1314-62-1			0.0			5 5			
		023-001-00-0	215-259-0	1314-02-1									

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	1C Applied	Conc. Not Used
		number			U							≥	
	4	zinc { zinc sulphate	e }										
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		124	mg/kg	2.469	274.612	mg/kg	0.0275 %	\checkmark	
15	*	cyanides { salts exception of compl ferricyanides and r specified elsewher 006-007-00-5	of hydrogen cyan lex cyanides such nercuric oxycyanio e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol	202 622 7	108.05.2		0.17	mg/kg		0.152	mg/kg	0.0000152 %	~	
17	8	TPH (C6 to C40) p	etroleum group	100-33-2		84	mg/kg		75.336	mg/kg	0.00753 %	\checkmark	
				TPH									
18	۲	confirm TPH has N	NOT arisen from di	esel or petrol									
10		tert-butyl methyl et	her; MTBE;			~5	ug/kg		<0.005	ma/ka			
19		603-181-00-X	216-653-1	1634-04-4		~ 5	µg/kg		<0.005	mg/kg	<0.0000003 /8		LOD
		benzene	210-033-1	1034-04-4	\vdash								
20		601-020-00-8	200-753-7	71-43-2	{	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		toluene	200-733-7	71-43-2	\vdash								
21		601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		ethylbenzene	200 020 0	100 00 0									
22		601-023-00-4	202-849-4	100-41-4	{	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xvlene											
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene				0.23	ma/ka		0.206	ma/ka	0.0000206 %	1	
		601-052-00-2	202-049-5	91-20-3								ľ	
25	8	acenaphthylene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
26	8	acenaphthene				<0.05	mg/kg		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
27	0	fluorene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			201-695-5	86-73-7									
28	۲	phenanthrene	201-581-5	85-01-8		0.45	mg/kg		0.404	mg/kg	0.0000404 %	\checkmark	
20	8	anthracene		·		0.09	ma/ka		0 0717	ma/ka	0 0000717 %	,	
29			204-371-1	120-12-7	1	0.08	ту/кд		0.0717	тту/ку	0.00000717 %	\checkmark	
30	۲	fluoranthene	205-912-4	206-44-0		0.48	mg/kg		0.43	mg/kg	0.000043 %	\checkmark	
		pyrene			\square				0.6		0.0000075.5		
31	-		204-927-3	129-00-0	1	0.4	mg/kg		0.359	mg/kg	0.0000359 %	\checkmark	
20		benzo[a]anthracen	e		1	0.04	m ~//		0.400	m~//	0.0000480.0/		
32		601-033-00-9	200-280-6	56-55-3	1	0.21	ту/кд		U. 188	шу/кд	0.0000188 %	\checkmark	
22		chrysene	*			0.22	malka		0.007	malka	0 0000297 9/	,	
33		601-048-00-0	205-923-4	218-01-9	1	0.32	ту/кд		0.207	шу/ку	0.0000207 %	\checkmark	
34		benzo[b]fluoranthe	ne	205-99-2		0.35	mg/kg		0.314	mg/kg	0.0000314 %	\checkmark	
\vdash		benzo[k]fluoranthe	ne	LUU JJ-2	\vdash							\vdash	
35		601-036-00-5	205-916-6	207-08-9	{	0.13	mg/kg		0.117	mg/kg	0.0000117 %	\checkmark	
		benzo[a]ovrene: be	enzoldeflchrvsene		\vdash								
36		601-032-00-3	200-028-5	50-32-8	{	0.21	mg/kg		0.188	mg/kg	0.0000188 %	\checkmark	
27		indeno[123-cd]pyre	ene			0.40			0.4.40	m o //	0.0000140.00	,	
31			205-893-2	193-39-5	1	0.16	ту/кд		0.143	шу/кд	0.0000143 %	\checkmark	
38		dibenz[a,h]anthrac	ene			-0.04	ma/ka		-0.04	ma/ka	<0.000004.%		
Ľ		601-041-00-2	200-181-8	53-70-3	1	10.0 4			-0.0 1	mg/ng			
39	0	benzo[ghi]perylene	9			0.16	mg/kg		0.143	mg/kg	0.0000143 %	\checkmark	
			205-883-8	191-24-2			5 5						
1										Total:	0.0644 %	1	

Page 28 of 102

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00753%)

Classification of sample: HD6

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
HD6	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.15-0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
10.5%		
dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 10.5% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	8	pН			_	7.47	рН		7.47	pН	7.47 pH		
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		22.5	mg/kg	1.32	26.884	mg/kg	0.00269 %	\checkmark	
3	4	beryllium { <mark>berylliul</mark> 004-003-00-8	<mark>m oxide</mark> } 215-133-1	1304-56-9		1.5	mg/kg	2.775	3.767	mg/kg	0.000377 %	\checkmark	
4	4	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		1.3	mg/kg	5.719	6.728	mg/kg	0.000673 %	~	
5	4	cadmium { <mark>cadmiu</mark> 048-002-00-0	<mark>m oxide</mark> } 215-146-2	1306-19-0	_	0.2	mg/kg	1.142	0.207	mg/kg	0.0000207 %	\checkmark	
6	4	chromium in chrom chromium(III) oxide	hium(III) compound e (worst case) } 215-160-9	s {		35.8	mg/kg	1.462	47.352	mg/kg	0.00474 %	~	
7	4	chromium in chrom oxide 224.001.00.0	hium(VI) compound	Is { chromium(VI)		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< th=""></lod<>
8	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	ide } 1317-39-1		33	mg/kg	1.126	33.624	mg/kg	0.00336 %	~	
9	4	lead { <pre>lead comp specified elsewher 082-001-00-6</pre>	pounds with the exe e in this Annex }	ception of those	1	43	mg/kg		38.914	mg/kg	0.00389 %	\checkmark	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.2	mg/kg	1.353	0.245	mg/kg	0.0000245 %	\checkmark	
11	4	nickel { nickel(II) ov 028-003-00-2	<mark>kide (nickel monoxio</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		26.7	mg/kg	1.273	30.75	mg/kg	0.00307 %	~	
12	4	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	n compounds with lenide and those s nnex }	the exception of pecified		2	mg/kg	1.405	2.543	mg/kg	0.000254 %	~	
13	4	vanadium { ^a diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		35	mg/kg	1.785	56.544	mg/kg	0.00565 %	~	

Page 30 of 102

#		EU CLP index	Determinand EC Number	CAS Number	P Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number			ŭ							ž	
	\$	zinc { <mark>zinc sulphate</mark>	e }										
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		95	mg/kg	2.469	212.292	mg/kg	0.0212 %	\checkmark	
15	4	cyanides { salts exception of compl ferricyanides and r specified elsewher 006-007-00-5	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, de and those	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol				0.88	ma/ka		0 796	ma/ka	0 0000796 %	./	
		604-001-00-2 TPH (C6 to C40) p	203-632-7	108-95-2	1							~	
17	9			TPH		239	mg/kg		216.29	mg/kg	0.0216 %	\checkmark	
18	0	confirm TPH has N	NOT arisen from di	esel or petrol									
19		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE; ylpropane			<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
_		603-181-00-X	216-653-1	1634-04-4	-								
20		601-020-00-8	200-753-7	71-43-2		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
21		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
22	8	ethylbenzene	202-849 4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xvlene	202-049-4	100-41-4									
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene 601-052-00-2 202-049-5 91-20-3			_	0.34	mg/kg		0.308	mg/kg	0.0000308 %	\checkmark	
25	0	acenaphthylene				0.06	mg/kg		0.0543	mg/kg	0.00000543 %	~	
26	0	acenaphthene	205-917-1	208-96-8	\vdash	0.06			0.0543	ma/ka	0 00000543 %		
20		fluorono	201-469-6	83-32-9	_	0.00			0.0343		0.00000343 /8	~	
27	۲	liuorene	201-695-5	86-73-7		0.04	mg/kg		0.0362	mg/kg	0.00000362 %	\checkmark	
28	8	phenanthrene	201-581-5	85-01-8		0.65	mg/kg		0.588	mg/kg	0.0000588 %	\checkmark	
29	8	anthracene	204-371-1	120-12-7		0.15	mg/kg		0.136	mg/kg	0.0000136 %	\checkmark	
30	8	fluoranthene				0.81	mg/kg		0.733	mg/kg	0.0000733 %	\checkmark	
<u> </u>	_	nyrene	L02-A15-A	L00-44-0	-							-	
31	۲	Рутепе	204-927-3	129-00-0	-	0.69	mg/kg		0.624	mg/kg	0.0000624 %	\checkmark	
20		benzo[a]anthracen	e	1	1	0.44	maller		0.074	mallia	0 0000274 0/	,	
52		601-033-00-9	200-280-6	56-55-3		0.41	ту/ку		0.371	шу/ку	0.0000371%	\checkmark	
33		chrysene				0.5	mg/ka		0.452	mg/ka	0.0000452 %	\checkmark	
		601-048-00-0	205-923-4	218-01-9	-				-			Ľ	
34		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2	_	0.58	mg/kg		0.525	mg/kg	0.0000525 %	\checkmark	
25		benzo[k]fluoranthe	ne			0.00			0.100		0.0000100.0/	,	
		601-036-00-5	205-916-6	207-08-9		0.22	пу/ку		0.199	шу/ку	0.0000199 %	~	
36		benzo[a]pyrene; be	enzo[def]chrysene			0.42	mg/kg]	0.38	mg/kg	0.000038 %	\checkmark	
<u> </u>		601-032-00-3	200-028-5	50-32-8	-								
37	۲	maeno[123-cajpyre	205-893-2	193-39-5	-	0.3	mg/kg		0.271	mg/kg	0.0000271 %	\checkmark	
20		dibenz[a,h]anthrac	ene		\square	0.00	maller		0.0704	mallia	0.0000724.0/	,	
30		601-041-00-2	200-181-8	53-70-3		0.08	пу/кд		0.0724	шу/ку	0.0000724 %	V	
39	8	benzo[ghi]perylene	e 205-883-8	191-24-2		0.3	mg/kg		0.271	mg/kg	0.0000271 %	\checkmark	
-		l		101 27-2	<u> </u>					Total:	0.0684 %		

www.hazwasteonline.com

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
44	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0216%)

Classification of sample: HD7

Sample details

Sample name:	LoW Code:	
HD7	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.15-0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11.6%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 11.6% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	۵	pH	1			7.03	pН		7.03	рН	7.03 pH		
2	4	arsenic { arsenic tr	ioxide }	РП		23.9	mg/kg	1.32	28.276	mg/kg	0.00283 %	~	
		033-003-00-0	215-481-4	1327-53-3	-								
3	44	beryllium { berylliu 004-003-00-8	m oxide } 215-133-1	1304-56-9		1.5	mg/kg	2.775	3.73	mg/kg	0.000373 %	\checkmark	
4	4	boron { boric acid;	[1] boric acid [2] }	40042.25.2 [4]		0.6	ma/ka	5 719	3 075	ma/ka	0 000307 %	1	
Ŀ		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]				0.1.10				ľ	
5	4	cadmium {	m oxide }	1306-19-0	_	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
6	4	chromium in chrom	nium(III) compound (worst case) }	s {		86	mg/kg	1.462	112.629	mg/kg	0.0113 %	~	
			215-160-9	1308-38-9									
7	4	chromium in chromium(VI) compounds { chromium(VI)				<0.3	mg/kg	1.923	<0.577	ma/ka	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0			5.5			5 5			
8	4	copper { dicopper (<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>ide</mark>		39	mg/kg	1.126	39.346	mg/kg	0.00393 %	\checkmark	
9	~	lead { <pre>lead complexed to a second complexed lead complexed co</pre>	pounds with the exc e in this Annex }	ception of those	1	64	mg/kg		57.348	mg/kg	0.00573 %	~	
40	æ	mercury { mercury	dichloride }		\vdash	0.4		4 050	0.405		0.0000405.0/	F	1.00
10		080-010-00-X	231-299-8	7487-94-7		<0.1	тід/кд	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
11	4	nickel { nickel(II) ov 028-003-00-2	<mark>xide (nickel monoxia</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		28.2	mg/kg	1.273	32.157	mg/kg	0.00322 %	~	
12	4	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s unnex }	the exception of pecified		2	mg/kg	1.405	2.518	mg/kg	0.000252 %	~	
13	4	vanadium { [●] diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		55	mg/kg	1.785	87.98	mg/kg	0.0088 %	\checkmark	

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index EC Number CAS Number		LP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	1C Applied	Conc. Not Used	
		number			0							2	
	4	zinc { zinc sulphate	e }										
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		109	mg/kg	2.469	241.177	mg/kg	0.0241 %	\checkmark	
15	*	cyanides { salts exception of compl ferricyanides and r specified elsewher 006-007-00-5	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol	202 622 7	109.05.2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	8	TPH (C6 to C40) p	etroleum group	100-93-2		88	mg/kg		78.853	mg/kg	0.00789 %	~	
				TPH									
18	۲	confirm TPH has N	NOT arisen from di	esel or petrol									
10		tert-butyl methyl et	her; MTBE;			~5	ua/ka		<0.005	ma/ka			
19		603-181-00-X	216-653-1	1634-04-4		~ 5	ру/ку		<0.005	mg/kg	<0.0000003 /8		LOD
		benzene	210-033-1	1034-04-4	\vdash								
20		601-020-00-8	200-753-7	71-43-2	-	<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		toluene	200 100 1	11402									
21		601-021-00-3	203-625-9	108-88-3	{	<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		ethylbenzene			\square	_					0.000000		
22	-	601-023-00-4	202-849-4	100-41-4	1	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xylene											
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene				0.13	ma/ka		0.116	ma/ka	0.0000116 %	1	
<u> </u>		601-052-00-2	202-049-5	91-20-3		0.10	ing/kg			iiig/itg	0.0000110 //	Ň	
25		acenaphthylene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			205-917-1	208-96-8									
26	8	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
27	۲	fluorene	004 005 5	00.70.7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
			201-695-5	86-73-7									
28	۲	phenanthrene	201-581-5	85-01-8		0.31	mg/kg		0.278	mg/kg	0.0000278 %	\checkmark	
29		anthracene				0.06	ma/ka		0.0538	ma/ka	0.00000538 %	1	7
Ľ			204-371-1	120-12-7	1	0.00					5.00000000	×	
30	8	fluoranthene	205-912-4	206-44-0		0.4	mg/kg		0.358	mg/kg	0.0000358 %	\checkmark	
21		pyrene				0.26	malka		0 202	ma/ka	0 0000333 %	,	
			204-927-3	129-00-0		0.30	ing/kg		0.323	iiig/kg	0.0000323 70	~	
32		benzo[a]anthracen	e	56 55 Q		0.22	mg/kg		0.197	mg/kg	0.0000197 %	\checkmark	
\vdash		chryseno	200-200-0	00-00-3	\vdash							\vdash	
33		601-048-00-0	205-923-4	218-01-9	-	0.26	mg/kg		0.233	mg/kg	0.0000233 %	\checkmark	
		benzo[b]fluoranthe	ne	-10 01 0	\vdash	0.00			0.054		0.0000051.00		
34		601-034-00-4	205-911-9	205-99-2	-	0.28	mg/kg		0.251	mg/kg	0.0000251 %	\checkmark	
35		benzo[k]fluoranthe	205-916-6	207-08-9		0.11	mg/kg		0.0986	mg/kg	0.00000986 %	\checkmark	
36		benzo[a]pyrene; be	enzo[def]chrysene			0.19	ma/ka		0.17	ma/ka	0.000017 %	./	
		601-032-00-3	200-028-5	50-32-8	1	0.19	ing/kg		0.17	iiig/kg	0.000017 /0	×	
37	0	indeno[123-cd]pyre	ene			0.15	mg/ka		0.134	mg/ka	0.0000134 %	\checkmark	
			205-893-2	193-39-5								Ľ	
38		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39	8	benzo[ghi]perylene	9			0.15	mg/ka		0.134	mg/ka	0.0000134 %	\checkmark	
\square			205-883-8	191-24-2			0.0						
1										Total:	0.0692 %	1	

Page 34 of 102

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00789%)

Classification of sample: HD8

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
1D8	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
).20-0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Noisture content:		03)
4.9%		
dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 14.9% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	0	рН				8.01	pН		8.01	pН	8.01 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> }	РН		6.2	ma/ka	1.32	7.124	ma/ka	0.000712 %	1	
		033-003-00-0	215-481-4	1327-53-3						5.5		ľ	
3	4	beryllium { berylliun 004-003-00-8	<mark>m oxide</mark> } 215-133-1	1304-56-9		1.2	mg/kg	2.775	2.899	mg/kg	0.00029 %	\checkmark	
	æ	boron { boric acid;	[1] boric acid [2] }										
4	~	005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.1	mg/kg	5.719	0.498	mg/kg	0.0000498 %	\checkmark	
5	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0	_	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< th=""></lod<>
6	4	chromium in chrom chromium(III) oxide	nium(III) compound (worst case) }	s { •		40.2	mg/kg	1.462	51.135	mg/kg	0.00511 %	~	
			215-160-9	1308-38-9	_								
7	~	oxide }	num(vi) compound	is {		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
8	æ	copper { dicopper of	oxide; copper (I) ox	<mark>ide</mark> }		21	ma/ka	1 1 2 6	20 578	ma/ka	0.00206.%	1	
0		029-002-00-X	215-270-7	1317-39-1		21	ing/kg	1.120	20.070	ing/itg	0.00200 //	Ŷ	
9	4	lead { [•] lead comp specified elsewher	pounds with the exc e in this Annex }	ception of those	1	11	mg/kg		9.574	mg/kg	0.000957 %	\checkmark	
	•	082-001-00-6	disblarida)		-								
10	4	mercury { mercury		7497 04 7	-	0.1	mg/kg	1.353	0.118	mg/kg	0.0000118 %	\checkmark	
		nickel { nickel(II) ov	kide (nickel monoxid	de) }	+								
11	*	028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		41.4	mg/kg	1.273	45.853	mg/kg	0.00459 %	~	
12	4	selenium { seleniun cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s nnex }	the exception of pecified		2	mg/kg	1.405	2.446	mg/kg	0.000245 %	~	
13	4	vanadium { ^e diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		28	mg/kg	1.785	43.503	mg/kg	0.00435 %	~	

