Pell Frischmann	Project	47a NORTH R	Job no. AB/10201			
	Calcs for LEWIS WILLETTS				Start page no./Revision 1 A	
	Calcs by AB	Calcs date 24/01/2024	Checked by DC	Checked date 11/01/2024	Approved by DC	Approved date 11/01/2024

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Support A

Support B

Applied loading

Beam loads

Load combinations

Vertically restrained Rotationally free Vertically restrained Rotationally free

Permanent self weight of beam × 1 FLOOR - Permanent full UDL 4 kN/m ROOF - Permanent full UDL 4 kN/m

Support A

Support B

Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50

TEDDS calculation version 3.0.14

Tekla Tedds	Project 47a NORTH ROAD - BEAM A				Job no. AB/10201		
Pell Frischmann	Calcs for				Start page no./I		
		LEWIS	WILLETTS	1	2 A		
	Calcs by AB	Calcs date 24/01/2024	Checked by DC	Checked date 11/01/2024	Approved by DC	Approved dat 11/01/202	
Analysis results							
Maximum moment		$M_{max} = 35.4$		$M_{min} = 0$			
Maximum shear		V _{max} = 28 k		V _{min} = -28 kN			
Deflection		$\delta_{max} = 0 mr$		$\delta_{\min} = 0 \text{ mm}$			
Maximum reaction at support A		R _{A_max} = 28		R _{A_min} =	₌ 28 kN		
Unfactored permanent load real	ction at support			D	20 [/N]		
Maximum reaction at support B Unfactored permanent load rea	otion at support	R _{B_max} = 28 B R _{B_Permanent}		R _{B_min} =	= 20 KIN		
	clion at support	D N B_Permanent	= 20.0 KN				
Section details							
Section type			52x23 (BS4-1)				
Steel grade EN 10025-2:2004 - Hot rolled	araducte of et-	S275 uctural steels					
Nominal thickness of element			t _w) = 6.8 mm				
Nominal yield strength		f _y = 275 N/	•				
Nominal ultimate tensile streng	h	f _u = 410 N/					
Modulus of elasticity		E = 21000					
	\uparrow $\stackrel{\bullet}{\uparrow}$ $\stackrel{\bullet}{\uparrow}$ $\stackrel{\bullet}{\frown}$		_				
	т						
	- 152.4	-> <	5.8				
	αį						
	©. .0 .0 .0						
	▼ ↑			_			
	◀───	152.2-		→			
Partial factors - Section 6.1 Resistance of cross-sections		. 100					
	bility	$\gamma_{\rm M0}=1.00$					
Resistance of members to instability Resistance of tensile members to fracture		$\gamma_{M1} = 1.00$					
Lateral restraint	to tracture	γ _{M2} = 1.10					
		Span 1 has	s full lateral rest	raint			
Effective length factors							
Effective length factor in major axis		K _y = 1.000					
Effective length factor in minor axis Effective length factor for torsion		K _z = 1.000					
		K _{LT.A} = 1.00					
		K _{LT.B} = 1.00	00				
Classification of cross sectio	ns - Section 5.	-	J/mm² / f _y] = 0.9	2			

Tekla Tedds Pell Frischmann	Project	Job no. AB/10201							
	Calcs for	Calcs for							
		Start page no./Revision 3 A							
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved da			
	AB	24/01/2024	DC	11/01/2024	DC	11/01/20			
		line Table 5.0 (
Internal compression parts : Width of section	subject to bene	c = d = 12 3							
			×ε<=72×ε	Class 1					
Outstand flanges - Table 5.2	(sheet 2 of 3)								
Width of section	c = (b - t_w - 2 × r) / 2 = 65.6 mm								
		$c = (b + w + 2 \times t)/2 = 00.0$ mm $c / t_f = 10.4 \times \varepsilon <= 14 \times \varepsilon$ Class 3			1				
						tion is clas			
Check shear - Section 6.2.6									
Height of web		h _w = h - 2 ×	: t _f = 138.8 mm						
Shear area factor		η = 1.000							
		h _w / t _w < 72	×ε/η						
				Shear buckling	resistance c	an be igno			
Design shear force		$V_{Ed} = max($	$V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 28 \text{ kN}$						
Shear area - cl 6.2.6(3)		$A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \ \eta \times h_w \times t_w) = \textbf{997} \ mm^2$							
Design shear resistance - cl 6.2.6(2)		$V_{pl,Rd} = A_v \times (f_y / \sqrt{[3]}) / \gamma_{M0} = 158.4 \text{ kN}$							
		PAS	S - Design she	ear resistance e	xceeds desig	gn shear fo			
Check bending moment maj	or (y-y) axis - S	Section 6.2.5							
Design bending moment		$M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = \textbf{35.4 kNm}$							
Design bending resistance mo	oment - eq 6.14	$M_{c,Rd} = M_{el,l}$	$Rd = W_{el.y} \times f_y / \gamma$	_{M0} = 45.1 kNm					
	PAS	S - Design bendi	ng resistance i	moment exceed	ls design ber	nding mom			
Check vertical deflection - S	ection 7.2.1								
Consider deflection due to var	iable loads								
Limiting deflection		$\delta_{\text{lim}} = L_{s1} \ / \ 3$	860 = 14 mm						
Maximum deflection span 1		$\delta = max(abs(\delta_{max}), abs(\delta_{min})) = 0 mm$							
		PASS - Maximum deflection does r			not avagad a				