GIST Barnsley

DRAINAGE CALCULATIONS

7442-HBPW-XX-XX-CA-D-0001

Aug 2023

DRAINAGE CALCULATIONS

This report is to be regarded as confidential to our Client and it is intended for his use only and may not be assigned. Consequently and in accordance with current practice, any liability to any third party in respect of the whole or any part of its contents is hereby expressly excluded. Before the report or any part of it is reproduced or referred to in any document, circular or statement and before its contents or the contents of any part of it are disclosed orally to any third party, our written approval as to the form and context of such a publication or disclosure must be obtained.

DOCUMENT HISTORY SHEET

Issue	Status	Purpose/Description	Originator	Checker	Date
P01	S4	Initial Issue	DPS	MDT	09.08.23
P02	S4	Second Issue	DPS	MDT	18.08.23

CONTENTS

1	DRAINGE METHODOLOGY	1
APPE	NDIX 1 – GIR	2
APPE	NDIX 2 – TEDDS CALCULATION	6
APPE	NDIX 3 - PERMEABLE PAVEMENT CONSTRUCTION	7

1 DRAINGE METHODOLOGY

HBPW have been tasked with designing a drainage system for GIST-owned car park located in Barnsley. The existing operational car park on site covers an area of approximately 2650m². There is currently no drainage system in place. The existing carpark consist of a mixture of impermeable tarmac (1268m²) and permeable stone surfacing (1487m²) with the later making up around 54% of the total area.

HBPW have commissioned a soil percolation test to determine the permeability of the subgrade. The test revealed a mean permeability of 0.213m/hr (5.91x10⁻⁵ m/s), therefore, the site is suitable for System A as described in *Permeable Pavements* guide by Interpave. For full output please refer to 7442-HBPW-XX-XX-RP-C-0020 - Soakaway Test Report.

The existing surface will be stripped and fully replaced by a permeable tarmac, therefore, given high permeability of the ground, no further drainage is required.

From Microdrainage interactive map: M5-60 =19mm & r = 0.36 for Barnsley.

From figure 1-1, the required min permeable sub-base thickness is 240mm. The ground investigation found in Appendix 1, reveals granular conditions continue for a minimum of six metres before encountering sandstone layer. Long term surface water storage is therefore not considered to be critical.

Figure 1-1 Extract from Interpave Permeable Pavements

Rainfall data		Required permeable sub-base thickness (mm)				
	r	1 in 30 year design event	1 in 100 year event	1 in 100 year event plus 20% climate change		
M ₅ -60 = 20mm	0.4	230	340	450		
	0.3	240	360	480		
	0.2	260	400	530		
$M_{5}-60 = 17$ mm	0.4	190	270	360		
	0.3	190	280	380		
	0.2	200	320	440		
$M_{5}-60 = 14mm$	0.4					
	0.3	140	210	290		
	0.2	140	230	330		

For System A (infiltration) Table 6 can be used.

Table 6: Permeable sub-base thicknessfor infiltration system (System A) collectingimpermeable area.

Note: thickness assumes permeable sub-base has a voids ratio of 30%. Infiltration rate greater than 1×10^{-5} m/s. Maximum ratio of impermeable to permeable is 2 to 1.

The construction depth was confirmed with Tedds 2022 calculation found in Appendix 2.

APPENDIX 1 – GIR

APPENDIX 2 – TEDDS CALCULATION

Tekla, Tedds	Project GIST Barnsley				Job no. SL07442	
HBPW LLP	Calcs for				Start page no./Revision	
43 Bridgegate	Porous Car Park as Soakaway				1	
Rettord	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
DN22 /0X	DPS	10/08/2023	MDT	10/08/2023	MDT	10/08/2023
Design rainfall intensity Location of catchment area		Sheffield				
Design rainfall intensity						
Important of calcriment area	$\Delta = 2650.0 \text{ m}^2$					
Return period	$A = 20000 \text{ m}^2$					
Ratio 60 min to 2 day rainfall of	5 vr return period	r = 0.360	O yi			
5 year return pariod rainfall of 6	I = 0.300	- 10 0 mm				
Increase of rainfall intensity due	g pclimate = 40	* 19.0				
Soakaway / infiltration trench	details					

Soakaway type	Rectangular			
Minimum depth of pit (below incoming invert)	d = 238 mm			
Width of pit	w = 51500 mm			
Length of pit	l = 51500 mm			
Percentage free volume	V _{free} = 30 %			
Soil infiltration rate	f = 59.1×10 ⁻⁶ m/s			
Wetted area of pit 50% full	$a_{s50} = I \times d + w \times d = 24554261 \text{ mm}^2$			
Table equations				
Inflow (cl.3.3.1)	$I = M100 \times A$			
Outflow (cl.3.3.2)	$O = a_{s50} \times f \times D$			
Storage (cl.3.3.3)	S = I - O			

Duration, D (min)	Growth factor Z1	M5 rainfalls (mm)	Growth factor Z2	100 year rainfall, M100 (mm)	Inflow (m³)	Outflow (m³)	Storage required (m ³)
5	0.36;	9.6;	1.90;	18.2;	48.21;	0.44;	47.78
10	0.51;	13.6;	1.97;	26.7;	70.72;	0.87;	69.84
15	0.62;	16.5;	2.00;	33.0;	87.49;	1.31;	86.19
30	0.79;	21.0;	2.03;	42.6;	112.82;	2.61;	110.21
60	1.00;	26.6;	2.00;	53.1;	140.78;	5.22;	135.56
120	1.22;	32.5;	1.95;	63.3;	167.73;	10.45;	157.28
240	1.48;	39.4;	1.90;	74.6;	197.70;	20.90;	176.81
360	1.67;	44.4;	1.85;	82.4;	218.32;	31.34;	186.98
600	1.90;	50.5;	1.81;	91.3;	241.92;	52.24;	189.68
1440	2.42;	64.4;	1.71;	110.2;	292.09;	125.38;	166.71

Required storage volume Soakaway storage volume

S_{req} = **189.68** m³

volume

$S_{act} = I \times d \times w \times V_{free} = 189.68 \text{ m}^3$

 t_{s50} = $S_{req} \times 0.5$ / (asso \times f) = 18hr 9min 15s

PASS - Soakaway storage volume

Time for emptying soakaway to half volume

PASS - Soakaway discharge time less than or equal to 24 hours

APPENDIX 3 - PERMEABLE PAVEMENT CONSTRUCTION

Black or <mark>Colou</mark>

Surface Layer	35mm ULTISuDS (10mm)
Binder/Base Layer	115mm ULTISuDS (32mm)
Natural Subgrade	200mm ULTIFLOW (Reservoir layer + Crunch Layer (4/20mm))

Notes:

- □ The subbase design will need to be checked by hydraulic/drainage design.
- □ Assumed min 5% Subgrade CBR.
- □ Infiltration geotextile/impermeable geomembrane based on the hydraulic/drainage design.
- □ Sweeping (cleaning) is recommended to maintain quality of performance in terms of permeability.

Public Car park

Typical Pavement Design*

*Subject to Approval