Page 36 of 102

#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number			IJ							Ž	
	4	zinc { <mark>zinc sulphate</mark>	<mark>9</mark> }										
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		67	mg/kg	2.469	143.989	mg/kg	0.0144 %	\checkmark	
15	4	cyanides { salts exception of compl ferricyanides and n specified elsewher 006-007-00-5	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, de and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol		400.05.0		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	0	604-001-00-2 TPH (C6 to C40) p	etroleum group	108-95-2		<38	ma/ka		<38	ma/ka	<0.0038 %		
				TPH	1					iiig/itg			
18	۲	confirm TPH has N	IOT arisen from di	esel or petrol		\checkmark							
		4											
19		2-methoxy-2-methy	ner; MIBE; vlpropane			<5	ua/ka		<0.005	ma/ka	<0.000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4			15 5			5 5			-
20		benzene				~5			<0.005	ma/ka	<0.000005 %		
20		601-020-00-8	200-753-7	71-43-2			µg/kg		<0.000		<0.0000003 /8		
21		toluene				<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
22	8	etnyibenzene	202-840-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		xvlene	202-043-4	100-41-4	-								
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	_	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3									
25	8	acenaphthylene	205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
26	0	acenaphthene	201-469-6	83-32-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27	0	fluorene	201 403 0	00 02 0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		nhananthrana	201-695-5	86-73-7	-								
28		phenanthrene	201-581-5	85-01-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		anthracene	201 001 0			0.04					0.000004.0/		1.05
29			204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
30	٥	fluoranthene	b05 012 4	b06.44.0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		pyrene	205-312-4	200-44-0	\vdash								
31			204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
32		benzo[a]anthracen	e			<0.06	ma/ka		<0.06	ma/ka	<0.00000 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3	1								
33		chrysene				<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
<u> </u>		601-048-00-0	205-923-4	µ18-01-9	-							_	
34		601-034-00-4	205-911-9	205-99-2	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
35		benzo[k]fluoranthe 601-036-00-5	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
36		benzo[a]pyrene; be	enzo[def]chrysene	E0 22 9		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-		indeno[123-cd]pyre	200-028-3	pu-32-8	\vdash							-	
37			205-893-2	193-39-5	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
38		dibenz[a,h]anthrac	ene	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[ghi]pervlene	200-101-0	05-10-3	$\left \right $							-	
39			205-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
				л						Total:	0.0368 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: HD9

Sample details

Sample name:	LoW Code:	
HD9	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.10-0.25 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17.9%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 17.9% Dry Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entere	ed data	Conv. Factor	r Compound conc.		Classification value	1C Applied	Conc. Not Used
		number										2	
1	•	рн	1	PH		6.31	рН		6.31	pН	6.31 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> }	1		40.1	ma/ka	1 32	44 907	ma/ka	0 00449 %	1	
		033-003-00-0	215-481-4	1327-53-3								*	
3	4	beryllium { berylliu	m oxide }	T		2.1	mg/kg	2.775	4.943	mg/kg	0.000494 %	\checkmark	
		004-003-00-8	215-133-1	1304-56-9									
1	4	boron { boric acid;	[1] boric acid [2] }			1.0	ma/ka	5 710	0.217	malka	0.000022.9/	,	
4		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		1.5	iiig/kg	5.715	9.217	шу/ку	0.000922 /8	Ý	
5	4	cadmium {	<mark>m oxide</mark> }			<0.1	ma/ka	1 142	<0 114	ma/ka	<0 0000114 %		<lod< td=""></lod<>
Ŭ		048-002-00-0	215-146-2	1306-19-0	1								
6	4	chromium in chron chromium(III) oxide	nium(III) compound <mark>e (worst case)</mark> }	s {		40.7	mg/kg	1.462	50.454	mg/kg	0.00505 %	~	
			215-160-9	1308-38-9									
7	4	chromium in chromium(VI) compounds { chromium(VI)				~0.3	ma/ka	1 923	<0.577	ma/ka	<0.0000577 %		
ľ		024-001-00-0	215-607-8	1333-82-0	<0.3	iiig/kg	1.325	<0.577	mg/kg	<0.000001178		LOD	
	æ	copper { dicopper {	oxide; copper (I) ox	ide }	1								
8	~	029-002-00-X	215-270-7	1317-39-1		94	mg/kg	1.126	89.765	mg/ĸg	0.00898 %	V	
9	4	lead { <pre> lead com specified elsewher </pre>	pounds with the exe re in this Annex }	ception of those	1	110	mg/kg		93.299	mg/kg	0.00933 %	~	
		082-001-00-6			1								
10	4	mercury { mercury	dichloride }			0.2	mg/kg	1.353	0.23	mg/kg	0.000023 %	1	
		080-010-00-X	231-299-8	7487-94-7									
	4	nickel { nickel(II) o	kide (nickel monoxid	<mark>de)</mark> }									
11		028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		41.4	mg/kg	1.273	44.686	mg/kg	0.00447 %	~	
12	4	selenium { seleniu cadmium sulphose elsewhere in this A	m compounds with elenide and those s Annex }	the exception of pecified		2	mg/kg	1.405	2.383	mg/kg	0.000238 %	~	
		034-002-00-8			-								
13	4	vanadium { ^e diva pentoxide }	nadium pentaoxide	; vanadium		43	mg/kg	1.785	65.109	mg/kg	0.00651 %	\checkmark	
		∪∠3-001-00-8	215-239-8	1314-62-1									

www.hazwasteonline.com

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	AC Applied	Conc. Not Used
		number			μ							2	
11	4	zinc { zinc sulphate	• }			242	malka	2 460	E06 94E	ma/ka	0.0507.9/	,	
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		242	mg/kg	2.469	506.845	mg/kg	0.0507 %	V	
15	*	cyanides { salts exception of compl ferricyanides and n specified elsewhere	of hydrogen cyani ex cyanides such nercuric oxycyanid e in this Annex }	de with the as ferrocyanides, e and those	m.	3.9	mg/kg	1.884	6.232	mg/kg	0.000623 %	~	
		phenol			\vdash								
16		604-001-00-2	203-632-7	108-95-2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	۲	TPH (C6 to C40) p	etroleum group	1		455	ma/ka		385 92	ma/ka	0.0386 %	./	
				TPH								ľ	
18	۲	confirm TPH has N	IOT arisen from di	esel or petrol									
10		tert-butyl methyl et	her; MTBE;			~5	ug/kg		<0.005	ma/ka			
19		2-metrioxy-2-metriy		1634 04 4		<0	µу∕ку		<0.005	тту/ку	<0.0000005 %		<lod< td=""></lod<>
		bonzono	210-055-1	1034-04-4	-								
20		601-020-00-8	200-753-7	71-43-2		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
	_	toluene	2001001	11102									
21		601-021-00-3	203-625-9	108-88-3		7	µg/kg		0.0059	mg/kg	0.000000594 %	\checkmark	
22		ethylbenzene				~5	ua/ka		<0.005	ma/ka	<0.000005 %		
		601-023-00-4	202-849-4	100-41-4		~~	pg/ng		<0.000	iiig/kg	<0.0000000 70		
		xylene											
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene				1.37	ma/ka		1.162	ma/ka	0.000116 %	1	
		601-052-00-2	202-049-5	91-20-3	1							*	
25	8	acenaphinylene	205-917-1	208-96-8		0.18	mg/kg		0.153	mg/kg	0.0000153 %	\checkmark	
26	8	acenaphthene	201 460 6	82.22.0		0.08	mg/kg		0.0679	mg/kg	0.00000679 %	\checkmark	
		fluorene	201-409-0	03-32-9									
27	0		201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
00		phenanthrene	1	1		0.04			0 707		0.0000707.0/		
28			201-581-5	85-01-8		0.94	mg/kg		0.797	mg/kg	0.0000797 %	\checkmark	
29		anthracene				0.19	ma/ka		0 161	ma/ka	0.0000161 %	./	
<u> </u>			204-371-1	120-12-7	1	0.10			5.101		5.0000101 /0	ľ	
30	۲	fluoranthene	205-912-4	206-44-0		1.78	mg/kg		1.51	mg/kg	0.000151 %	\checkmark	
	0	pyrene			\vdash				,				
31	3		204-927-3	129-00-0		1.59	mg/kg		1.349	mg/kg	0.000135 %	\checkmark	
32		benzo[a]anthracen	e			1.01	ma/ka		0 857	ma/ka	0 0000857 %		
52		601-033-00-9	200-280-6	56-55-3		1.01	ing/kg		0.007	y/ky	0.0000001 //	V	
33		chrysene				1 23	ma/ka		1 043	ma/ka	0 000104 %		
		601-048-00-0	205-923-4	218-01-9		1.20			1.040	y, ky	0.000107 /0	×	
34		benzo[b]fluoranthe	ne	205-00-2		1.66	mg/kg		1.408	mg/kg	0.000141 %	\checkmark	
25		benzo[k]fluoranthei	ne	203-33-2		0.65	malka		0 551	ma/ka	0.0000551.9/	,	
35		601-036-00-5	205-916-6	207-08-9	1	0.05	шу/ку		0.551	тту/ку	0.0000551 %	~	
36		benzo[a]pyrene; be	enzo[def]chrysene	50.00.0		1.25	mg/kg		1.06	mg/kg	0.000106 %	\checkmark	
		b01-032-00-3 indeno[123-cd]ovre	200-028-5	p0-32-8	-								
37	1		205-893-2	193-39-5	{	0.95	mg/kg		0.806	mg/kg	0.0000806 %	\checkmark	
38		dibenz[a,h]anthrac	ene			0.22	mg/kg		0.187	mg/kg	0.0000187 %	~	
		601-041-00-2	200-181-8	53-70-3	-								
39	۲	benzo[ghi]perylene	205-883 9	101-24 2		0.91	mg/kg		0.772	mg/kg	0.0000772 %	\checkmark	
			200-000-0	131-24-2	<u> </u>					Total:	0 132 %		

Page 40 of 102

www.hazwasteonline.com

Кеу	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 5.94e-07%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.0386%)

Classification of sample: TP101

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
ГР101	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
⊧1.50-0.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15.1%		
dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 15.1% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1		рН				7.31	pН		7.31	рН	7.31 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> }	РП		2.8	mg/kg	1.32	3.212	mg/kg	0.000321 %	~	
	•	033-003-00-0	215-481-4	1327-53-3	-							-	
3	~	004-003-00-8	215-133-1	1304-56-9		1.3	mg/kg	2.775	3.135	mg/kg	0.000313 %	\checkmark	
4	4	boron { <mark>boric acid;</mark> 005-007-00-2	[1] boric acid [2] } 233-139-2 [1]	10043-35-3 [1]		1.7	mg/kg	5.719	8.447	mg/kg	0.000845 %	~	
5	-4	cadmium { cadmiu	234-343-4 [2] m oxide 215-146-2	11113-50-1 [2]		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
6	4	chromium in chrom chromium(III) oxide	nium(III) compound (worst case) }	s {		14.9	mg/kg	1.462	18.92	mg/kg	0.00189 %	~	
7	4	chromium in chrom <mark>oxide</mark> }	nium(VI) compound	ls { chromium(VI)		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< th=""></lod<>
8	4	024-001-00-0 copper { <mark>dicopper (</mark>	215-607-8 oxide; copper (I) ox	1333-82-0 <mark>ide</mark> }	$\left \right $	34	mg/kg	1.126	33.258	mg/kg	0.00333 %	√	
	4	029-002-00-X lead {	215-270-7	1317-39-1									
9		specified elsewher	<mark>e in this Annex</mark> }		1	15	mg/kg		13.032	mg/kg	0.0013 %	\checkmark	
10	4	mercury { mercury 080-010-00-X	dichloride }	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	-	nickel { nickel(II) o	kide (nickel monoxi	de) }									
11		028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		31.2	mg/kg	1.273	34.496	mg/kg	0.00345 %	~	
12	4	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s nnex }	the exception of pecified		1	mg/kg	1.405	1.221	mg/kg	0.000122 %	~	
13	4	vanadium { [●] diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		23	mg/kg	1.785	35.673	mg/kg	0.00357 %	~	

Page 42 of 102

#		EU CLP index	Determinand EC Number	CAS Number	LP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number			Ö							Σ	
	4	zinc { zinc sulphate	}			455		0.400	222 500		0.0000.0/	,	
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		155	mg/kg	2.469	332.529	mg/kg	0.0333 %	V	
15	4	cyanides { salts exception of complete ferricyanides and means specified elsewhere 006-007-00-5	of hydrogen cyani ex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol				<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
		604-001-00-2 TPH (C6 to C40) p	203-632-7 etroleum aroup	108-95-2									
17				TPH		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
18	۲	confirm TPH has N	IOT arisen from di	esel or petrol		\checkmark							
		4 4 4 4 4 4								_			
19		2-methoxy-2-methy	ner; MIBE; /lpropane			<5	ua/ka		<0.005	ma/ka	<0.000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4			15 5			5 5			_
20		benzene		1		~5			<0.005	ma/ka	<0.000005 %		
20		601-020-00-8	200-753-7	71-43-2		~~	µg/ng				<0.0000000 /0		
21		toluene				<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-021-00-3	203-625-9	108-88-3									
22		601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xvlene	202 043 4	100 41 4									
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene				<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3									
25		acchaphiliyiche	205-917-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
26	0	acenaphthene	201-469-6	83-32-0	-	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27	0	fluorene	201 403 0	00 02 0		<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		nhananthrana	201-695-5	86-73-7									
28		pnenantnrene	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
29		anthracene				<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		
23			204-371-1	120-12-7			iiig/kg		<0.04	iiig/kg	<0.000004 78		
30	0	fluoranthene	205-912-4	206-44-0	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
31	0	pyrene				<0.03	mg/kg		< 0.03	mg/kg	<0.00003 %		<lod< td=""></lod<>
			204-927-3	129-00-0								_	
32		benzo[a]anthracene		EC 55 2		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
\vdash	\vdash	chrysene	KUU-20U-0	p0-00-3	-							-	
33		601-048-00-0	205-923-4	218-01-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
34		benzo[b]fluoranthei	ne			<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2									
35		601-036-00-5	205-916-6	207-08-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
36		benzo[a]pyrene; be	enzo[def]chrysene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	р0-32 - 8	-							_	
37	•	indeno[123-cd]pyre	205-893-2	193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
38		dibenz[a,h]anthrace	ene	1.00 00 0	╞	<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		601-041-00-2	200-181-8	53-70-3			33						
39	•	benzo[ghi]perylene	205-883.9	101-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>			200-000-0	131-27-2	I					Total:	0.0524 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Sample details

Sample name:	LoW Code:	
TP102	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.20-2.40 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17.1%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 17.1% Dry Weight Moisture Correction applied (MC)

#		511.01.01.1	Determinand		o Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
1	9	рН		РН		7.8	pН		7.8	рН	7.8 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> }	r · ·		10.1	ma/ka	1.32	11.388	ma/ka	0 00114 %	./	
_		033-003-00-0	215-481-4	1327-53-3								Ň	
3	4	beryllium {	<mark>m oxide</mark> }			16	ma/ka	2 775	3 792	ma/ka	0 000379 %	1	
		004-003-00-8	215-133-1	1304-56-9								Ň	
	4	boron { boric acid; [1] boric acid [2] }											
4		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.3	mg/kg	5.719	1.465	mg/kg	0.000147 %	V	
5	4	cadmium { cadmiu	m oxide }	1206 10 0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-140-2	1306-19-0	-							-	
6	~	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }				40.6	ma/ka	1 462	50 674	ma/ka	0.00507 %		
Ŭ			b15 160 0	1209 29 0	-	10.0	ing/kg	1.102	00.011	mg/ng	0.00001 /0	ľ	
		chromium in chromium(VI) compounds { chromium(VI)		-							-		
7	~	oxide }			<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>	
		024-001-00-0	215-607-8	1333-82-0			00			00			
	æ	copper { dicopper d	oxide; copper (I) ox	ide }		20		1 1 0 0	27.002		0.00070.0/	,	
°		029-002-00-X	215-270-7	1317-39-1	1	29	тід/кд	1.120	27.003	тід/кд	0.00279 %	~	
9	4	lead { <pre>lead comp specified elsewher</pre>	pounds with the exe e in this Annex }	ception of those	1	21	mg/kg		17.933	mg/kg	0.00179 %	~	
		082-001-00-6											
40	æ	mercury { mercury	dichloride }			0.0		4.050	0.004		0.0000001.0/	,	
10		080-010-00-X	231-299-8	7487-94-7		0.2	тід/кд	1.353	0.231	тід/кд	0.0000231 %	~	
	æ	nickel { nickel(II) o	kide (nickel monoxid	de) }									
11		028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		45.9	mg/kg	1.273	49.882	mg/kg	0.00499 %	~	
	4	selenium { seleniur	m compounds with	the exception of									
12		elsewhere in this A	nnex }	peolited		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8											
	4	vanadium { 🏾 diva	nadium pentaoxide	; vanadium									
13		pentoxide }				31	mg/kg	1.785	47.259	mg/kg	0.00473 %	\checkmark	
		023-001-00-8	215-239-8	1314-62-1	1								

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	IC Applied	Conc. Not Used
		number			0							2	
11	4	zinc { zinc sulphate	e }			154	ma/ka	2 160	32/ 7/1	ma/ka	0.0325 %	,	
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		154	тіу/ку	2.409	324.741	тіу/ку	0.0325 %	~	
15	*	cyanides { salts exception of compl ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, le and those	m.	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol				<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
47	0	604-001-00-2 TPH (C6 to C40) p	203-632-7 etroleum group	108-95-2		20					0.0000 %		1.00
17			1	TPH	1	<38	тд/кд		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
18	0	confirm TPH has N	NOT arisen from di	esel or petrol									
					1								
10		tert-butyl methyl et	her; MTBE;			_			0.005		0.000005.0/		1.00
19		2-methoxy-2-methy	bie 652 1	1624 04 4		<5	µg/кg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		benzene	210-033-1	1034-04-4	\vdash							\square	
20		601-020-00-8	200-753-7	71-43-2		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		toluene	200.00.										
21		601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
22		ethylbenzene				~5	ua/ka		<0.005	ma/ka	<0.000005 %		
22		601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000003 /8		LOD
		xylene											
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene				<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	1								
25	8	acenaphthylene				<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
			205-917-1	208-96-8	-								
26	۲	acenaphthene	201-469-6	83-32-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene	201 403 0	00 02 0								H	
27			201-695-5	86-73-7	1	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
200		phenanthrene				0.05			0.0407		0.00000427.8/		
20			201-581-5	85-01-8	1	0.05	тід/кд		0.0427	тід/кд	0.00000427 %	\checkmark	
29		anthracene				<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		
			204-371-1	120-12-7			ing/kg						
30	8	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
31		pyrene		1	1	<0.02	ma/ka		<0.02	ma/ka			
			204-927-3	129-00-0	1	CO.00	ing/kg			ing/kg			~200
32		benzo[a]anthracen	e			<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		601-033-00-9	200-280-6	56-55-3								\square	
33		chrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
24		benzo[b]fluoranthe	ne	F.0010	\vdash	-0.05	maller		-0.05	maller		H	
34		601-034-00-4	205-911-9	205-99-2		<0.05	тід/кд		<0.05	тід/кд	<0.00005 %		
35		benzo[k]fluoranthe	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
		benzo[a]pvrene: be	enzo[deflchrvsene		\vdash							\vdash	
36		601-032-00-3	200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
37	0	indeno[123-cd]pyre	ene			< 0.04	ma/ka		< 0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
Ľ			205-893-2	193-39-5			99					Ц	
38		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39	8	benzo[ghi]perylene		404 04 0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %	Π	<lod< td=""></lod<>
\vdash			200-000-0	191-24-2						Total:	0.0577 %	\vdash	
1												1	

