| Pell Frischmann | Project        | 47a NORTH R              | Job no.<br>AB/10201            |                         |                   |
|-----------------|----------------|--------------------------|--------------------------------|-------------------------|-------------------|
|                 | Calcs for      | LEWIS V                  | Start page no./Revision<br>1 A |                         |                   |
|                 | Calcs by<br>AB | Calcs date<br>24/01/2024 | Checked by<br>DC               | Checked date 24/01/2024 | Approved by<br>DC |

## STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex



Support conditions Support A

Support B

Applied loading

Beam loads

Load combinations

Vertically restrained Rotationally free Vertically restrained Rotationally free

 $\label{eq:permanent} \begin{array}{l} \mbox{Permanent self weight of beam} \times 1 \\ \mbox{FLOOR - Permanent full UDL 3.5 kN/m} \\ \mbox{ROOF - Permanent full UDL 3.5 kN/m} \end{array}$ 

Support A

Support B

Permanent  $\times$  1.35 Variable  $\times$  1.50 Permanent  $\times$  1.35 Variable  $\times$  1.50 Permanent  $\times$  1.35 Variable  $\times$  1.50

TEDDS calculation version 3.0.14

| Tekla Tedds                                                                                                                                                                                                                                                                                                                                                                                                        | Project<br>47a NORTH ROAD - BEAM B<br>Calcs for                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |                                                                                                                       | Job no.<br>AB/10201                            |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|
| Pell Frischmann                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |                                                                                                                       | Start page no./Revision                        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    | Chasked data                                                                                                          | 2 A                                            |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                    | AB                                                                    | 24/01/2024                                                                                                                                                                                                                                                                                                                                   | DC                                                                                                                                 | 24/01/2024                                                                                                            | DC                                             | 24/01/2024 |
| Analysis results<br>Maximum moment<br>Maximum shear<br>Deflection<br>Maximum reaction at support A<br>Unfactored permanent load read<br>Maximum reaction at support B<br>Unfactored permanent load read<br>Section details<br>Section type<br>Steel grade<br>EN 10025-2:2004 - Hot rolled p<br>Nominal thickness of element<br>Nominal yield strength<br>Nominal ultimate tensile strengt<br>Modulus of elasticity | etion at support<br>etion at support<br>products of stru              | $M_{max} = 31.^{\circ}$ $V_{max} = 24.6$ $\delta_{max} = 0 \text{ mr}$ $R_{A_max} = 24$ $A  R_A_{Permanent}$ $R_B_{max} = 24$ $B  R_B_{Permanent}$ $UC \ 152x 15$ $S275$ $S275$ $S275$ $Ictural steels$ $t = max(tr, fr)$ $f_y = 275 \text{ N/r}$ $f_y = 275 \text{ N/r}$ $f_u = 410 \text{ N/}$ $E = 210000$ $= 410 \text{ N/r}$ $= 210000$ | 1 kNm<br>6 kN<br>= 18.2 kN<br>6 kN<br>= 18.2 kN<br>52x23 (BS4-1)<br>tw) = 6.8 mm<br>mm <sup>2</sup><br>D N/mm <sup>2</sup><br>-5.8 | M <sub>min</sub> = C<br>V <sub>min</sub> = -2<br>δ <sub>min</sub> = 0<br>R <sub>A_min</sub> =<br>R <sub>B_min</sub> = | 24.6 kN<br>mm<br>24.6 kN<br>24.6 kN<br>24.6 kN |            |
| <ul> <li>Partial factors - Section 6.1</li> <li>Resistance of cross-sections</li> <li>Resistance of members to insta</li> <li>Resistance of tensile members</li> <li>Lateral restraint</li> <li>Effective length factors</li> <li>Effective length factor in major a</li> <li>Effective length factor for torsion</li> <li>Classification of cross section</li> </ul>                                              | bility<br>to fracture<br>txis<br>txis<br>t<br><b>ns - Section 5.5</b> | $\gamma_{M0} = 1.00$<br>$\gamma_{M1} = 1.00$<br>$\gamma_{M2} = 1.10$<br>Span 1 has<br>$K_y = 1.000$<br>$K_z = 1.000$<br>$K_{LT.A} = 1.00$<br>$K_{LT.B} = 1.00$<br>$\epsilon = \sqrt{235}$ N                                                                                                                                                  | s full lateral res<br>00<br>00<br>J/mm² / fy] = <b>0.9</b>                                                                         | traint                                                                                                                |                                                |            |

