											Enq No	sheet 1		
Client		Mr & Mr	Shelbourne											
Address		5 Frickley	/ Bridge Lane,	Brierley, E	Barnsley, South Yo	irks								
Capacity	calculations for	traditiona	I soakaways											
Design cr	iteria	Design to	the Building	Regulation	ns 2002 Approved	l Document H par	t H2							
Trial pit	Day	Recorded	d position		Samle pit size in	mm	Invert depth	Date		Time	Time in secs			
T 4		front of o	welling plan 2	24/012	200 200 200		400	24/6/2024		0.00	1000	24hr		
11 T1	2				300 x 300 x 300		400	21/6/2024		9:30 am	82800			
T1	3				300 x 300 x 300		400	23/6/2024		9.30 AM	86400			
								-,-, -						
											57000	Average		
Volume e	equation	I - O = S	Where	1=	Inflow from the i	mpermiable area	drained to the s	oakaway						
				0 = s _	The outflow infil	trating into the so	al during raintall	tomporalny	wtflow					
				3 -	The required sto	rage in the soakav	way to balance a	i temporany c	Juliiow					
Inflow to	soakawav	I = A x R		A =	Impermiable are	a drained into the	soakawav							
	· · · · · ,			R =	Total rainfall from	n approved docun	nent H (building	regulations)						
Outflow	of soakaway	O = a x s	x 50 x f x D	O =	The outflow infil	trating into the so	il during rainfall							
				as50 =	The internal surf	ace of the soakaw	ay to 50% effect	tive depth exc	luding bas	se				
				f =	Soil infiltration ra	ate								
				D =	Storm duration									
÷													L	
iotal imp	ermiable area to	o be drain	ed	r1 =	кооt area in sq n	netres	tab				89	sq metre	S	
				CT =	roor constant	w ۲.15 degree pi	Effective roof a	rea drained			1.15	C1	c .	
							Enective roof a	rea uraineu			102.35	sy metre	3	
Total tim	e taken for wate	r dispersa	l through grou	und from a	average recorded	times taken in fie	ld test (Trial nit '	T1) where the	dispersal	rate				
is calcula	ted based on an	dispersio	n of 75% to 2	5% of the	water within test	pit. IE 150mm rur	n off	, micre uit	. aloperadi					
									Dispersio	n rate	57000	sec	average	
									run off in	mm	150	mm	half depth	
Water di	spersion vp requ	ired there	efore								380	vp		
Filtration	rate	f = 0.01/2	2vp		0.01	2	137				760	f		
											0.00001315789	outflow	/ol	
0.10		~	50 (0			0.000010157004					0.00040457004	0 10		
Outflow	volume	O = a x s	x 50 x f x D		2	0.000013157894	. 5				0.00013157894	O=outrio	W VOI	
Area drai	ned v rainfall of	10mm			102.35	10	1023 5	/1000	storage c	anacity	1 0235	cubic me	tros	
Aicu ului		1011111			102.55	10	1025.5	,1000	Storage e	apacity	1.0255	cubic me		
Therefor	e storage capaci	ty minus t	he outflow vo	lume =	1.0235	0.000013157894					1.023486842	storage v	olume 1	
Soakawa	y dimensions in	metres ta	ken below inv	ert	2.5	metres	Length							
					1	metres	Width							
					1.2	metres	Depth							
									Soakawa	/ volume	3	cubic me	tres	
Th				- :	f	1	2	75	100		2.25		-1	
Therefore	e consider fill ma	aterial cor	itaining 75% v	olds there	erore soakaway vo	nume x 75%	3	/5	100		2.25	storage v	olume z	
Therefor	a using a recerve	factor of	1 5 · 1 storag	a volume	2 to be increased		2 25	15			3 375	cubic me	tros	
mereion	e using a reserve		1.5 . 1 310186	e volume :	z to be increased		2.25	1.5			5.575	cubic me	ues -	
Therefor	e storage volum	e 2	3.375	is greater	than storage vol	ume 1	1.023486842	Therefore de	esigned so	akaway is ok		cubic me	tres	
Therfore	by calculation 1	No soaka	away	2.5	metres long by	1	metre wide by	1.2	metre de	ep is ok for th	e area drained			
Note und	ler the building	regulatior	is the maximu	m area dr	ained should be r	to more than 25sc	quare metres . P	er soakaway j	oit howeve	er by calculation	on the			
designed	enlarged pit dir	nensions	aemonstrates	the capac	ity of the soakaw	ay to meet the cu	rrent building re	gulations.						
Typical 1	m3 nlovnine intr	rlocking	rate system v	/ill drain o	n annrovimate ar	ea of 50m2 Indivi	idual crates 100	0 Long 500 \//	ide v 400	Deen				
. , picai 1				arain a	approximate di	22 0. 30m2. mulv								
											Sheet	1		
											Sheet			