Page 46 of 102

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
ГР103	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
⊦0.90-0.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19.9%		
dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 19.9% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	рН		рн		8.01	рН		8.01	рН	8.01 pH		
2	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		8.3	mg/kg	1.32	9.14	mg/kg	0.000914 %	\checkmark	
3	4	beryllium { berylliur 004-003-00-8	m oxide } 215-133-1	1304-56-9		1.4	mg/kg	2.775	3.241	mg/kg	0.000324 %	\checkmark	
4	4	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.8	mg/kg	5.719	3.816	mg/kg	0.000382 %	\checkmark	
5	4	cadmium {	m oxide } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< th=""></lod<>
6	4	chromium in chrom chromium(III) oxide	hium(III) compound e (worst case) } 215-160-9	s {		34.4	mg/kg	1.462	41.933	mg/kg	0.00419 %	~	
7	4	chromium in chrom oxide 224-001-00-0	hium(VI) compound	Is { chromium(VI)		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< th=""></lod<>
8	4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	ide } 1317-39-1		28	mg/kg	1.126	26.293	mg/kg	0.00263 %	~	
9	4	lead { <pre>lead comp specified elsewher 082-001-00-6</pre>	pounds with the exc e in this Annex }	ception of those	1	21	mg/kg		17.515	mg/kg	0.00175 %	~	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< th=""></lod<>
11	4	nickel { nickel(II) ox 028-003-00-2	<mark>kide (nickel monoxic</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		36.2	mg/kg	1.273	38.422	mg/kg	0.00384 %	~	
12	4	selenium { seleniur cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s unnex }	the exception of pecified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< th=""></lod<>
13	4	vanadium { ^e diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		28	mg/kg	1.785	41.689	mg/kg	0.00417 %	~	

Page 48 of 102

#		EU CLP index EC Number CAS Number	CLP Note	User entered data	l	Conv. Factor	Compound c	onc.	Classification value	MC Applied	Conc. Not Used
					_						
14	~	2inc { <mark>2inc supnate</mark> }		120 ma/k	a	2.469	247.136	ma/ka	0.0247 %	J	
		231-793-3 [2] 7733-02-0 [2]		0				0 0			
15	4	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }	_	<0.5 mg/k	g	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		phenol	\vdash								
16		604-001-00-2 203-632-7 108-95-2		<0.15 mg/k	g		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	۰	TPH (C6 to C40) petroleum group		/1 mg/k	a		3/ 105	ma/ka	0 00342 %	,	
		TPH			9			iiig/itg	0.00042 /0	v	
18	۵	confirm TPH has NOT arisen from diesel or petrol									
					_						
10		tert-butyl methyl ether; MTBE;		<5 U0/k	~		<0.005	ma/ka			
19		603-181-00-X 216-653-1 1634-04-4			9		<0.005	шу/ку	<0.0000003 /8		LOD
-		benzene	\vdash								
20		601-020-00-8 200-753-7 71-43-2		<5 µg/k	g		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		toluene		5			0.005		0.000005.0/		
21		601-021-00-3 203-625-9 108-88-3		<5 μg/κί	3		<0.005	тд/кд	<0.000005 %		<lod< td=""></lod<>
22	۰	ethylbenzene		<5 ua/ki	7		<0.005	ma/ka	<0.0000005 %		
		601-023-00-4 202-849-4 100-41-4			9			iiig/itg			
		xylene									
23		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<5 µg/k	g		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene		0.05 ma/k	a		0.0417	ma/ka	0.00000417 %	1	
		601-052-00-2 202-049-5 91-20-3			9					Ň	
25	۲	acenaphthylene		<0.03 mg/k	g		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		205-917-1 208-96-8	-								
26	•		-	<0.05 mg/k	g		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>	-	fluorene	\vdash		-						
27		201-695-5 86-73-7	-	<0.04 mg/k	g		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		phenanthrene		0.07			0.0504		0.00000504.0/		
28		201-581-5 85-01-8		0.07 mg/k	g		0.0584	тд/кд	0.00000584 %	\checkmark	
29		anthracene		<0.04 mg/k	n.		<0.04	ma/ka	<0.000004 %		
20		204-371-1 120-12-7	1	Hig/k	9		NO.04		.0.00004 /0		
30	۲	fluoranthene		0.07 mg/k	g		0.0584	mg/kg	0.00000584 %	\checkmark	
<u> </u>		205-912-4 206-44-0	_								
31	۲	pyrene 604.027.2 420.00.0	-	0.06 mg/k	g		0.05	mg/kg	0.000005 %	\checkmark	
<u> </u>	-	henzo[a]anthracene	\vdash								
32		601-033-00-9 200-280-6 56-55-3	-	<0.06 mg/k	g		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
		chrysene		C 00			0.07		0.000005.00		
33		601-048-00-0 205-923-4 218-01-9	1	0.06 mg/k	g		0.05	rng/kg	0.000005 %	\checkmark	
31		benzo[b]fluoranthene		0.06 ma//	a		0.05	ma/ka	0 000005 %	,	
		601-034-00-4 205-911-9 205-99-2		0.00 mg/k	.a		0.00	ing/kg	0.000000 %	V	
35		benzo[k]fluoranthene		0.02 ma/k	a		0.0167	ma/ka	0.00000167 %	1	
Ļ		601-036-00-5 205-916-6 207-08-9			-			5.9		Ľ	
36		benzo[a]pyrene; benzo[def]chrysene		<0.04 mg/k	g		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
<u> </u>	-	bu1-032-00-3 200-028-5 50-32-8	-							-	
37	•	110cho(123-cu)pytene 205-202-2 402-20-5	-	<0.04 mg/k	g		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
-	-	dibenz[a.h]anthracene	-								
38		601-041-00-2 200-181-8 53-70-3	1	<0.04 mg/k	g		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20		benzo[ghi]perylene		<0.04 m=//	~		-0.04	maller	<0.000004.9/		100
39		205-883-8 191-24-2		<0.04 mg/k	y		<0.04	пу/кд	<0.000004 %		
								Total:	0.0467 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.00342%)

Classification of sample: WS102_3.8

Sample details

Sample name:	LoW Code:	
WS102_3.8	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
3.8 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19.3%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 19.3% Dry Weight Moisture Correction applied (MC)

#		ELLCL P index	Determinand	CAS Number	P Note	User entered data		Conv. Factor	Conv. Factor Compound conc.		Classification value	C Applied	Conc. Not Used
		number		CAS Number	5							ĕ	
1	•	рН	1			8.39	pН		8.39	pН	8.39 pH		
_	æ	arsenic { arsenic tr	ioxide }	F11	+								
2	~	033-003-00-0	215-481-4	1327-53-3		25.7	mg/kg	1.32	28.443	mg/kg	0.00284 %	\checkmark	
3	4	beryllium {	<mark>m oxide</mark> }			1.5	ma/ka	2 775	3 49	ma/ka	0 000349 %	./	
		004-003-00-8	215-133-1	1304-56-9								•	
1	4	boron { boric acid;	[1] boric acid [2] }	10010 05 011		0.8	ma/ka	5 710	3 835	ma/ka	0.000384 %	,	
-		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.0	iiig/kg	5.715	3.000	iiig/kg	0.000304 78	Ý	
5	4	cadmium {	<mark>m oxide</mark> }			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0								-	
6	~	chromium in chromium(III) compounds {				56.8	ma/ka	1.462	69.586	ma/ka	0.00696 %	1	
-			215-160-9	1308-38-9			5.5			5.5		ľ	
	2	chromium in chromium(VI) compounds { chromium(VI) oxide }											
7					<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>	
	•	024-001-00-0	215-607-8	1333-82-0	+							-	
8	~	029-002-00-X	215-270-7	1317-39-1		43	mg/kg	1.126	40.581	mg/kg	0.00406 %	\checkmark	
	æ	lead {	ounds with the exc	ception of those	\uparrow								
9	ľ	specified elsewher	e in this Annex }		1	54	mg/kg		45.264	mg/kg	0.00453 %	\checkmark	
		082-001-00-6											
10	4	mercury { mercury	dichloride }	1		2	mg/kg	1.353	2.269	mg/kg	0.000227 %	\checkmark	
	•	080-010-00-X	231-299-8	(/48/-94-/	+								
11	~	028-003-00-2	215-215-7 [1]	1313-99-1 [1]		21	malka	1 070	22.069	malka	0.00221.9/	,	
			234-323-5 [2] - [3]	11099-02-8 [2]		51	шу/ку	1.275	33.000	шу/ку	0.00331 /8	Ý	
	æ	selenium { seleniur	m compounds with	the exception of	+								
12	~	cadmium sulphose	lenide and those s	pecified		10	mg/kg	1.405	11.777	mg/kg	0.00118 %	\checkmark	
		034-002-00-8		1									
	æ				\vdash							\square	
13		pentoxide }				61	mg/kg	1.785	91.279	mg/kg	0.00913 %	\checkmark	
		023-001-00-8	215-239-8	1314-62-1	1								

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index EC Number CAS Number		LP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	1C Applied	Conc. Not Used	
		number			0							2	
14	4	zinc { <mark>zinc sulphate</mark> 030-006-00-9	} 231-793-3 [1]	7446-19-7 [1]		94	mg/kg	2.469	194.563	mg/kg	0.0195 %	\checkmark	
15	4	cyanides { salts of exception of completerricyanides and m specified elsewhere	231-793-3 [2] of hydrogen cyan ex cyanides such ercuric oxycyanic e in this Annex }	ide with the as ferrocyanides, de and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol				-0.15	malka		-0.15	ma/ka	<0.00015 %		
		604-001-00-2	203-632-7	108-95-2		<0.15	mg/kg		<0.13	iiig/kg	<0.000013 //		
17	8	TPH (C6 to C40) pe	etroleum group	TPH		47	mg/kg		39.396	mg/kg	0.00394 %	\checkmark	
18	۲	confirm TPH has N	OT arisen from di	iesel or petrol		Ø							
19		tert-butyl methyl eth 2-methoxy-2-methy	ner; MTBE; Ipropane			<2	µg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
20		benzene 601-020-00-8	200-753-7	71-43-2		<3	µg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
21		toluene 601-021-00-3	203-625-9	108-88-3		10	µg/kg		0.0083	mg/kg	0.00000838 %	\checkmark	
22	8	ethylbenzene	202 840 4	100 41 4		<3	µg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
23		xylene 601-022-00-9	202-043-4 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
24		naphthalene 601-052-00-2	202-049-5	91-20-3		0.12	mg/kg		0.101	mg/kg	0.0000101 %	\checkmark	
25	8	acenaphthylene	205-917-1	208-96-8		0.05	mg/kg		0.0419	mg/kg	0.00000419 %	\checkmark	
26	8	acenaphthene	201 460 6	<u></u>		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
27	0	fluorene	201-409-0	00-32-9		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20		phenanthrene	201-095-5	00-73-7		0.57	malka		0.479	ma/ka	0.0000478.8/	,	
20			201-581-5	85-01-8		0.07	mg/kg		0.470	mg/kg	0.0000478 /8	~	
29	8	anthracene	204-371-1	120-12-7		0.12	mg/kg		0.101	mg/kg	0.0000101 %	\checkmark	
30	۲	fluoranthene	205-912-4	206-44-0		0.85	mg/kg		0.712	mg/kg	0.0000712 %	\checkmark	
31	8	pyrene	204-927-3	129-00-0		0.67	mg/kg		0.562	mg/kg	0.0000562 %	\checkmark	
32		benzo[a]anthracene	200-280-6	56-55-3		0.39	mg/kg		0.327	mg/kg	0.0000327 %	\checkmark	
33		chrysene	205-923-4	218-01-0		0.44	mg/kg		0.369	mg/kg	0.0000369 %	\checkmark	
34		benzo[b]fluoranther	200-920-4 10	210-01-9		0.48	mg/kg		0.402	mg/kg	0.0000402 %	\checkmark	
35		b01-034-00-4 benzo[k]fluoranther	205-911-9 Ne	205-99-2		0 18	ma/ka		0 151	ma/ka	0.0000151 %	1	
36		601-036-00-5 benzo[a]pyrene; be	205-916-6 nzo[def]chrysene	207-08-9	-	0.26	malka		0 202		0.0000303.6/	* /	
30		601-032-00-3	200-028-5	50-32-8		0.36	тіу/кд		0.302	під/кд	0.0000302 %	~	
37	8	indeno[123-cajpyre	205-893-2	193-39-5		0.23	mg/kg		0.193	mg/kg	0.0000193 %	\checkmark	
38		dibenz[a,h]anthrace	200-181-8	53-70-3		0.06	mg/kg		0.0503	mg/kg	0.00000503 %	\checkmark	
39	۲	benzo[ghi]perylene			T	0.23	mg/kg		0.193	mg/kg	0.0000193 %	\checkmark	
			205-883-8	191-24-2	1								

#			Determinand		Note	User entered data		Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
40		4-isopropyltoluene				<4	ua/ka		<0.004	ma/ka	<0.0000004 %		<lod< th=""></lod<>
			202-796-7	99-87-6									
41		n-butylbenzene				<4	ua/ka		<0.004	ma/ka	<0.0000004 %		<lod< th=""></lod<>
			203-209-7	104-51-8			P9/119		40.00 T	iiig/itg	10.000000170		
		cumene; [1] propyl	benzene [2]										
42		601-024-00-X	202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		<3	µg/kg		<0.003	mg/kg	<0.0000003 %		<lod< td=""></lod<>
43		sec-butylbenzene				-4	ua/ka		~0.004	ma/ka	~0 0000004 %		
-5			205-227-0	135-98-8		77	P9/109		<0.004	iiig/itg	<0.0000004 /0		LOD
11	14 .	4-Bromofluorobenzene; 1-bromo-4-fluorobenzene				85	ua/ka		0.0712	ma/ka	0 00000712 %	1	
			207-300-2	460-00-4		00	P9/109		0.0712	iiig/itg	0.00000712 /0	~	
15		tert-butylbenzene				~5	ua/ka		<0.005	ma/ka			
45			202-632-4	98-06-6		~ ~ ~ ~	µg/kg		<0.005	mg/kg	<0.0000003 /8		LOD
16		carbazole				63	ug/kg		0.0529	malka	0 0000528 %	,	
40			201-696-0	86-74-8		03	µу/ку		0.0526	mg/kg	0.00000528 %	~	
47		dibenzofuran				74	ug/kg		0.062	malka	0,000062.9/	,	
41			205-071-3	132-64-9		/4	µg/kg		0.002	шу/ку	0.0000002 /8	~	
48		bis(2-ethylhexyl) p DEHP	hthalate; di-(2-ethy	(hexyl) phthalate;		<100	µg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		607-317-00-9	204-211-0	117-81-7									
49		dibutyl phthalate; [OBP			<100	ua/ka		<0.1	ma/ka	<0.00001 %		<lod< th=""></lod<>
49		607-318-00-4	201-557-4	84-74-2				rng/кg	kg <0.00001 %		.200		
										Total:	0.057 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 8.38e-07%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.00394%)

4-Bromofluorobenzene; 1-bromo-4-fluorobenzene: (conc.: 7.12e-06%)

Classification of sample: WS112_1.7

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS112_1.7	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1.7 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
9.4%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 9.4% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data		User entered data Factor Compound conc.		Classification value	MC Applied	Conc. Not Used	
1	8	рН		PH		7.63	рН		7.63	рН	7.63 pH		
2	4	arsenic { arsenic tric 033-003-00-0 2	<mark>xide</mark> } 215-481-4	1327-53-3		4.1	mg/kg	1.32	4.948	mg/kg	0.000495 %	\checkmark	
3	4	beryllium { beryllium 004-003-00-8 2	<mark>1 oxide</mark> } 215-133-1	1304-56-9		1.1	mg/kg	2.775	2.791	mg/kg	0.000279 %	\checkmark	
4	4	boron {	1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.2	mg/kg	5.719	1.046	mg/kg	0.000105 %	~	
5	4	cadmium { cadmium 048-002-00-0 2	1 oxide } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
6	¥	<pre>chromium in chromium(III) compounds { chromium(III) oxide (worst case) } b15 160 0 b15 160 0 </pre>				39.4	mg/kg	1.462	52.637	mg/kg	0.00526 %	~	
7	4	copper { dicopper ov 029-002-00-X 2	<mark>xide; copper (I) oxi</mark> 215-270-7	<mark>de</mark> } 1317-39-1		21	mg/kg	1.126	21.612	mg/kg	0.00216 %	~	
8	¥	Iead { Iead compounds with the exception of those specified elsewhere in this Annex }			1	15	mg/kg		13.711	mg/kg	0.00137 %	~	
9	4	mercury { mercury d 080-010-00-X 2	<mark>lichloride</mark> } 231-299-8	7487-94-7		0.1	mg/kg	1.353	0.124	mg/kg	0.0000124 %	~	
10	4	nickel { nickel(II) oxid 028-003-00-2 2 2	<mark>de (nickel monoxic</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>le)</mark>	_	47.7	mg/kg	1.273	55.487	mg/kg	0.00555 %	~	
11	4	selenium { selenium cadmium sulphosele elsewhere in this An 034-002-00-8	compounds with enide and those sp inex }	the exception of becified		1	mg/kg	1.405	1.284	mg/kg	0.000128 %	~	
12	4	vanadium { ^e divan pentoxide } 023-001-00-8 2	adium pentaoxide	; vanadium 1314-62-1		23	mg/kg	1.785	37.531	mg/kg	0.00375 %	\checkmark	
13	4	zinc { <mark>zinc sulphate</mark> 030-006-00-9 2 2	} 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		75	mg/kg	2.469	169.284	mg/kg	0.0169 %	\checkmark	

Page 54 of 102

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
14	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyan lex cyanides such nercuric oxycyania e in this Annex }	ide with the as ferrocyanides, de and those	-	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
15		phenol	003 632 7	108.05.2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
16	0	TPH (C6 to C40) p	petroleum group	Трц		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
17	0	confirm TPH has N	NOT arisen from d	lesel or petrol		Ø							
_		tert-butyl methyl et	her; MTBE;		-								
18		2-methoxy-2-meth 603-181-00-X	ylpropane 216-653-1	1634-04-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
19		benzene	<u></u>			<5	ua/ka		<0.005	ma/ka	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	-							-	
20		601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
21	•	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
22		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
23		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	٥	acenaphthylene	205 017 1			<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25	0	acenaphthene	203-317-1	200-30-0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
26		fluorene	201-469-6	83-32-9		<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
27		phenanthrene	201-695-5	86-73-7		<0.03			<0.03		<0.00003.8%		
21			201-581-5	85-01-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
28	9	anthracene	204-371-1	120-12-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
29	0	fluoranthene	DOF 040 4			<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		pyrene	205-912-4	206-44-0		0.00					0.00000.0/	H	
30		bonzololonthro	204-927-3	129-00-0	1	<0.03	тід/кд		<0.03	тід/кд	<0.000003 %		<lud< td=""></lud<>
31		601-033-00-9	200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
32		chrysene	205-923-4	218-01-0		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
33		benzo[b]fluoranthe	ene	F10-01-3		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
<u> </u>		601-034-00-4 benzo[k]fluoranthe	205-911-9	205-99-2	\vdash							\vdash	
34		601-036-00-5	205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
35		benzo[a]pyrene; be 601-032-00-3	enzo[def]chrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
36	8	indeno[123-cd]pyre	ene	102 20 5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
37		dibenz[a,h]anthrac	ene	190-09-0		<0.04	mg/ka		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20	0	601-041-00-2 benzo[ghi]perylene	200-181-8 e	53-70-3		~0.04	ma/ka		<0.04	ma/ka	<0.000004.94		
			205-883-8	191-24-2		<0.04	ing/kg		<0.04	Totol	0.04 %	μ	
1										iotal.	0.07 /0	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS112_0.2