| <b>Tekla</b> Tedds                    | Project<br>47a NORTH ROAD - BEAM B                                                           |                                                                                                                                      |                                                                                         |                  | Job no.<br>AB/10201 |                 |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------|---------------------|-----------------|--|--|--|
| Peil Frischmann                       | Calcs for                                                                                    |                                                                                                                                      | Start page no./Revision                                                                 |                  |                     |                 |  |  |  |
|                                       | LEWIS WILLETTS                                                                               |                                                                                                                                      |                                                                                         |                  |                     | 3 A             |  |  |  |
|                                       | Calcs by                                                                                     | Calcs date                                                                                                                           | Checked by                                                                              | Checked date     | Approved by         | Approved date   |  |  |  |
|                                       | AB                                                                                           | 24/01/2024                                                                                                                           | DC                                                                                      | 24/01/2024       | DC                  | 24/01/2024      |  |  |  |
| Internal compression parts s          | ubiest to bond                                                                               | ing - Tablo 5 2 (g                                                                                                                   | shoot 1 of 2)                                                                           |                  |                     |                 |  |  |  |
| Width of section                      |                                                                                              | c = d = 123                                                                                                                          | .6 mm                                                                                   |                  |                     |                 |  |  |  |
|                                       |                                                                                              | c / t <sub>w</sub> = 23.1                                                                                                            | $\times \varepsilon <= 72 \times \varepsilon$                                           | Class 1          |                     |                 |  |  |  |
| Outstand flanges - Table 5.2          | (sheet 2 of 3)                                                                               |                                                                                                                                      |                                                                                         |                  |                     |                 |  |  |  |
| Width of section                      | $c = (b - t_w - 2 \times r) / 2 = 65.6 \text{ mm}$                                           |                                                                                                                                      |                                                                                         |                  |                     |                 |  |  |  |
|                                       |                                                                                              | c / t <sub>f</sub> = 10.4                                                                                                            | $c \ / \ t_f = 10.4 \times \epsilon <= 14 \times \epsilon \qquad \qquad \text{Class 3}$ |                  |                     |                 |  |  |  |
|                                       |                                                                                              |                                                                                                                                      |                                                                                         |                  | Sec                 | tion is class 3 |  |  |  |
| Check shear - Section 6.2.6           |                                                                                              |                                                                                                                                      |                                                                                         |                  |                     |                 |  |  |  |
| Height of web                         | $h_w = h - 2 \times t_f = 138.8 \text{ mm}$                                                  |                                                                                                                                      |                                                                                         |                  |                     |                 |  |  |  |
| Shear area factor                     |                                                                                              | $\eta=\textbf{1.000}$                                                                                                                |                                                                                         |                  |                     |                 |  |  |  |
|                                       |                                                                                              | h <sub>w</sub> / t <sub>w</sub> < 72                                                                                                 | ×ε/η                                                                                    |                  |                     |                 |  |  |  |
|                                       |                                                                                              |                                                                                                                                      |                                                                                         | Shear buckling   | resistance c        | an be ignored   |  |  |  |
| Design shear force                    |                                                                                              | $V_{Ed} = max(a)$                                                                                                                    | $V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 24.6 \text{ kN}$                            |                  |                     |                 |  |  |  |
| Shear area - cl 6.2.6(3)              |                                                                                              | $A_{v} = \max(A - 2 \times b \times t_{f} + (t_{w} + 2 \times r) \times t_{f}, \eta \times h_{w} \times t_{w}) = 997 \text{ mm}^{2}$ |                                                                                         |                  |                     |                 |  |  |  |
| Design shear resistance - cl 6.2.6(2) |                                                                                              | $V_{\text{pl,Rd}} = A_v \times (f_y / \sqrt{3}) / \gamma_{M0} = 158.4 \text{ kN}$                                                    |                                                                                         |                  |                     |                 |  |  |  |
|                                       |                                                                                              | PAS                                                                                                                                  | S - Design sh                                                                           | ear resistance e | xceeds desig        | In shear force  |  |  |  |
| Check bending moment majo             | or (y-y) axis - S                                                                            | ection 6.2.5                                                                                                                         |                                                                                         |                  |                     |                 |  |  |  |
| Design bending moment                 |                                                                                              | $M_{Ed} = max(abs(M_{s1_max}), abs(M_{s1_min})) = 31.1 \text{ kNm}$                                                                  |                                                                                         |                  |                     |                 |  |  |  |
| Design bending resistance mo          | ment - eq 6.14 $M_{c,Rd} = M_{el,Rd} = W_{el,y} \times t_y / \gamma_{M0} = 45.1 \text{ kNm}$ |                                                                                                                                      |                                                                                         |                  |                     |                 |  |  |  |
|                                       | PASS                                                                                         | - Design benall                                                                                                                      | ng resistance                                                                           | moment exceed    | s design ben        | aing moment     |  |  |  |
| Check vertical deflection - Se        | ection 7.2.1                                                                                 |                                                                                                                                      |                                                                                         |                  |                     |                 |  |  |  |
| Consider deflection due to varia      | able loads                                                                                   |                                                                                                                                      |                                                                                         |                  |                     |                 |  |  |  |
| Limiting deflection                   |                                                                                              | $\delta_{\text{lim}} = L_{s1} / 3$                                                                                                   | 360 = 14  mm                                                                            | <b></b>          |                     |                 |  |  |  |
| Maximum deflection span 1             |                                                                                              | $o = \max(aDS(Omax), aDS(Omin)) = U mm$                                                                                              |                                                                                         |                  |                     |                 |  |  |  |