Sample details

Sample name:	LoW Code:	
WS112_0.2	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.2 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chrom oxide 024-001-00-0	hium(VI) compound	s { chromium(VI)	_	<0.3 mg/kg	1.923	<0.577 mg/kg	<0.0000577 %		<lod< th=""></lod<>
2	0	confirm TPH has N	IOT arisen from die	esel or petrol							
						· · · · · · · · · · · · · · · · · · ·		Total:	0.00005 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
FP105	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
⊦1.30-0.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11.1%		
dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 11.1% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	User entered data		r Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	рН	I			8.89	рН		8.89	рН	8.89 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> }	РП		5.4	mg/kg	1.32	6.417	mg/kg	0.000642 %	~	
		033-003-00-0	215-481-4	1327-53-3									
3	4	beryllium { berylliun 004-003-00-8	m oxide } 215-133-1	1304-56-9		1.9	mg/kg	2.775	4.746	mg/kg	0.000475 %	\checkmark	
	4	boron { boric acid;	[1] boric acid [2] }									\square	
4		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.3	mg/kg	5.719	1.544	mg/kg	0.000154 %	\checkmark	
5	4	cadmium {	m oxide }	1306-19-0	_	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
6	4	chromium in chrom chromium(III) oxide	nium(III) compound (worst case) }	s {		36.8	mg/kg	1.462	48.412	mg/kg	0.00484 %	~	
			215-160-9	1308-38-9	1								
7	4	<pre>chromium in chromium(VI) compounds { chromium(VI) oxide }</pre>				<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< th=""></lod<>
		024-001-00-0	215-607-8	1333-82-0									
8	4	copper { dicopper d	oxide; copper (I) ox	ide }		30	mg/kg	1.126	30.402	mg/kg	0.00304 %	\checkmark	
		029-002-00-X	215-270-7	1317-39-1								-	
9	4	lead { [•] lead comp specified elsewher	pounds with the exc e in this Annex }	ception of those	1	19	mg/kg		17.102	mg/kg	0.00171 %	\checkmark	
		082-001-00-6											
10	4	mercury { mercury	dichloride }			0.1	mg/kg	1.353	0.122	mg/kg	0.0000122 %	\checkmark	
	•	080-010-00-X	231-299-8	(487-94-7	-							-	
11	4	028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		49.2	mg/kg	1.273	56.356	mg/kg	0.00564 %	~	
12	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				1	mg/kg	1.405	1.265	mg/kg	0.000126 %	~		
13	4	vanadium { [©] diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		33	mg/kg	1.785	53.025	mg/kg	0.0053 %	~	

Page 58 of 102

#		EU CLP index	Determinand EC Number	CAS Number	P Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	C Applied	Conc. Not Used
		number	Eo Number	C/ C Number	ы							ž	
	4	zinc { zinc sulphate) }										
14		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		113	mg/kg	2.469	251.153	mg/kg	0.0251 %	~	
15	4	cyanides { salts exception of compl ferricyanides and n specified elsewhere 006-007-00-5	of hydrogen cyani ex cyanides such nercuric oxycyanic e in this Annex }	de with the as ferrocyanides, e and those	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16		phenol				<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	0	604-001-00-2 TPH (C6 to C40) p	203-632-7 etroleum group	108-95-2	\vdash	<38			<38	ma/ka	<0.0038 %		
				TPH	1					ing/kg			
18	۲	confirm TPH has N	IOT arisen from di	esel or petrol		\checkmark							
		4											
19		2-methoxy-2-methy	ner; MIBE; /lpropane			<5	µq/kq		<0.005	ma/ka	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	-		10 0			00			
20		benzene				<5	ua/ka		<0.005	ma/ka	<0.000005 %		
20		601-020-00-8	200-753-7	71-43-2		~~	µg/kg		~0.000				
21		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
22	0	ethylbenzene	202 840 4	100 41 4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xvlene	202-049-4	100-41-4									
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene 601-052-00-2	202-049-5	91-20-3		0.07	mg/kg		0.063	mg/kg	0.0000063 %	~	
25		acenaphthylene		boo oo o		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
26	0	acenaphthene	205-917-1	208-96-8		<0.05	ma/ka		<0.05	ma/ka	<0.000005 %		<lod< td=""></lod<>
		fluorene	201-469-6	83-32-9	\vdash							_	
27			201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
28	•	phenanthrene	b01 591 5	95 01 9	_	0.16	mg/kg		0.144	mg/kg	0.0000144 %	\checkmark	
29	0	anthracene	201-361-3	05-01-0		<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		
20			204-371-1	120-12-7					NO.04	ing/kg	<0.000004 70		
30	0	fluoranthene	205-912-4	206-44-0		0.04	mg/kg		0.036	mg/kg	0.0000036 %	\checkmark	
31		pyrene	204-927-3	129-00-0		0.03	mg/kg		0.027	mg/kg	0.0000027 %	\checkmark	
32		benzo[a]anthracen	e			<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
20	-	601-033-00-9 chrysene	200-280-6	p6-55-3	-		m c ll		.0.00	100 g //	.0.000000.0/	-	1.00
33		601-048-00-0	205-923-4	218-01-9	-	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
34		benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
35		benzo[k]fluoranther	ne 205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
36		benzo[a]pyrene; be	enzo[def]chrysene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-032-00-3	200-028-5	50-32-8	-								
37	indeno[123-cd]pyrene		-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>		
38		dibenz[a,h]anthrac	ene	1.00 00 0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		601-041-00-2	µ00-181-8	þ3-70-3	-							-	
39		рентораниренуюте	205-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
										Total:	0.0511 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Sample details

Sample name:	LoW Code:	
TP104	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
+0.90-0.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11.7%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 11.7% Dry Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	9	рН		8.85 pH		8.85 pH	8.85 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4 1327-53-3		2.9 mg/kg	1.32	3.428 mg/kg	0.000343 %	~	
3	4	beryllium { beryllium oxide } 004-003-00-8 215-133-1 1304-56-9		2 mg/kg	2.775	4.969 mg/kg	0.000497 %	\checkmark	
4	*	boron { boric acid; [1] boric acid [2] } 005-007-00-2 233-139-2 [1] 10043-35-3 [1] 234-343-4 [2] 11113-50-1 [2]		0.4 mg/kg	5.719	2.048 mg/kg	0.000205 %	~	
5	*	cadmium { cadmium oxide } 048-002-00-0 215-146-2 1306-19-0	_	0.2 mg/kg	1.142	0.205 mg/kg	0.0000205 %	\checkmark	
6	4	chromium in chromium(III) compounds { Chromium(III) oxide (worst case) }		37.6 mg/kg	1.462	49.198 mg/kg	0.00492 %	~	
7	\$	215-160-9 [1308-38-9 chromium in chromium(VI) compounds { chromium(VI) oxide }		<0.3 mg/kg	1.923	<0.577 mg/kg	<0.0000577 %		<lod< td=""></lod<>
8	*	copper { dicopper oxide; copper (l) oxide } 029-002-00-X 215-270-7 1317-39-1	_	36 mg/kg	1.126	36.286 mg/kg	0.00363 %	~	
9	4	lead { lead compounds with the exception of those specified elsewhere in this Annex }	1	17 mg/kg		15.219 mg/kg	0.00152 %	~	
10	4	mercury { mercury dichloride }		<0.1 mg/kg	1.353	<0.135 mg/kg	<0.0000135 %		<lod< td=""></lod<>
11	~	nickel { nickel(II) oxide (nickel monoxide) } 028-003-00-2 215-215-7 [1] 1313-99-1 [1] 234-323-5 [2] - [3] 11099-02-8 [2] 34492-97-2 [3]		58.2 mg/kg	1.273	66.307 mg/kg	0.00663 %	~	
12	*	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8		<1 mg/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< td=""></lod<>
13	4	vanadium { divanadium pentaoxide; vanadium pentaoxide; vanadium pentaoxide; vanadium pentaoxide; vanadium pentoxide; vanadium		34 mg/kg	1.785	54.339 mg/kg	0.00543 %	~	

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

14	number zinc { zinc sulphate 030-006-00-9	Determinand EU CLP index number EC Number CAS Number c { zinc sulphate } Cas number Cas number					1 actor				2	0000
14	zinc { zinc sulphate 030-006-00-9	e }		0							2	
14	030-006-00-9				4.4.4	ma/ka	2.460	240.224		0.0210.0/	,	
		231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		144	mg/kg	2.469	318.334	mg/kg	0.0318 %	\checkmark	
15	cyanides { salts exception of compl ferricyanides and n specified elsewhere	of hydrogen cyanic ex cyanides such a nercuric oxycyanid e in this Annex }	de with the as ferrocyanides, e and those	_	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
16	phenol				<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17 0	604-001-00-2 TPH (C6 to C40) p	203-632-7 etroleum group	108-95-2		~38	ma/ka			ma/ka	<0.0038 %		
			TPH			ing/kg		<00	mg/kg	<0.0000 //		
18 🔍	confirm TPH has N	IOT arisen from die	esel or petrol									
10	tert-butyl methyl et	her; MTBE;			-5			-0.005	~~// <i>.</i> ~	-0.000005.0/		
19	2-methoxy-2-methy		1634 04 4		<0	µg/кg		<0.005	тід/кд	<0.0000005 %		<lod< td=""></lod<>
	henzene	210-033-1	1034-04-4								H	
20	601-020-00-8	200-753-7	71-43-2		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
	toluene	2001001										
21	601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
22 0	ethylbenzene				-F	ug/kg		-0.005	malka	-0.00000E %		
22	601-023-00-4	202-849-4	100-41-4		<0	µg/кg		<0.005	тід/кд	<0.0000005 %		<lod< td=""></lod<>
	xylene											
23	601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24	aphthalene				0.07	ma/ka		0.0627	ma/ka	0.00000627 %		
-	601-052-00-2	202-049-5	91-20-3	1							ľ	
25 📍	acenaphthylene		0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	1.4	205-917-1	208-96-8									
26 📍	acenaphthene	001 460 6	02.22.0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
	fluorene	201-469-6	83-32-9								H	
27 –	lidorene	201-695-5	86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	phenanthrene	201 000 0	00101									
28	F	201-581-5	85-01-8		0.11	mg/kg		0.0985	mg/kg	0.00000985 %	\checkmark	
20 0	anthracene				-0.04			.0.04		-0.000004.8/		
23		204-371-1	120-12-7		<0.04	пу/ку		<0.04	mg/kg	<0.000004 %		
30 🔍	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
	pyrene		F		0.00			C		0.000000.07	\vdash	
31 -		204-927-3	129-00-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
32	benzo[a]anthracen	e			~0.06	ma/ka		-0.06	ma/ka	<0.00006.%		
6	601-033-00-9	200-280-6	56-55-3		\0.00	ing/kg		NO.00	ing/kg			~200
33	chrysene				<0.02	mg/ka		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
	601-048-00-0	205-923-4	218-01-9			0.0					Ц	
34	benzo[b]fluoranthe 601-034-00-4	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
35	benzo[k]fluoranthe	ne	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.00002 %		<lod< td=""></lod<>
	henzo[a]pvrene: he		L01-00-3	\vdash							\vdash	
36	601-032-00-3	200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
37 •	indeno[123-cd]pyre	ene			<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
Ľ.		205-893-2	193-39-5	1							Ц	
38	dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
39	benzo[ghi]perylene	205-883 8	101-24.2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		200-000-0	131-24-2						Total:	0.0592 %	⊢	

Page 62 of 102

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
ГР107	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.60-0.70 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17.4%		
dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 17.4% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	۵	рН		рн		8.38	рН		8.38	рН	8.38 pH		
2	4	arsenic { arsenic tr	ioxide }	1327-53-3		32.5	mg/kg	1.32	36.551	mg/kg	0.00366 %	~	
3	4	beryllium { berylliun 004-003-00-8	m oxide } 215-133-1	1304-56-9		2	mg/kg	2.775	4.728	mg/kg	0.000473 %	~	
4	4	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1]		3.6	mg/kg	5.719	17.538	mg/kg	0.00175 %	~	
5	~	cadmium { cadmiu 048-002-00-0	m oxide } 215-146-2	1306-19-0		0.8	mg/kg	1.142	0.778	mg/kg	0.0000778 %	~	
6	4	chromium in chrom chromium(III) oxide	hium(III) compound e (worst case) } 215-160-9	s {		43.3	mg/kg	1.462	53.906	mg/kg	0.00539 %	~	
7	4	chromium in chrom oxide 024-001-00-0	hium(VI) compound	s { chromium(VI)		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< th=""></lod<>
8	-4	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	ide } 1317-39-1		98	mg/kg	1.126	93.984	mg/kg	0.0094 %	~	
9	4	lead { <pre>lead comp specified elsewher 082-001-00-6</pre>	pounds with the exc e in this Annex }	ception of those	1	134	mg/kg		114.14	mg/kg	0.0114 %	~	
10	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.4	mg/kg	1.353	0.461	mg/kg	0.0000461 %	\checkmark	
11	*	nickel { nickel(II) ox 028-003-00-2	<mark>kide (nickel monoxic</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		33.5	mg/kg	1.273	36.313	mg/kg	0.00363 %	~	
12	4	selenium { seleniur cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s nnex }	the exception of pecified		2	mg/kg	1.405	2.394	mg/kg	0.000239 %	~	
13	4	vanadium { ^e diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		39	mg/kg	1.785	59.303	mg/kg	0.00593 %	\checkmark	

Page 64 of 102

#		Determinand EU CLP index EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	AC Applied	Conc. Not Used
		number		0							2	
	4	zinc { zinc sulphate }			000		0.400	540.000		0.0547.0/		
14		030-006-00-9 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		260	mg/kg	2.469	546.863	mg/kg	0.0547 %	\checkmark	
15	4	cyanides { salts of hydrogen cyan exception of complex cyanides such ferricyanides and mercuric oxycyani specified elsewhere in this Annex } 006-007-00-5	ide with the as ferrocyanides, de and those		0.9	mg/kg	1.884	1.444	mg/kg	0.000144 %	~	
16		phenol			<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	0	604-001-00-2 203-632-7 TPH (C6 to C40) petroleum group	108-95-2		747			636 286	ma/ka	0.0636 %		
			TPH			ing/kg		000.200	iiig/itg	0.0000 /0	v	
18	0	confirm TPH has NOT arisen from d	iesel or petrol									
		tert-butyl methyl ether; MTBE;			_							
19		2-methoxy-2-methylpropane	4004044		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1	1634-04-4						_		_	
20		benzene	F		19	µg/kg		0.0162	mg/kg	0.00000162 %	\checkmark	
<u> </u>		601-020-00-8 [200-753-7	/1-43-2	-					-		-	
21			400.000		16	µg/kg		0.0136	mg/kg	0.00000136 %	\checkmark	
<u> </u>		001-021-00-3 [203-625-9	108-88-3	-							-	
22	۲		400 44 4		<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		601-023-00-4 <u>202-849-4</u>	100-41-4	-								
23		601-022-00-9 202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		19	µg/kg		0.0162	mg/kg	0.00000162 %	~	
		215-535-7 [4]	1330-20-7 [4]									
24		601-052-00-2 202-049-5	91-20-3		1.02	mg/kg		0.869	mg/kg	0.0000869 %	\checkmark	
		acenaphthylene	0.200									
25		205-917-1	208-96-8		0.46	mg/kg		0.392	mg/kg	0.0000392 %	\checkmark	
	8	acenaphthene			1.0			4.040		0.000400.0/		
26		201-469-6	83-32-9		1.9	mg/kg		1.618	mg/kg	0.000162 %	\checkmark	
27		fluorene			1 57	malka		1 227	malka	0.000124.9/	,	
21		201-695-5	86-73-7	1	1.57	шу/ку		1.557	шу/ку	0.000134 %	V	
20		phenanthrene			9.72	ma/ka		7 / 26	ma/ka	0 000744 %	,	
20		201-581-5	85-01-8		0.75	шу/ку		7.430	шу/ку	0.000744 /8	V	
20		anthracene			3 22	ma/ka		2 7/2	ma/ka	0 000274 %	./	
29		204-371-1	120-12-7		5.22	mg/kg		2.140	iiig/ky	0.000274 /0	V	
30	0	fluoranthene			15 27	ma/ka		13 007	ma/ka	0.0013 %	./	
		205-912-4	206-44-0	1	10.21	ing/kg		10.007	y/Ny	0.0010 /0	×.	
31	0	pyrene			12.86	ma/ka		10.954	mg/ka	0.0011 %	1	
Ľ.		204-927-3	129-00-0	1					5.15		ľ	
32		benzo[a]anthracene			6.47	mg/ka		5.511	mg/ka	0.000551 %	\checkmark	
		601-033-00-9 200-280-6	56-55-3								Ĺ	
33		chrysene			6.42	mg/kg		5.468	mg/kg	0.000547 %	\checkmark	
L		601-048-00-0 205-923-4	218-01-9								Ĺ	
34		benzo[b]fluoranthene	00505		7.54	mg/kg		6.422	mg/kg	0.000642 %	\checkmark	
		601-034-00-4 205-911-9	205-99-2									
35		benzo[k]fluoranthene	607.00.0		2.93	mg/kg		2.496	mg/kg	0.00025 %	\checkmark	
		001-036-00-5 <u>205-916-6</u>	kn1-n8-8	-							-	
36		benzolajpyrene; benzoldetjchrysene	50.32 9		6.56	mg/kg		5.588	mg/kg	0.000559 %	\checkmark	
		001-032-00-3 200-028-5	pu-32-0	-							-	
37	0		103-30 5		3.94	mg/kg		3.356	mg/kg	0.000336 %	\checkmark	
		dibenz[a b]anthracene	130-03-0	-							-	
38		601-041-00-2 200-181-8	53-70-3		0.8	mg/kg		0.681	mg/kg	0.0000681 %	\checkmark	
	-	benzolahilpervlene	20100	\vdash						<u> </u>	\vdash	
39	-	205-883-8	191-24-2		3.4	mg/kg		2.896	mg/kg	0.00029 %	\checkmark	
							<u> </u>		Total:	0.168 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
44	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 1.62e-06%) toluene: (conc.: 1.36e-06%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0636%) xylene: (conc.: 1.62e-06%)

Sample details

Sample name:	LoW Code:	
TP108	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.30-0.60 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19.6%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 19.6% Dry Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used
		number pH				7 70			7.70		7.70 -11	2	
1		·		PH		1.12	рн		1.12	рн	7.72 pH		
2	æ	arsenic { arsenic tr	<mark>ioxide</mark> }	·		28.3	ma/ka	1 32	31 2/2	ma/ka	0.00312 %		
2		033-003-00-0	215-481-4	1327-53-3		20.0	iiig/kg	1.52	51.242	iiig/kg	0.00312 /8	~	
3	4	beryllium {	<mark>m oxide</mark> }			1.9	ma/ka	2.775	4,409	ma/ka	0.000441 %	J	
		004-003-00-8	215-133-1	1304-56-9								*	
	4	boron { boric acid;	[1] boric acid [2] }			0.0	~~~~//.~	E 710	4 20 4	malle	0.000.42.9/	,	
4		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.9	mg/kg	5.719	4.304	mg/kg	0.00043 %	V	
5	4	cadmium {	<mark>m oxide</mark> }			0.2	ma/ka	1.142	0.191	ma/ka	0.0000191 %	1	
_		048-002-00-0	215-146-2	1306-19-0						5.5		ľ	
6	4	chromium in chrom chromium(III) oxide	nium(III) compound <mark>e (worst case)</mark> }	s {		90	mg/kg	1.462	109.983	mg/kg	0.011 %	~	
		215-160-9 1308-38-9		1									
7	4	chromium in chromium(VI) compounds { chromium(VI) oxide }				<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577 %		<lod< td=""></lod<>
		024-001-00-0	215-607-8	1333-82-0			00			00			
8	4	copper { dicopper of	oxide; copper (I) ox	ide }		55	ma/ka	1 1 2 6	51 776	ma/ka	0.00518 %		
Ŭ		029-002-00-X	215-270-7	1317-39-1			ing/kg	1.120		mg/ng	0.00010 //	v	
9	4	lead { <pre> lead complete lea</pre>	pounds with the exc e in this Annex }	ception of those	1	65	mg/kg		54.348	mg/kg	0.00543 %	~	
		082-001-00-6			1								
10	4	mercury { mercury	dichloride }			0.2	mg/kg	1.353	0.226	mg/kg	0.0000226 %	\checkmark	
		080-010-00-X	231-299-8	7487-94-7								<u> </u>	
	4	nickel { nickel(II) o	kide (nickel monoxid	<mark>de)</mark> }									
11		028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		28.5	mg/kg	1.273	30.325	mg/kg	0.00303 %	~	
12	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }			2	mg/kg	1.405	2.349	mg/kg	0.000235 %	~		
		034-002-00-8											
13	4	vanadium { ^e diva pentoxide }	nadium pentaoxide	; vanadium		43	mg/kg	1.785	64.183	mg/kg	0.00642 %	~	
		023-001-00-8	215-239-8	1314-62-1									

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

					-							_	
#			Determinand		o Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF							MC	
	æ	zinc { zinc sulphate	• }										
14	~	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		126	mg/kg	2.469	260.143	mg/kg	0.026 %	\checkmark	
15	*	cyanides { salts exception of compl ferricyanides and n specified elsewhere	of hydrogen cyan ex cyanides such nercuric oxycyanie e in this Annex }	ide with the as ferrocyanides, de and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5											
16		phenol	000 000 7	400.05.0		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
-		604-001-00-2 TPH (C6 to C40) p	etroleum aroup	108-95-2									
17	9			ТРН	-	<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
		confirm TPH has N	IOT arisen from d	iesel or petrol									
18	-				{								
		tert-butyl methyl et	her; MTBE;	!									
19		2-methoxy-2-methy	lpropane			<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4									
20		benzene				<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		601-020-00-8	200-753-7	71-43-2	-								
21		toluene	000 005 0	400.00.0		10	µg/kg		0.0083	mg/kg	0.00000836 %	\checkmark	
		601-021-00-3	203-625-9	108-88-3	-								
22	Θ	601-023-00-4	202-840-4	100-41-4	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		xvlene	202-043-4	100-41-4	-								
23		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene	202 040 5	01 20 2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		acenaphthylene	202-043-3	31-20-3									
25	Ŭ		205-917-1	208-96-8	-	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
26	8	acenaphthene				<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
			201-469-6	83-32-9	-								
27	Θ	fluorene	001 605 5	06 72 7	4	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		nhonanthrono	201-095-5	00-73-7	-								
28	۲	prienantinene	201-581-5	85-01-8	-	0.18	mg/kg		0.151	mg/kg	0.0000151 %	\checkmark	
		anthracene	201 001 0	00010									
29			204-371-1	120-12-7	{	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
20		fluoranthene				0.00	ma/!		0.070	m ~ //	0.0000270.0/		
30			205-912-4	206-44-0		0.33	nig/kg		0.270	ту/ку	0.0000276 %	~	
31	0	pyrene				0.26	ma/ka		0 217	ma/ka	0.0000217 %	1	
<u> </u>			204-927-3	129-00-0		0.20						Ň	
32		benzo[a]anthracen	e			0.18	mg/kg		0.151	mg/kg	0.0000151 %	1	
_		601-033-00-9	200-280-6	56-55-3	1							ľ	
33		chrysene				0.19	mg/kg		0.159	mg/kg	0.0000159 %	1	
		601-048-00-0	205-923-4	218-01-9	-							Ľ	
34		benzo[b]fluoranthe	ne			0.22	mg/kg		0.184	mg/kg	0.0000184 %	\checkmark	
		601-034-00-4	205-911-9	205-99-2	-					-			
35		penzo[k]fluoranthe		007.00.0	4	0.08	mg/kg		0.0669	mg/kg	0.00000669 %	\checkmark	
-		001-030-00-5	205-916-6	207-08-9	-					_			
36		601-032-00-3	200-028-5	50-32-8	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	6	indeno[123-cd]pyre	ene	50 02 0	+								
37	-		205-893-2	193-39-5	1	0.11	mg/kg		0.092	mg/kg	0.0000092 %	\checkmark	
20		dibenz[a,h]anthrac	ene		1	.0.04	m = //		.0.04	m ~ //	-0.000004.0/		4.05
38		601-041-00-2	200-181-8	53-70-3	1	<0.04	mg/кg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
30		benzo[ghi]perylene	•	· ·	1	0.11	ma/ka		0.002	ma/ka	0.000002.94	,	
39			205-883-8	191-24-2	1	0.11	mg/kg		0.092	шу/ку	0.0000032 70	\checkmark	

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
40	0	coronene	205-881-7	191-07-1	_	<0.04 mg/kg		<0.04 mg/kg	<0.000004 %		<lod< th=""></lod<>
41		asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5	_	<0.001 mg/kg		<0.001 mg/kg	<0.000001 %		<lod< th=""></lod<>
42	0	polychlorobiphenyl 602-039-00-4	s; PCB 215-648-1	1336-36-3		<35 µg/kg		<0.035 mg/kg	<0.000035 %		<lod< th=""></lod<>
				*		· · · · · · · · · · · · · · · · · · ·		Total	0.0655 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinand:

toluene: (conc.: 8.36e-07%)

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:	
TP106	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
+1.40-0.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
9.8%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 9.8% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	1V. tor Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	рН		PH		8.57	рН		8.57	рН	8.57 pH		
2	4	arsenic { arsenic tr	<mark>ioxide</mark> } 215-481-4	1327-53-3		10.7	mg/kg	1.32	12.867	mg/kg	0.00129 %	~	
3	4	beryllium { berylliur 004-003-00-8	m oxide } 215-133-1	1304-56-9		1.6	mg/kg	2.775	4.044	mg/kg	0.000404 %	\checkmark	
4	4	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.3	mg/kg	5.719	1.563	mg/kg	0.000156 %	~	
5	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
6	<pre>chromium in chromium(III) compounds { chromium(III) oxide (worst case) } b45 160 0</pre>				36.8	mg/kg	1.462	48.985	mg/kg	0.0049 %	~		
7	~	copper { dicopper (029-002-00-X	<mark>oxide; copper (I) ox</mark> 215-270-7	<mark>ide</mark> } 1317-39-1		31	mg/kg	1.126	31.787	mg/kg	0.00318 %	~	
8	*	lead { • lead compounds with the exception of those specified elsewhere in this Annex }			1	16	mg/kg		14.572	mg/kg	0.00146 %	~	
9	4	mercury { mercury 080-010-00-X	dichloride } 231-299-8	7487-94-7		0.2	mg/kg	1.353	0.247	mg/kg	0.0000247 %	~	
10	4	nickel { nickel(II) ox 028-003-00-2	<mark>kide (nickel monoxic</mark> 215-215-7 [1] 234-323-5 [2] - [3]	<mark>de)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]	_	48.2	mg/kg	1.273	55.864	mg/kg	0.00559 %	~	
11	4	selenium { seleniur cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s nnex }	the exception of pecified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
12	4	vanadium { ^e diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		30	mg/kg	1.785	48.776	mg/kg	0.00488 %	~	
13	4	zinc { zinc sulphate 030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		113	mg/kg	2.469	254.126	mg/kg	0.0254 %	~	

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data		Conv. Factor	Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used
14	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyani lex cyanides such mercuric oxycyanic e in this Annex }	ide with the as ferrocyanides, de and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
15		phenol	203-632-7	108-95-2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
16	۲	TPH (C6 to C40) p	petroleum group	ТРН		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
17	8	confirm TPH has N	NOT arisen from di	esel or petrol									
18		tert-butyl methyl et 2-methoxy-2-methy	her; MTBE;			<5	ua/ka		<0.005	ma/ka	<0.000005 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4			P9/19						
19		benzene 601-020-00-8	200-753-7	71-43-2		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
20		toluene	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
21		ethylbenzene	boo 040 4	400.44.4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
22		xylene 601-022-00-9	202-849-4 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]	-	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
23		naphthalene	202-049-5	91-20-3		0.1	mg/kg		0.0911	mg/kg	0.00000911 %	\checkmark	
24	۵	acenaphthylene	205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25	0	acenaphthene	200 017 1	k3 32 0		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
26	۵	fluorene	b01 605 5	PC 72 7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27	8	phenanthrene	201-035-5	b5 01 0		0.23	mg/kg		0.209	mg/kg	0.0000209 %	~	
28	9	anthracene	201-361-3	00-01-0		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
29	0	fluoranthene	204-371-1	han 11.0		0.05	mg/kg		0.0455	mg/kg	0.00000455 %	√	
30	0	pyrene	KN2-A12-4	400.00	$\left \right $	0.04	mg/kg		0.0364	mg/kg	0.00000364 %	√	
31		benzo[a]anthracen	204-927-3	129-00-0	-	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
32		601-033-00-9 chrysene	<u>لا00-280-6</u>	þ6-55-3	$\left \right $	<0.02	mg/kg		<0.02	mg/kg	<0.00002 %		<lod< td=""></lod<>
33		601-048-00-0 benzo[b]fluoranthe	205-923-4 ene	218-01-9	$\left \right $	<0.05	mg/ka		<0.05	mg/ka	<0.000005 %		<lod< td=""></lod<>
		601-034-00-4 benzo[k]fluoranthe	205-911-9 ne	205-99-2	-							\vdash	
34		601-036-00-5	205-916-6	207-08-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
35		benzo[a]pyrene; be 601-032-00-3	enzoldetjchrysene 200-028-5	50-32-8		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
36	Θ	indeno[123-cd]pyre	ene 205-893-2	193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
37		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
38	۲	benzo[ghi]perylene	e 205-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		<u> </u>	F-00 000 0							Total:	0.0514 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS101A_0.1

Sample details

Sample name:	LoW Code:	
WS101A_0.1	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.1 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	C Fa	Conv. actor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	chromium in chrom oxide 024-001-00-0	hium(VI) compound 215-607-8	Is { chromium(VI)	_	<0.3 mg/k	g 1.	.923	<0.577 mg/kg	<0.0000577 %		<lod< td=""></lod<>
2	۲	confirm TPH has N	IOT arisen from die	esel or petrol		Ø						
3		asbestos 650-013-00-6		12001-28-4 132207-32-0 12172-73-5 77536-66-4 77536-68-6 77536-67-5 12001-29-5	-	<0.001 mg/k	g		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
									Total:	0.00005 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection

Classification of sample: WS101A_1.0

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS101A_1.0	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
1 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
7.8%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 7.8% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used
1	0	рН	<u> </u>			8	рН		8	pН	8pH		
	-	arconic (arconic tr		РН	\vdash							-	
2	~	033-003-00-0	215-481-4	1327-53-3		2.3	mg/kg	1.32	2.817	mg/kg	0.000282 %	\checkmark	
2	æ	beryllium { berylliu	m oxide }			17	malka	0 775	4 277	malka	0.000438.8/	,	
3		004-003-00-8	215-133-1	1304-56-9		1.7	mg/kg	2.775	4.377	mg/kg	0.000438 %	~	
	4	boron { <mark>boric acid;</mark>	<pre>[1] boric acid [2] }</pre>									\square	
4		005-007-00-2	233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.3	mg/kg	5.719	1.592	mg/kg	0.000159 %	V	
5	4	cadmium {	<mark>m oxide</mark> }			<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0	_							_	
6	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }				38.2	mg/kg	1.462	51.792	mg/kg	0.00518 %	~	
			215-160-9	1308-38-9									
_	4	chromium in chrom	nium(VI) compound	ls {				4 000	0.577		0.0000577.0/		1.05
1		024-001-00-0	215-607-8	1333-82-0		<0.3	mg/kg	1.923	<0.577	mg/kg	<0.0000577%		<lod< td=""></lod<>
	æ	copper { dicopper (oxide: copper (I) ox	ide }									
8	~	029-002-00-X	215-270-7	1317-39-1	1	29	mg/kg	1.126	30.288	mg/kg	0.00303 %	\checkmark	
9	4	lead { [●] lead comp specified elsewher	pounds with the exe e in this Annex }	ception of those	1	14	mg/kg		12.987	mg/kg	0.0013 %	~	
		082-001-00-6			_								
10	4	mercury { mercury	dichloride }	7407.04.7		0.1	mg/kg	1.353	0.126	mg/kg	0.0000126 %	\checkmark	
		nickel { nickel(II) ov	kide (nickel monoxid	1 40/-94-/	-							-	
11	~	028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		54.8	mg/kg	1.273	64.692	mg/kg	0.00647 %	~	
12	4	selenium { selenium cadmium sulphose elsewhere in this A 034-002-00-8	m compounds with elenide and those s nnex }	the exception of pecified		1	mg/kg	1.405	1.303	mg/kg	0.00013 %	~	
13	4	vanadium { [•] diva pentoxide } 023-001-00-8	nadium pentaoxide 215-239-8	; vanadium 1314-62-1		31	mg/kg	1.785	51.336	mg/kg	0.00513 %	~	

Page 74 of 102

#		Determinand EU CLP index EC Number CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
			_								
14	4	2inc { <mark>2inc supnate</mark> }		97	ma/ka	2,469	222,191	ma/ka	0.0222 %	J	
		231-793-3 [1] 7440-19-7 [1] 231-793-3 [2] 7733-02-0 [2]							010222 70	ř	
15	*	cyanides { salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex }		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	phenol									
16		604-001-00-2 203-632-7 108-95-2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
17	8	TPH (C6 to C40) petroleum group		-29	ma/ka		-29	ma/ka	<0.0038.%		
17		TPH		<30	mg/kg		<30	шу/ку	<0.0036 %		<lod< td=""></lod<>
18	0	confirm TPH has NOT arisen from diesel or petrol									
10		tert-butyl methyl ether; MTBE;		-			0.005		0.0000005.0/		
19		2-metnoxy-2-metnyipropane		<5	µg∕кg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		benzene								-	
20		601-020-00-8 200-753-7 71-43-2		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
		toluene									
21		601-021-00-3 203-625-9 108-88-3	_	<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
22	8	ethylbenzene		-5	ua/ka		-0.005	malka	-0.00000E %		
22		601-023-00-4 202-849-4 100-41-4		<0	µу∕ку		<0.005	тту/ку	<0.0000005 %		<lod< td=""></lod<>
		xylene									
23		601-022-00-9 202-422-2 [1] 95-47-6 [1] 203-396-5 [2] 106-42-3 [2] 203-576-3 [3] 108-38-3 [3] 215-535-7 [4] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
24		naphthalene		< 0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>
		601-052-00-2 202-049-5 91-20-3									
25	8	acenaphthylene	_	<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
		205-917-1 208-96-8								-	
26	8	201-469-6 83-32-9	_	<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
		fluorene									
27	-	201-695-5 86-73-7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
28		phenanthrene		0.06	ma/ka		0.0557	ma/ka	0 0000557 %	,	
20		201-581-5 85-01-8		0.00	ing/kg		0.0337	шу/ку	0.00000337 %	V	
29	0	anthracene		<0.04	ma/ka		<0.04	ma/ka	<0 000004 %		<lod< td=""></lod<>
		204-371-1 120-12-7		10101							
30	8	fluoranthene		0.2	mg/kg		0.186	mg/kg	0.0000186 %	\checkmark	
		205-912-4 206-44-0									
31	8	pyrene		0.19	mg/kg		0.176	mg/kg	0.0000176 %	\checkmark	
		benzo[a]anthracene	-						<u> </u>	-	
32		601-033-00-9 200-280-6 56-55-3		0.14	mg/kg		0.13	mg/kg	0.000013 %	\checkmark	
		chrysene	+					P	0.000010.00		
33		601-048-00-0 205-923-4 218-01-9		0.14	mg/kg		0.13	mg/kg	0.000013 %	\checkmark	
24		benzo[b]fluoranthene		0.01	malle		0.105		0.0000105.8/	,	
34		601-034-00-4 205-911-9 205-99-2		0.21	тід/кд		0.195	тід/кд	0.0000195 %	V	
35		benzo[k]fluoranthene		0.08	ma/ka		0 0742	ma/ka	0 00000742 %	./	
		601-036-00-5 205-916-6 207-08-9		0.00			5.5772			×	
36		benzo[a]pyrene; benzo[def]chrysene		0.16	mg/kg		0.148	mg/kg	0.0000148 %	\checkmark	
		601-032-00-3 200-028-5 50-32-8									
37	, indeno[123-cd]pyrene			0.12	mg/kg		0.111	mg/kg	0.0000111 %	\checkmark	
		dihenzla hlanthracene	_							-	
38		601-041-00-2 200-181-8 53-70-3		< 0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
		benzo[ghi]perylene					a / -	P	0.000010.01		
39	-	205-883-8 191-24-2	_	0.14	mg/kg		0.13	mg/kg	0.000013 %	\checkmark	
		1 1						Total:	0.0485 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS104_0.4

Sample details

Sample name:	LoW Code:	
WS104_0.4	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.4 m	Entry:	17 05 03 * (Soil and stones containing hazardous substances)
Moisture content:		
20.2% (dry weight correction)		

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.714%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.714%)

Determinands

Moisture content: 20.2% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	8	<mark>рН</mark>				8.44	pН		8.44	pН	8.44 pH		
2	4	arsenic { arsenic trioxide }				10.2	mg/kg	1.32	11.204	mg/kg	0.00112 %	\checkmark	
3	4	beryllium { beryllium oxide }				1.4	mg/kg	2.775	3.233	mg/kg	0.000323 %	\checkmark	
4	4	boron { boric acid; 005-007-00-2	[1] boric acid [2] } 233-139-2 [1] 234-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.4	mg/kg	5.719	1.903	mg/kg	0.00019 %	~	
5	4	cadmium {	<mark>m oxide</mark> } 215-146-2	1306-19-0		0.2	mg/kg	1.142	0.19	mg/kg	0.000019 %	\checkmark	
6	4	chromium in chrom <mark>chromium(III) oxide</mark>	hium(III) compoun (worst case) 215-160-9	ds { • 1308-38-9		50.2	mg/kg	1.462	61.04	mg/kg	0.0061 %	~	
7	4	copper {	<mark>oxide; copper (I) o</mark> 215-270-7	<mark>xide</mark> } 1317-39-1		23	mg/kg	1.126	21.544	mg/kg	0.00215 %	\checkmark	

#		Determinand EU CLP index EC Number number CAS Number			CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
8	4	lead { lead comp specified elsewhere 082-001-00-6	oounds with the exe e in this Annex }	ception of those	1	26	mg/kg		21.631	mg/kg	0.00216 %	~	
9	4	mercury { mercury	dichloride }			<0.1	ma/ka	1.353	<0.135	ma/ka	<0.0000135 %		<lod< td=""></lod<>
_		080-010-00-X	231-299-8	7487-94-7									
	4	nickel { nickel(II) ox	tide (nickel monoxi	de) }									
10		028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		21.3	mg/kg	1.273	22.551	mg/kg	0.00226 %	~	
11	4	selenium { seleniur cadmium sulphose elsewhere in this A	n compounds with lenide and those s nnex }	the exception of pecified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8											
12	4	vanadium { • divar pentoxide }	nadium pentaoxide	; vanadium		34	mg/kg	1.785	50.496	mg/kg	0.00505 %	~	
		zinc { zinc sulphate	1 10-200-0	1314-02-1									
13	~	030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		95	mg/kg	2.469	195.161	mg/kg	0.0195 %	~	
14	4	cyanides { salts exception of compl ferricyanides and n specified elsewhere 006-007-00-5	of hydrogen cyanic ex cyanides such a nercuric oxycyanid e in this Annex }	de with the as ferrocyanides, e and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
	_	phenol		J									
15		604-001-00-2	203-632-7	108-95-2		0.23	mg/kg		0.191	mg/kg	0.0000191 %	\checkmark	
16	8	TPH (C6 to C40) p	etroleum group	ТРН		8584	mg/kg		7141.431	mg/kg	0.714 %	~	
17	8	confirm TPH has N	IOT arisen from die	esel or petrol									
17					1	Ľ I							
18		tert-butyl methyl eth 2-methoxy-2-methy	her; MTBE; /lpropane			<2	µg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
		603-181-00-X	216-653-1	1634-04-4	-							H	
19			200 753 7	71 42 2	{	<3	µg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
		toluene	200-133-1	11-40-2	$\left \right $							\vdash	
20		601-021-00-3	203-625-9	108-88-3		<3	µg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
	-	ethylbenzene			\vdash							Н	
21	9	601-023-00-4	202-849-4	100-41-4	-	<3	µg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
22		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		16	µg/kg		0.0133	mg/kg	0.00000133 %	~	
23		naphthalene	202-049-5	91-20-3		0.61	mg/kg		0.507	mg/kg	0.0000507 %	\checkmark	
	_	acenaphthylene		51200	-							Н	
24	9		205-917-1	208-96-8	{	0.48	mg/kg		0.399	mg/kg	0.0000399 %	\checkmark	
25	0	acenaphthene	201 460 6	83 32 0		2.93	mg/kg		2.438	mg/kg	0.000244 %	~	
26	0	fluorene	P04 005 5	00-32-3	$\left \right $	3.74	mg/kg		3.111	mg/kg	0.000311 %	~	
27	8	phenanthrene	201-095-5	00-13-1	╞	12.09	mg/kg		10.058	mg/kg	0.00101 %	~	
20	8	anthracene	201-581-5	85-01-8	\vdash	4.24			2 644		0.000261.0/		
20			204-371-1	120-12-7	1	4.34	ing/kg		3.011	ing/kg	0.000301 %	~	
29	0	fluoranthene	205-912-4	206-44-0		18.4	mg/kg		15.308	mg/kg	0.00153 %	\checkmark	
30	8	pyrene	204-927-3	129-00-0		18.98	mg/kg		15.79	mg/kg	0.00158 %	\checkmark	

#		Determinand		Note	User entered data	Conv.	Compound conc.		Classification value	Applied	Conc. Not Used	
		EU CLP index number	EC Number	CAS Number	CLP		Tacior			Value		USeu
31		benzo[a]anthracene				7.74 ma/ka		6.439	ma/ka	0.000644 %	1	
_		601-033-00-9	200-280-6	56-55-3							×	
32		chrysene				7.46 ma/ka		6.206	ma/ka	0.000621 %	1	
		601-048-00-0	205-923-4	218-01-9					5 5		•	
33		benzo[b]fluoranthe	ne			8.74 ma/ka		7.271	ma/ka	0.000727 %	1	
		601-034-00-4 205-911-9 205-99-2							5 5		Ľ	
34		benzo[k]fluoranthene				3.4 ma/ka		2.829	ma/ka	0.000283 %	1	
		601-036-00-5	205-916-6							×		
35		benzo[a]pyrene; be	enzo[def]chrysene			7.86 ma/ka		6 539	ma/ka	0 000654 %	1	
		601-032-00-3	200-028-5	50-32-8	1						Ň	
36		indeno[123-cd]pyre	ene			4.35 ma/ka		3 6 1 9	ma/ka	0.000362 %		
			205-893-2	193-39-5	1	1.00 mg/kg		0.010	iiig/kg	0.000002 /0	Ŷ	
37		dibenz[a,h]anthrac	ene			0.94 ma/ka		0.782	mg/kg	0.0000782 %		
07		601-041-00-2	200-181-8	53-70-3	-	0.04 1119/109					~	
38		benzo[ghi]perylene	9			4 35 ma/ka		3 619	ma/ka	0 000362 %	,	
50		205-883-8 191-24-2				4.00 mg/kg		0.010		0.000302 /8	~	
20		4-isopropyltoluene				49 ug/kg		0.0300	ma/ka	0 0000300 %		
39		202-796-7 99-87-6				40 µg/kg		0.0399	шу/ку	0.00000399 /8	~	
10		on-butylbenzene				85 ug/kg		0.0707	ma/ka	0 0000707 %	\checkmark	
40		203-209-7 104-51-8			1	oo µg/kg		0.0707	шу/ку	0.00000707 %		
		cumene; [1] propylbenzene [2]										
41		601-024-00-X	202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		5 μg/kg		0.0041	mg/kg	0.000000416 %	\checkmark	
12		sec-butylbenzene				61 ug/kg		0.0507	ma/ka	0 0000507 %	,	
42			205-227-0	135-98-8		μ9/κ9		0.0307	шу/ку	0.00000307 /8	~	
12	8	4-Bromofluorobenz	zene; 1-bromo-4-flu	Jorobenzene		68 110/1/20		0.0566	ma/ka	0 0000566 %	,	
43		207-300-2 460-00-4				00 µg/kg		0.0566	шу/ку	0.000000%	V	
14		tert-butylbenzene			_	10		0.0109	malka	0.00000108 %	,	
44		202-632-4 98-06-6		13 µg/kg			0.0108	тід/кд	~			
15		carbazole				<10 ug/kg		0.01	malka	-0.00001.9/		
45		201-696-0 86-74-8			-	<10 µg/kg		<0.01	тту/ку	<0.000001 %		<lod< td=""></lod<>
46		dibenzofuran				621		0.525		0.0000525.0/	,	
40		205-071-3 132-64-9			1	озт µg/кg		0.525	тід/кд	0.0000525 %	~	
47		bis(2-ethylhexyl) pl DEHP	hthalate; di-(2-ethy	lhexyl) phthalate;		932 µg/kg		0.775	mg/kg	0.0000775 %	~	
		607-317-00-9	204-211-0	117-81-7				ļ				
48		dibutyl phthalate; [DBP			123 µa/ka		0.102	mg/kg	0.0000102 %	\checkmark	
		607-318-00-4	201-557-4	84-74-2								
									Total:	0.762 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Hazardous result
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.714%)

xylene: (conc.: 1.33e-06%) 4-isopropyltoluene: (conc.: 3.99e-06%) n-butylbenzene: (conc.: 7.07e-06%) cumene; [1] propylbenzene [2]: (conc.: 4.16e-07%) sec-butylbenzene: (conc.: 5.07e-06%) 4-Bromofluorobenzene; 1-bromo-4-fluorobenzene: (conc.: 5.66e-06%) tert-butylbenzene: (conc.: 1.08e-06%)

Classification of sample: WS104_2.7

Sample details

Sample name:	LoW Code:	
WS104_2.7	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.7 m	Entry:	17 05 03 * (Soil and stones containing hazardous substances)
Moisture content:		
26.4%		
(dry weight correction)		

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1B; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.485%)

HP 11: Mutagenic "waste which may cause a mutation, that is a permanent change in the amount or structure of the genetic material in a cell"

Hazard Statements hit:

Muta. 1B; H340 "May cause genetic defects [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

TPH (C6 to C40) petroleum group: (conc.: 0.485%)

Determinands

Moisture content: 26.4% Dry Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User enter	ed data	Conv. Factor	Compound	conc.	Classification value	AC Applied	Conc. Not Used
		number										2	
1	۲	TPH (C6 to C40) p	etroleum group			6136	mg/kg		4854.43	mg/kg	0.485 %	\checkmark	
				TPH									
2	۲	confirm TPH has N	OT arisen from die	esel or petrol									
3		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane			<2	µg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>	
		603-181-00-X	216-653-1	1634-04-4									
Δ		benzene				~3	ua/ka		<0.003	ma/ka	~0.000003 %		
7		601-020-00-8	200-753-7	71-43-2		~5	µg/kg		<0.005	iiig/kg	<0.0000000 /8		LOD
5		toluene				-3	ua/ka		<0.003	ma/ka	<0.000003 %		
		601-021-00-3	203-625-9	108-88-3	1		µg/kg		<0.005	iiig/kg	<0.0000000 /8		LOD
6		ethylbenzene				<3	ua/ka		<0.003	ma/ka	<0.000003 %		
Ŭ		601-023-00-4	202-849-4	100-41-4		~~	P9/19			ing/kg			~L0D
		xylene											
7		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5 μg/kg			<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>

#			P Note	User entered data	Conv. Factor	Compound conc.	Classification value	: Applied	Conc. Not Used
		EU CLP index EC Number CAS Number number	CLI					ΣQ	
8	Θ	4-isopropyltoluene		38 µa/ka		0.0301 mg/kg	0.0000301 %	1	
		202-796-7 99-87-6		13-3				·	
9	۲	n-butylbenzene		<4 ua/ka		<0.004 ma/ka	<0.0000004 %		<lod< th=""></lod<>
Ľ		203-209-7 104-51-8		·· µ9/··9		toroo ti mg/ng			
		cumene; [1] propylbenzene [2]							
10		601-024-00-X 202-704-5 [1] 98-82-8 [1] 203-132-9 [2] 103-65-1 [2]		<3 µg/kg		<0.003 mg/kg	<0.0000003 %		<lod< td=""></lod<>
11		sec-butylbenzene		212 ua/ka		0.168 mg/kg	0.0000168 %	,	
Ľ		205-227-0 135-98-8	_	212 µ9/kg		0.100 mg/kg	0.0000100 /0	~	
12		4-Bromofluorobenzene; 1-bromo-4-fluorobenzene		64 ua/ka		0.0506 mg/kg	0.00000506 %		
		207-300-2 460-00-4		91 µ9/N9		0.0000 mg/kg	0.00000000 //	v	
13		tert-butylbenzene		9 ua/ka		0.0071 mg/kg	0.00000712 %		
		202-632-4 98-06-6		5 µg/kg		0.0071 Ilig/kg	0.000000712 /0	×	
14	۲	carbazole		<10 ug/kg		<0.01 ma/ka	~0.000001 %		
		201-696-0 86-74-8		ς10 μg/kg		<0.01 mg/kg	<0.000001 /0		LOD
15	۲	dibenzofuran		124 ug/kg		0.0981 mg/kg	0.0000981 %		
10		205-071-3 132-64-9		124 µg/ng		0.0001 mg/kg	0.00000001 /0	×	
16		bis(2-ethylhexyl) phthalate; di-(2-ethylhexyl) phthalate; DEHP		<100 µg/kg		<0.1 mg/kg	<0.00001 %		<lod< th=""></lod<>
		607-317-00-9 204-211-0 117-81-7							
17		dibutyl phthalate; DBP		128 ua/ka		0 101 ma/ka	0.0000101 %	./	
Ľ		607-318-00-4 201-557-4 84-74-2		120 µg/kg			0.0000101 /0	~	
						Total	0.486 %		

Key

User supplied data Determinand values ignored for classification, see column 'Conc. Not Used' for reason Hazardous result Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.485%) 4-isopropyltoluene: (conc.: 3.01e-06%) sec-butylbenzene: (conc.: 0.00001%) 4-Bromofluorobenzene; 1-bromo-4-fluorobenzene: (conc.: 5.06e-06%) tert-butylbenzene: (conc.: 7.12e-07%)

Classification of sample: WS103_2.8

Sample details

Sample name:	LoW Code:	
WS103_2.8	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
2.8 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
19.9%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 19.9% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entere	ed data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	Θ	рН	1			8.14	pН		8.14	рН	8.14 pH		
	æ	arsenic { arsenic tr	ioxide }	ГП	\vdash								
2	~	033-003-00-0	215-481-4	1327-53-3		42.5	mg/kg	1.32	46.801	mg/kg	0.00468 %	\checkmark	
3	4	beryllium { <mark>berylliu</mark>	<mark>m oxide</mark> }			2.3	ma/ka	2.775	5.324	ma/ka	0.000532 %	J	
		004-003-00-8	215-133-1	1304-56-9								•	
4	boron { boric acid; [1] boric acid [2] }			29	ma/ka	5 719	13 833	ma/ka	0.00138 %	./			
		005-007-00-2	233-139-2 [1] 234-343-4 [2]	11113-50-1 [2]		2.0	mg/ng	0.110	10.000	iiig/kg	0.00100 /0	ľ	
5	4	cadmium { cadmiu	<mark>m oxide</mark> }			<0.1	ma/ka	1.142	<0.114	ma/ka	<0.0000114 %		<lod< td=""></lod<>
		048-002-00-0	215-146-2	1306-19-0			<u> </u>					Ļ	
6	4	chromium in chron	nium(III) compound	s {		304.6	ma/ka	1 462	371 301	ma/ka	0.0371 %	,	
			215-160-9	1308-38-9	-	304.0	iiig/kg	1.402	571.501	iiig/kg	0.0371 /0	V	
-	æ	copper { dicopper {	oxide; copper (I) ox	ide }				4 4 9 9	00.004				
(⁽	~	029-002-00-X	215-270-7	1317-39-1	-	98	тg/кg	1.126	92.024	mg/кg	0.0092 %	\checkmark	
8	4	lead { [●] lead com specified elsewher	pounds with the exc e in this Annex }	ception of those	1	79	mg/kg		65.888	mg/kg	0.00659 %	\checkmark	
		mercury { mercury			-							H	
9		080-010-00-X	231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	æ	nickel { nickel(II) o	kide (nickel monoxid	d <mark>e)</mark> }									
10		028-003-00-2	215-215-7 [1] 234-323-5 [2] - [3]	1313-99-1 [1] 11099-02-8 [2]		45.1	mg/kg	1.273	47.868	mg/kg	0.00479 %	~	
11	4	selenium { seleniu cadmium sulphose elsewhere in this A	n compounds with lenide and those s nnex }	the exception of pecified		3	mg/kg	1.405	3.515	mg/kg	0.000352 %	~	
		034-002-00-8											
12	4	vanadium { [●] diva pentoxide }	nadium pentaoxide	; vanadium		101	mg/kg	1.785	150.378	mg/kg	0.015 %	~	
		023-001-00-8	215-239-8	1314-62-1									
13	4	zinc { zinc sulphate 030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]	_	325	mg/kg	2.469	669.326	mg/kg	0.0669 %	\checkmark	

www.hazwasteonline.com

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
		number			Ĕ							-	
14	*	cyanides { salts c exception of comple ferricyanides and m specified elsewhere	of hydrogen cyanio ex cyanides such a ercuric oxycyanid in this Annex }	de with the as ferrocyanides, e and those		7	mg/kg	1.884	10.999	mg/kg	0.0011 %	√	
		006-007-00-5			-								
15		604-001-00-2	203-632-7	108-95-2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
16	8	TPH (C6 to C40) pe	etroleum group	TPH		1020	mg/kg		850.709	mg/kg	0.0851 %	~	
17		confirm TPH has NO	OT arisen from die	esel or petrol		Z							
<u> </u>					1								
1.0		tert-butyl methyl eth	er; MTBE;						0.000	0	0.000000.00		
18		2-methoxy-2-methyl	Ipropane	1624 04 4		<2	µg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
		bonzono	210-003-1	1034-04-4	-								
19		601-020-00-8	200-753-7	71-43-2	-	7	µg/kg		0.0058	mg/kg	0.00000584 %	\checkmark	
		toluene	200-733-7	7 1-43-2									
20		601-021-00-3	203-625-9	108-88-3		20	µg/kg		0.0167	mg/kg	0.00000167 %	\checkmark	
	_	ethylbenzene	203-023-3	100-00-3	\vdash								
21		601-023-00-4	202-849-4	100-41-4		6	µg/kg		0.005	mg/kg	0.0000005 %	\checkmark	
22		xylene 601-022-00-9 2	202-422-2 [1] 203-396-5 [2] 203-576-3 [3]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3]		27	µg/kg		0.0225	mg/kg	0.00000225 %	~	
			215-535-7 [4]	1330-20-7 [4]									
23		naphthalene				0.31	mg/kg		0.259	mg/kg	0.0000259 %	1	
		601-052-00-2	202-049-5	91-20-3								-	
24	۲	acenaphthylene				0.1	mg/kg		0.0834	mg/kg	0.00000834 %	\checkmark	
		2	205-917-1	208-96-8	-								
25	۲	acenaphthene	201 460 6	02.22.0		0.16	mg/kg		0.133	mg/kg	0.0000133 %	\checkmark	
26	8	fluorene	201-409-0	03-32-9 86 73 7		0.16	mg/kg		0.133	mg/kg	0.0000133 %	~	
<u> </u>		nhenanthrene	201-093-3	00-73-7	\vdash								
27	۲	prioriantinone	201-581-5	85-01-8		1.32	mg/kg		1.101	mg/kg	0.00011 %	\checkmark	
		anthracene		00010									
28)		204-371-1	120-12-7		0.34	mg/kg		0.284	mg/kg	0.0000284 %	\checkmark	
		fluoranthene		Ц. — [—]									
29			205-912-4	206-44-0	-	1.98	mg/kg		1.651	mg/kg	0.000165 %	\checkmark	
20		pyrene				164	malka		1 260	ma/ka	0 000137 %	,	
30		2	204-927-3	129-00-0		1.04	mg/kg		1.500	iiig/kg	0.000137 /8	~	
31		benzo[a]anthracene)			0.9	ma/ka]	0.751	ma/ka	0.0000751 %	1	
		601-033-00-9 2	200-280-6	56-55-3			5.5			5 5			
32		chrysene				0.97	mg/kg		0.809	mg/kg	0.0000809 %	\checkmark	
		601-048-00-0 2	205-923-4	218-01-9								_	
33		benzo[b]fluoranthen	le	1		1.25	mg/kg		1.043	mg/kg	0.000104 %	\checkmark	
		601-034-00-4 2	205-911-9	205-99-2	-						L		
34		benzo[k]fluoranthen		607.00.0		0.49	mg/kg		0.409	mg/kg	0.0000409 %	\checkmark	
<u> </u>			200-910-0	201-00-9	-								
35				50-32-9	-	0.97	mg/kg		0.809	mg/kg	0.0000809 %	\checkmark	
-	_	indeno[123-cd]pyrei	200-020-3	50-52-6	-								
36	9		205-893-2	193-39-5	-	0.68	mg/kg		0.567	mg/kg	0.0000567 %	\checkmark	
		dibenz[a.h]anthrace	ene		\vdash								
37		601-041-00-2	200-181-8	53-70-3	1	0.17	mg/kg		0.142	mg/kg	0.0000142 %	\checkmark	
20		benzo[ghi]perylene			\square	0.7	meller		0 504	malle	0.0000594.9/	,	
			205-883-8	191-24-2	1	0.7	під/кд		0.564	ту/ку	0.0000384 %	~	
39	۲	4-isopropyltoluene				67	ua/ka		0 0559	ma/ka	0 00000559 %		
1		2	202-796-7	99-87-6	1		19.19			59			

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound	conc.	Classification value	AC Applied	Conc. Not Used
		number			μ						~	
40	Θ	n-butylbenzene				8 µg/kg		0.0066	mg/kg	0.00000667 %	\checkmark	
			203-209-7	104-51-8								
		cumene; [1] propyl	benzene [2]									
41		601-024-00-X	202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		<3 µg/kg		<0.003	mg/kg	<0.0000003 %		<lod< td=""></lod<>
12		sec-butylbenzene				12 ug/kg		0.0108	ma/ka	0.0000108.9/		
42			205-227-0	135-98-8	1	13 µg/kg		0.0100	шу/ку	0.00000100 /8	~	
12		4-Bromofluorobenzene; 1-bromo-4-fluorobenzene				59 ug/kg		0.0484	ma/ka	0 0000484 %	,	
43			207-300-2	460-00-4	1	56 μ <u>γ</u> /κ <u>γ</u>		0.0484	шу/ку	0.00000484 /8	~	
44	1 0	tert-butylbenzene				20 ug/kg		0.0167	malka	0.0000167.9/	,	
44			202-632-4	98-06-6	1	20 µg/kg		0.0107	тту/ку	0.00000107 %	~	
45		carbazole				50		0.0447		0 00000 447 0/	,	
45			201-696-0	86-74-8		50 µg/кg		0.0417	mg/kg	0.00000417 %	\checkmark	
40		dibenzofuran				00		0.0007		0.00000007.0/	,	
40			205-071-3	132-64-9		80 µg/кg		0.0667	mg/kg	0.00000667 %	\checkmark	
47		bis(2-ethylhexyl) pl DEHP	hthalate; di-(2-ethy	lhexyl) phthalate;		<100 µg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		607-317-00-9	204-211-0	117-81-7								
10		dibutyl phthalate; [OBP			<100 µa/ka		<0.1	ma/ka	<0.00001 %		
40		607-318-00-4	201-557-4	84-74-2	1	<100 μg/kg		<0.1	<0.1 mg/kg	kg <0.00001 %		<lod< td=""></lod<>
		001010004 2010014 04142				· · · · · · · · · · · · · · · · · · ·		· .	Total:	0.234 %		

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 2; H225 "Highly flammable liquid and vapour."

Because of determinands:

benzene: (conc.: 5.84e-07%) toluene: (conc.: 1.67e-06%) ethylbenzene: (conc.: 5.0e-07%)

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.0851%) xylene: (conc.: 2.25e-06%) 4-isopropyltoluene: (conc.: 5.59e-06%) n-butylbenzene: (conc.: 6.67e-07%) sec-butylbenzene: (conc.: 1.08e-06%) 4-Bromofluorobenzene; 1-bromo-4-fluorobenzene: (conc.: 4.84e-06%) tert-butylbenzene: (conc.: 1.67e-06%)

Classification of sample: WS109_0.4

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS109_0.4	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.4 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#			Determinand		Note	User entered data	Conv.	Compound conc.	Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number		1 actor		value		USEU	
1	8	confirm TPH has N	IOT arisen from die	esel or petrol							
								Total:	0%		

Key

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS109_0.9

Sample details

Sample name:	LoW Code:	
WS109_0.9	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.9 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13.5%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 13.5% Dry Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number number	CAS Number	CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	۲	рН	PH		8.98	pН		8.98	pН	8.98 pH		
2	4	arsenic { arsenic trioxide } 033-003-00-0 215-481-4	1327-53-3		5.8	mg/kg	1.32	6.747	mg/kg	0.000675 %	\checkmark	
3	4	beryllium { beryllium oxide } 004-003-00-8 215-133-1	1304-56-9		<0.5	mg/kg	2.775	<1.388	mg/kg	<0.000139 %		<lod< td=""></lod<>
4	4	boron { boric acid; [1] boric acid [2] 005-007-00-2 233-139-2 [1] 234-343-4 [2]	} 10043-35-3 [1] 11113-50-1 [2]		0.5	mg/kg	5.719	2.519	mg/kg	0.000252 %	~	
5	4	cadmium { cadmium oxide } 048-002-00-0 215-146-2	1306-19-0	_	<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
6	4	chromium in chromium(III) compou chromium(III) oxide (worst case) }	nds {		92.5	mg/kg	1.462	119.114	mg/kg	0.0119 %	~	
7	~	copper { dicopper oxide; copper (I) 029-002-00-X 215-270-7	oxide }	-	10	mg/kg	1.126	9.92	mg/kg	0.000992 %	~	
8	4	lead { lead compounds with the specified elsewhere in this Annex }	exception of those	1	8	mg/kg		7.048	mg/kg	0.000705 %	~	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8	7487-94-7		<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4	nickel { nickel(II) oxide (nickel mon 028-003-00-2 215-215-7 [1] 234-323-5 [2] -	<pre>Display the second /pre>	_	8	mg/kg	1.273	8.97	mg/kg	0.000897 %	~	
11	4	selenium { selenium compounds w cadmium sulphoselenide and thos elsewhere in this Annex } 034-002-00-8	ith the exception of e specified	_	<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
12	4	vanadium { divanadium pentaox pentoxide } 023-001-00-8 215-239-8	ide; vanadium		24	mg/kg	1.785	37.748	mg/kg	0.00377 %	~	
13	4	zinc { zinc sulphate } 030-006-00-9 231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		59	mg/kg	2.469	128.36	mg/kg	0.0128 %	~	

www.hazwasteonline.com

HazWasteOnline[™] Report created by Euan Riddle on 03 Nov 2023

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data		User entered data		Conv. Factor	Compound conc.		. Compound conc.		Classification value	MC Applied	Conc. Not Used
14	*	cyanides { salts exception of compl ferricyanides and n specified elsewhere 006-007-00-5	of hydrogen cyani ex cyanides such nercuric oxycyanid e in this Annex }	de with the as ferrocyanides, le and those	-	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>				
15		phenol				<0.15	ma/ka		<0.15	ma/ka	<0.000015 %	\square					
13		604-001-00-2	203-632-7	108-95-2		<0.15	iiig/kg		<0.15	iiig/kg	<0.000013 /8		<lod< td=""></lod<>				
16	۲	TPH (C6 to C40) p	etroleum group	TPH		65	mg/kg		57.269	mg/kg	0.00573 %	\checkmark					
17	8	confirm TPH has N	IOT arisen from die	esel or petrol		V											
		4 4 4 4			-							H					
18		2-methoxy-2-methy	ner; MIBE; /lpropane			<2	ua/ka		<0.002	ma/ka	<0.000002 %		<lod< td=""></lod<>				
		603-181-00-X	216-653-1	1634-04-4	1		P9/19		101002				-202				
10		benzene				-0	ug/kg		-0.002	ma/ka	-0.000003.8/	\square					
19		601-020-00-8	200-753-7	71-43-2		<0	ру/ку		<0.003	mg/kg	<0.0000003 %		<lod< td=""></lod<>				
20		toluene				<3	ua/ka		<0.003	ma/ka	<0.0000003 %		<lod< td=""></lod<>				
		601-021-00-3	203-625-9	108-88-3	1		P9/19										
21	۲	ethylbenzene				<3	µg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>				
<u> </u>		601-023-00-4	202-849-4	100-41-4	-							H					
22		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>				
23		naphthalene				<0.04	ma/ka		<0.04	ma/ka	<0.000004 %		<lod< td=""></lod<>				
		601-052-00-2	202-049-5	91-20-3													
24	۵	acenaphthylene	205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>				
25		acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>				
26	8	fluorene	201 005 5	00.70.7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>				
	_	phenanthrene	201-095-5	00-73-7								$\left \right $					
27		phonananono	201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>				
20		anthracene	l	1		-0.04			-0.04		-0.000004.8/	\square					
20			204-371-1	120-12-7		<0.04	тід/кд		<0.04	тід/кд	<0.000004 %		<lod< td=""></lod<>				
29	8	fluoranthene	205-912-4	206-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>				
30	۲	pyrene			1	<0.03	ma/ka		<0.03	ma/ka	<0.000003 %	Π					
Ľ			204-927-3	129-00-0	1		iiig/iig					\square	.200				
31		benzo[a]anthracen	e			<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>				
		601-033-00-9	200-280-6	56-55-3								\square					
32		chrysene	005 000 4	010.01.0		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>				
		bonzo[b]fluorantho	205-923-4	218-01-9								\vdash					
33		601-034-00-4	205-011-0	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>				
		benzo[k]fluoranthe	ne		\square						0.0000000	H					
34		601-036-00-5	205-916-6	207-08-9	1	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>				
35		benzo[a]pyrene; be	enzo[def]chrysene	÷		<0.04	ma/ka		<0.04	ma/ka	~0.000004 %	\square					
		601-032-00-3	200-028-5	50-32-8			ing/kg			ing/itg			.200				
36	8	indeno[123-cd]pyrene			<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>					
<u> </u>		19	205-893-2	193-39-5	-							H					
37		openz[a,njanthrac	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>				
		benzo[ahi]pervlene	<u></u>	0-10-0	-							\vdash					
38	9		205-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>				
39		4-isopropyltoluene	202-796-7	99-87-6		<4	µg/kg		<0.004	mg/kg	<0.0000004 %		<lod< td=""></lod<>				

_	_				_								
#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User ente	ered data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
40	•	n-butylbenzene	boo 000 7	404.54.0		<4	µg/kg		<0.004	mg/kg	<0.0000004 %		<lod< th=""></lod<>
	_		203-209-7	104-51-8									
		cumene; [1] propylbenzene [2]											
41		601-024-00-X	202-704-5 [1] 203-132-9 [2]	98-82-8 [1] 103-65-1 [2]		<3	µg/kg		<0.003	mg/kg	<0.000003 %		<lod< td=""></lod<>
40		sec-butylbenzene				-4			-0.004	~~~//ca	-0.0000004.0/		
42			205-227-0	135-98-8		<4	µg/кg		<0.004	тід/кд	<0.000004 %		<lod< td=""></lod<>
		4-Bromofluoroben;	zene: 1-bromo-4-fl	uorobenzene									
43	-		207-300-2	460-00-4	-	91	µg/kg		0.0802	mg/kg	0.00000802 %	\checkmark	
	-	tert-hutvlbenzene	207 000 2	100 00 1									
44	ا	202-632-4 98-06-6			-	<5	µg/kg		<0.005	mg/kg	<0.000005 %		<lod< td=""></lod<>
	-		202-032-4	90-00-0	-								
45	•	carbazole				<10	µg/kg		<0.01	mg/kg	<0.000001 %		<lod< td=""></lod<>
			201-696-0	86-74-8									
46	۲	dibenzofuran				12	ua/ka		0.0106	ma/ka	0.00000106 %	./	
			205-071-3	132-64-9			-55					*	
47		bis(2-ethylhexyl) pl DEHP	hthalate; di-(2-ethy	/lhexyl) phthalate;		<100	µg/kg		<0.1	mg/kg	<0.00001 %		<lod< th=""></lod<>
		607-317-00-9	204-211-0	117-81-7									
10		dibutyl phthalate; [OBP			~100	ua/ka		-0.1	ma/ka	<0.00001.9/		
40		607-318-00-4	201-557-4	84-74-2		<100	µg/kg		<0.1	ing/kg	<0.00001 %		LOD
								Total:	0.0383 %	Γ			

Key

	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deterninand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP. Note 1	Only the metal concentration has been used for classification

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i): Flammable "flammable liquid waste: liquid waste having a flash point below 60°C or waste gas oil, diesel and light heating oils having a flash point > 55°C and <= 75°C"

Force this Hazardous property to non hazardous because Unlikely to be flammable beneath this concentration

Hazard Statements hit:

Flam. Liq. 3; H226 "Flammable liquid and vapour."

Because of determinands:

TPH (C6 to C40) petroleum group: (conc.: 0.00573%)

4-Bromofluorobenzene; 1-bromo-4-fluorobenzene: (conc.: 8.02e-06%)

Classification of sample: WS108_0.3

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS108_0.3	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.3 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
4.5%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 4.5% Dry Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data		User entered data		Conv. Factor	Compound conc.		Compound conc.		Classification value	MC Applied	Conc. Not Used
1	8	рН				9.57 pH			9.57	pН	9.57 pH						
2	0	confirm TPH has N	NOT arisen from die	esel or petrol													
3		tert-butyl methyl et 2-methoxy-2-methy 603-181-00-X	her; MTBE; ylpropane	1634-04-4		<5 µg/k	g		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>				
4		benzene 601-020-00-8	200-753-7	71-43-2		<5 µg/k	g		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>				
5		toluene 601-021-00-3	203-625-9	108-88-3		<5 µg/k	g		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>				
6	8	ethylbenzene 601-023-00-4	202-849-4	100-41-4		<5 µg/k	g		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>				
7		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5 µg/k	g		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>				
8		naphthalene	202-049-5	91-20-3		<0.04 mg/ł	g		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>				
9	0	acenaphthylene	205-917-1	208-96-8		0.07 mg/ł	g		0.067	mg/kg	0.0000067 %	~					
10	8	acenaphthene	201-469-6	83-32-9		<0.05 mg/ł	g		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>				
11	8	fluorene	201-695-5	86-73-7		<0.04 mg/ł	g		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>				
12	8	phenanthrene	201-581-5	85-01-8		0.13 mg/ł	g		0.124	mg/kg	0.0000124 %	\checkmark					
13	0	anthracene	204-371-1	120-12-7		0.08 mg/ł	g		0.0766	mg/kg	0.00000766 %	\checkmark					
14	0	fluoranthene	205-912-4	206-44-0		1.3 mg/ł	g		1.244	mg/kg	0.000124 %	\checkmark					
15	0	pyrene	204-927-3	129-00-0		1.23 mg/ł	g		1.177	mg/kg	0.000118 %	\checkmark					

#			Determinand	1	Note	User entered data	Conv. Factor	Conv. Factor Compound conc.		Classification value	Applied	Conc. Not Used
		EU CLP index number	EC Number	CAS Number	CLF						MC	
16		benzo[a]anthracen	e			0.93 ma/ka		0.89	ma/ka	0 000089 %	./	
		601-033-00-9	200-280-6	56-55-3		0.00 mg/kg		0.00	iiig/itg	0.000000 /0	~	
17		chrysene				0.95 ma/ka		0 909	ma/ka	0 0000909 %		
		601-048-00-0	205-923-4	218-01-9		0.00 mg/kg		0.000	iiig/kg	0.0000000 /0	~	
18		benzo[b]fluoranthe	ne			1.21 mg/kg		1.158	mg/kg	0.000116 %	1	
		601-034-00-4	205-911-9	205-99-2					5.5		•	
19		benzo[k]fluoranthe	ne			0.47 mg/kg		0.45	mg/kg	0.000045 %	\checkmark	
		601-036-00-5	205-916-6	207-08-9								
20		benzo[a]pyrene; be	enzo[def]chrysene			0.82 mg/kg		0.785	mg/kg	0.0000785 %	\checkmark	
		601-032-00-3 200-028-5 50-32-8										
21	0	indeno[123-cd]pyrene				0.59 ma/ka		0.565	ma/ka	0.0000565 %	1	
_			205-893-2	193-39-5							Ň	
22		dibenz[a,h]anthrac	ene			0.16 ma/ka		0 153	ma/ka	0 0000153 %	./	
		601-041-00-2	200-181-8	53-70-3		o.ro mg/kg		0.100	iiig/itg	0.0000100 /0	`	
23	8	benzo[ghi]perylene	e			0.56 mg/kg		0.536	mg/kg	0.0000536 %	1	
			205-883-8	191-24-2					0 0		•	
24	0	coronene				0.09 ma/ka		0.0861	ma/ka	0.0000861 %	./	
			205-881-7	191-07-1		0.00 mg/kg		0.0001	iiig/itg	0.0000001 /0	~	
25		polychlorobiphenyl	ls; PCB			<35 ug/kg		<0.035	ma/ka	~0.000035 %		
		602-039-00-4	215-648-1	1336-36-3		~~~ µg/kg		<0.000	ing/kg	CO.0000000 //		LOD
									Total:	0.00084 %		

Key

.

Determinand values ignored for classification, see column 'Conc. Not Used' for reason

Determinand defined or amended by HazWasteOnline (see Appendix A)

<LOD Below limit of detection

User supplied data

Classification of sample: WS108_3.4

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

Sample name:	LoW Code:	
WS108_3.4	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
3.4 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
13%		
(dry weight correction)		

Hazard properties

None identified

Determinands

Moisture content: 13% Dry Weight Moisture Correction applied (MC)

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data		Conv. Factor Compound conc.		Classification value	MC Applied	Conc. Not Used	
1	8	pH				6.92	pН		6.92	рН	6.92 pH		
				РН	-								
2	4	arsenic { arsenic tr	<pre>ioxide }</pre>	4007 50 0		5.7	mg/kg	1.32	6.66	mg/kg	0.000666 %	\checkmark	
	-	033-003-00-0	215-481-4	1327-53-3									
3	44	beryllium { berylliu	m oxide }	1204 56 0	-	1.5	mg/kg	2.775	3.684	mg/kg	0.000368 %	\checkmark	
	-	004-003-00-8	215-133-1	1304-56-9									
4	44	DOFON { DOFIC ACID;	[1] DOFIC ACID [2] }	40042 25 2 [4]	-	0.3	ma/ka	5 719	1 518	ma/ka	0 000152 %	1	
		005-007-00-2	233-139-2 [1] 234-343-4 [2]	11113-50-1 [2]		0.0		0.1.10			0.000102 /0	ľ	
5	æ	cadmium {	<mark>m oxide</mark> }	• •		-01	ma/ka	1 1/2	~0 11/	ma/ka	<0.0000114.%		
J		048-002-00-0	215-146-2	1306-19-0		NO.1	iiig/kg	1.142	NO.114	iiig/kg	<0.0000114 /8		
	4	chromium in chrom	nium(III) compound	s {									
6		chromium(III) oxide	e (worst case) }			42	mg/kg	1.462	54.323	mg/kg	0.00543 %	\checkmark	
			215-160-9	1308-38-9									
7	7 Copper { dicopper oxide		oxide; copper (I) ox	ide }		35	ma/ka	1.126	34.873	ma/ka	0.00349 %	1	
		029-002-00-X	215-270-7	1317-39-1			5.5					Ľ	
8	~	lead { [●] lead com specified elsewher	pounds with the exe e in this Annex }	ception of those	1	16	mg/kg		14.159	mg/kg	0.00142 %	\checkmark	
		082-001-00-6			<u> </u>								
9	4	mercury { mercury	dichloride }			<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
	_	080-010-00-X	231-299-8	7487-94-7									
	4	nickel { nickel(II) ov	kide (nickel monoxie	de) }									
10		028-003-00-2	215-215-7 [1]	1313-99-1 [1]		62.9	mg/kg	1.273	70.837	mg/kg	0.00708 %	\checkmark	
			234-323-3 [2] - [3]	34492-97-2 [3]									
	æ	selenium { seleniu	m compounds with	the exception of									
11		cadmium sulphose	elenide and those s	pecified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
		034-002-00-8	(intex)		-								
		034-002-00-8			\vdash								
12	44	vanadium { " diva pentoxide }	nadium pentaoxide	; vanadium		31	mg/kg	1.785	48.974	mg/kg	0.0049 %	\checkmark	
		023-001-00-8	215-239-8	1314-62-1	1								
	Image: state of the state o												
13		030-006-00-9	231-793-3 [1] 231-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]	1	99	mg/kg	2.469	216.337	mg/kg	0.0216 %	\checkmark	

#		EU CLP index	Determinand EC Number	CAS Number	CLP Note	User entered data		Conv. Factor	Compound conc.		, Compound conc.		Classification value	MC Applied	Conc. Not Used
14	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyan lex cyanides such nercuric oxycyania e in this Annex }	ide with the as ferrocyanides, de and those	-	<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>		
15		phenol 604-001-00-2	203-632-7	108-95-2		<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>		
16	٥	TPH (C6 to C40) p	petroleum group	ТРН		<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>		
17	0	confirm TPH has N	NOT arisen from di	iesel or petrol											
		tert-butyl methyl et	her; MTBE;												
18	2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4			<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>				
19		benzene	000 750 7	54.40.0		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>		
20		toluene	200-753-7	71-43-2		~5			<0.005	ma/ka	<0.000005 %				
20		601-021-00-3 ethylbenzene	203-625-9	108-88-3	-								~LOD		
21		601-023-00-4	202-849-4	100-41-4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>		
22		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>		
23		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>		
24	0	acenaphthylene	bos 047.4			<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>		
25		acenaphthene	205-917-1	208-96-8		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>		
26	0	fluorene	201-469-6	83-32-9		<0.04			<0.04	ma/ka	<0.000004.%	-			
20		phenanthrene	201-695-5	86-73-7	-				<0.04						
27			201-581-5	85-01-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>		
28	•	anthracene	204-371-1	120-12-7	-	<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>		
29		fluoranthene	bos 040 4	boo 44.0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>		
30	0	pyrene	205-912-4	206-44-0		<0.03	ma/ka		<0.03	ma/ka	<0.000003 %		<lod< td=""></lod<>		
		benzo[a]anthracen	204-927-3 e	129-00-0	-						0.000000				
31		601-033-00-9	200-280-6	56-55-3		<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>		
32		cnrysene 601-048-00-0	205-923-4	218-01-9		<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>		
33		benzo[b]fluoranthe	ne 205-911-9	205-99-2		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>		
34		benzo[k]fluoranthe	ne			<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>		
35		601-036-00-5 benzo[a]pyrene; be	1205-916-6 enzo[def]chrysene	207-08-9	$\left \right $	~0.04	ma/ka		<0.04	ma/ka					
	_	601-032-00-3 200-028-5 50-32-8		1				<0.0 4	iiig/kg			~200			
36			205-893-2	193-39-5		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>		
37		dibenz[a,h]anthrac 601-041-00-2	ene 200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>		
38	0	benzo[ghi]perylene	e	101-24.2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>		
		205-883-8 191-24-2								Total:	0.0493 %	\vdash			

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Classification of sample: WS110_3.4

Sample details

Sample name:	LoW Code:	
WS110_3.4	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.3 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
		03)

Hazard properties

None identified

Determinands

Moisture content: 0% Dry Weight Moisture Correction applied (MC)

#		Determinand			Note	User entered data	Conv.	Compound conc.	Classification	۲ Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLP	Facil	1 40101		Value		USEU
1	8	confirm TPH has N	IOT arisen from die	sel or petrol							
		·	·	·				Total:	0%		

Key

0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

Classification of sample: WS110_2.7

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code:	
Chapter:	17: Construction and Demolition Wastes (including excavated soil
	from contaminated sites)
Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
	03)
	LoW Code: Chapter: Entry:

Hazard properties

None identified

Determinands

Moisture content: 8.2% Dry Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number			CLP Note	User entere	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	рН		PH		6.86	рН		6.86	рН	6.86 pH		
2	4	arsenic { arsenic triox	<mark>xide</mark> } 15-481-4	1327-53-3		13.5	mg/kg	1.32	16.474	mg/kg	0.00165 %	\checkmark	
3	4	beryllium { beryllium 004-003-00-8 21	<mark>oxide</mark> } 15-133-1	1304-56-9		1.2	mg/kg	2.775	3.078	mg/kg	0.000308 %	\checkmark	
4	4	boron { boric acid; [1] 005-007-00-2 23 23] boric acid [2] } 33-139-2 [1] 34-343-4 [2]	10043-35-3 [1] 11113-50-1 [2]		0.2	mg/kg	5.719	1.057	mg/kg	0.000106 %	~	
5	4	cadmium { cadmium 048-002-00-0 21	<mark>oxide</mark> } 15-146-2	1306-19-0		<0.1	mg/kg	1.142	<0.114	mg/kg	<0.0000114 %		<lod< td=""></lod<>
6	4	chromium in chromiu chromium(III) oxide (1 21	im(III) compounds worst case) 15-160-9	\${ [•] 1308-38-9		41.1	mg/kg	1.462	55.518	mg/kg	0.00555 %	~	
7	4	Copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1				29	mg/kg	1.126	30.176	mg/kg	0.00302 %	\checkmark	
8	4	Lead { lead compounds with the exception of those specified elsewhere in this Annex }			1	13	mg/kg		12.015	mg/kg	0.0012 %	~	
9	4	@ mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7				<0.1	mg/kg	1.353	<0.135	mg/kg	<0.0000135 %		<lod< td=""></lod<>
10	4	nickel { nickel(II) oxid 028-003-00-2 21 23	<mark>e (nickel monoxid</mark> 15-215-7 [1] 34-323-5 [2] - [3]	<mark>le)</mark> } 1313-99-1 [1] 11099-02-8 [2] 34492-97-2 [3]		60	mg/kg	1.273	70.569	mg/kg	0.00706 %	~	
11	4	selenium { selenium { cadmium sulphoseler elsewhere in this Ann 034-002-00-8	compounds with t nide and those sp nex }	the exception of becified		<1	mg/kg	1.405	<1.405	mg/kg	<0.000141 %		<lod< td=""></lod<>
12	4	vanadium { ^a divana pentoxide } 023-001-00-8 21	adium pentaoxide;	; vanadium		27	mg/kg	1.785	44.547	mg/kg	0.00445 %	~	
13	4	zinc { <mark>zinc sulphate</mark> } 030-006-00-9 23 23	31-793-3 [1] 31-793-3 [2]	7446-19-7 [1] 7733-02-0 [2]		100	mg/kg	2.469	228.216	mg/kg	0.0228 %	~	

Page 96 of 102

#		Determinand EU CLP index EC Number CAS Number		CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	AC Applied	Conc. Not Used	
14	4	cyanides { salts exception of comp ferricyanides and r specified elsewher	of hydrogen cyan lex cyanides such nercuric oxycyanid e in this Annex }	ide with the as ferrocyanides, de and those		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %	~	<lod< td=""></lod<>
15		phenol				<0.15	mg/kg		<0.15	mg/kg	<0.000015 %		<lod< td=""></lod<>
16	0	TPH (C6 to C40) p	etroleum group			<38	mg/kg		<38	mg/kg	<0.0038 %		<lod< td=""></lod<>
17		confirm TPH has N	IOT arisen from d	lesel or petrol									
		tert-butyl methyl et	her; MTBE;										
18		2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4				<5 µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>	
19		benzene 601-020-00-8	200-753-7	71-43-2		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
20		toluene 601-021-00-3	203-625-9	108-88-3		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
21	9	ethylbenzene	boo 840 4	100 41 4		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
22		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<5	µg/kg		<0.005	mg/kg	<0.0000005 %		<lod< td=""></lod<>
23		naphthalene 601-052-00-2	202-049-5	91-20-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
24	۵	acenaphthylene	205-917-1	208-96-8		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
25	٥	acenaphthene	201-469-6	83-32-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
26	٥	fluorene	b01 605 5	R6 73 7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
27		phenanthrene	b01 591 5	PE 01 9		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
28		anthracene	bo4 274 4	400.40.7		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
29	0	fluoranthene	204-371-1	hac 44.0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
30	0	pyrene	kub-y12-4	×00-44-0		<0.03	mg/kg		<0.03	mg/kg	<0.000003 %		<lod< td=""></lod<>
31		benzo[a]anthracen	⊭04-9∠7-3 e	123-00-0	╞	<0.06	mg/kg		<0.06	mg/kg	<0.000006 %		<lod< td=""></lod<>
32		ou1-033-00-9 chrysene	knn-580-6	pp-55-3	$\left \right $	<0.02	mg/kg		<0.02	mg/kg	<0.000002 %		<lod< td=""></lod<>
33		601-048-00-0 benzo[b]fluoranthe	PU5-923-4	¥18-01-9		<0.05	mg/kg		<0.05	mg/kg	<0.000005 %		<lod< td=""></lod<>
34		601-034-00-4 benzo[k]fluoranthe	205-911-9 ne	205-99-2		<0.02	ma/ka		<0.02	ma/ka	<0.00002 %	\square	<lod< td=""></lod<>
25		601-036-00-5 benzo[a]pyrene; be	205-916-6 enzo[def]chrysene	207-08-9	-	<0.04	malka		<0.04	ma/ka		\square	
	0	601-032-00-3 indeno[123-cd]pyre	200-028-5 ene	50-32-8	1	.0.04	mg/kg		.0.04		-0.000004 //		
36		dibenz[a b]optbroo	205-893-2	193-39-5	-	<0.04	тд/кд		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
37		601-041-00-2	200-181-8	53-70-3		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
38	•	benzo[ghi]perylene	e 205-883-8	191-24-2		<0.04	mg/kg		<0.04	mg/kg	<0.000004 %		<lod< td=""></lod<>
	_							_		Total:	0.0503 %		

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
CLP: Note 1	Only the metal concentration has been used for classification

Appendix A: Classifier defined and non GB MCL determinands

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

^e confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350 (HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)
 GB MCL index number: 601-023-00-4
 Description/Comments:
 Additional Hazard Statement(s): Carc. 2; H351
 Reason for additional Hazards Statement(s):
 20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

• acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

^a anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Iluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

[•] pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

^a indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Carc. 2; H351

benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)

Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015 Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 23 Jul 2015 Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410

^o coronene (EC Number: 205-881-7, CAS Number: 191-07-1)

Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC - Group 3, not carcinogenic.

Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true&lang=en Data source date: 16 Jun 2014 Hazard Statements: STOT SE 2; H371

polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)

GB MCL index number: 602-039-00-4

Description/Comments: Worst Case: IARC considers PCB Group 1: Carcinogenic to humans:

POP specific threshold from ATP1 (Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in European standards EN 12766-1 and EN 12766-2 shall be applied. Additional Hazard Statement(s): Carc. 1A; H350

Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012

chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database

Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015

Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Iead compounds with the exception of those specified elsewhere in this Annex

GB MCL index number: 082-001-00-6

Description/Comments: Least-worst case: IARC considers lead compounds Group 2A; Probably carcinogenic to humans; Lead REACH Consortium, following MCL protocols, considers many simple lead compounds to be Carcinogenic category 2 Additional Hazard Statement(s): Carc. 2; H351

Reason for additional Hazards Statement(s):

20 Nov 2021 - Carc. 2; H351 hazard statement sourced from: IARC Group 2A (Sup 7, 87) 2006; Lead REACH Consortium www.reach-lead.eu/substanceinformation.html. Review date 29/09/2015

e divanadium pentaoxide; vanadium pentoxide (EC Number: 215-239-8, CAS Number: 1314-62-1)

GB MCL index number: 023-001-00-8

Description/Comments: Hazard statements H301, H330, H350 added by HazWasteOnline due to ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be Carc. 1B; H350. The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

Additional Hazard Statement(s): Carc. 1B; H350 , Acute Tox. 3; H301 , Acute Tox. 2; H330

Reason for additional Hazards Statement(s):

20 Sep 2022 - Carc. 1B; H350 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be Carc. 1B; H350. The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

28 Sep 2022 - Acute Tox. 3; H301 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be "Acute tox 3; H301". The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

28 Sep 2022 - Acute Tox. 2; H330 hazard statement sourced from: ATP 18 (Regulation (EU) 2022/692) considers vanadium pentoxide to be "Acute tox 2; H330". The GB MCL Agency has reached the same opinion [but is yet to formerly make this change to the MCL List]. Substance has therefore been self-classified.

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

GB MCL index number: 006-007-00-5

Description/Comments: Conversion factor based on a worst case compound: sodium cyanide

Additional Hazard Statement(s): EUH032 >= 0.2 %

Reason for additional Hazards Statement(s):

20 Nov 2021 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013

Data source: WM3 1st Edition 2015

Data source date: 25 May 2015

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , STOT RE 2; H373 , Muta. 1B; H340 , Carc. 1B; H350 , Repr. 2; H361d , Aquatic Chronic 2; H411

• 4-isopropyltoluene (EC Number: 202-796-7, CAS Number: 99-87-6)

Description/Comments: VOC; Data from C&L Inventory Database

Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017

Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Chronic 2; H411

• n-butylbenzene (EC Number: 203-209-7, CAS Number: 104-51-8)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Flam. Lig. 3; H226, Skin Irrit. 2; H315, Eye Irrit. 2; H319, Aquatic Acute 1; H400, Aquatic Chronic 1; H410

• sec-butylbenzene (EC Number: 205-227-0, CAS Number: 135-98-8)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Flam. Liq. 3; H226 , Asp. Tox. 1; H304 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , Aquatic Chronic 2; H411

• 4-Bromofluorobenzene; 1-bromo-4-fluorobenzene (EC Number: 207-300-2, CAS Number: 460-00-4)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Flam. Liq. 3; H226 , Acute Tox. 4; H302 , Acute Tox. 4; H312 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , Acute Tox. 4; H332 , STOT SE 3; H335 , STOT SE 3; H336

• tert-butylbenzene (EC Number: 202-632-4, CAS Number: 98-06-6)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Flam. Liq. 3; H226 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , Acute Tox. 3; H331 , Acute Tox. 4; H332 , STOT SE 3; H335 , Asp. Tox. 1; H304 , Aquatic Chronic 2; H411

• carbazole (EC Number: 201-696-0, CAS Number: 86-74-8)

Description/Comments: VOC; Data from C&L Inventory Database; IARC considers substance Group 2B; Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H302 , Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Muta. 2; H341 , Carc. 2; H351 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Acute Tox. 3; H331 , Acute Tox. 3; H311 , Acute Tox. 3; H301

^e dibenzofuran (EC Number: 205-071-3, CAS Number: 132-64-9)

Description/Comments: VOC; Data from C&L Inventory Database Data source: https://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 02 Mar 2017 Hazard Statements: Acute Tox. 4; H302, Acute Tox. 4; H312, Acute Tox. 4; H332, Aquatic Chronic 2; H411

Appendix B: Rationale for selection of metal species

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds.

beryllium {beryllium oxide}

Reasonable case CLP species based on hazard statements/molecular weight. Industrial sources include: most common (non alloy) form, used in ceramics.

boron {boric acid; [1] boric acid [2]}

Most common species found in the environment.

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides. Worst case

compounds in CLP: cadmium sulphate, chloride, fluoride & iodide not expected as either very soluble and/or compound's industrial usage not related to site history.

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass.

chromium in chromium(VI) compounds {chromium(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight. Industrial sources include: production stainless steel, electroplating, wood preservation, anti-corrosion agents or coatings, pigments.

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide. Worse case copper sulphate is very soluble and likely to have been leached away if ever present and/or not enough soluble sulphate detected.

lead {lead compounds with the exception of those specified elsewhere in this Annex}

Most applicable species.

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight.

nickel {nickel(II) oxide (nickel monoxide)}

Most common nickel species.

selenium {selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case. Pigment cadmium sulphoselenide not likely to be present in this soil. No evidence for the other CLP entries: sodium selenite, nickel II selenite and nickel selenide, to be present in this soil.

vanadium {divanadium pentaoxide; vanadium pentoxide}

Only vanadium species available.

zinc {zinc sulphate}

Most common zinc species.

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide].

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.2.GB - Oct 2021 HazWasteOnline Classification Engine Version: 2023.306.5795.10723 (02 Nov 2023) HazWasteOnline Database: 2023.306.5795.10723 (02 Nov 2023)

This classification utilises the following guidance and legislation: WM3 v1.2.GB - Waste Classification - 1st Edition v1.2.GB - Oct 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 GB MCL List - version 1.1 of 09 June 2021