

PHASE 2 GROUND INVESTIGATION REPORT

A635 Barnsley Road, Goldthorpe

Barnsley, South Yorkshire

Report: 151089GI

Date: November 2021

Client:

Barnsley Metropolitan Borough Council Westgate Plaza 1 Barnsley South Yorkshire S70 9FA

PHASE 2 GROUND INVESTIGATION REPORT A635 Barnsley Road, Goldthorpe

DOCUMENT VERIFICATION SHEET

Prepared By: Checked By:

Name: Glyn Hogg Richard Saville

Qualifications: MSci FGS BSc CGeol FGS

Position: Engineer Director

Signature: (7. Hy)

SUMMARY

Grid Ref: 444290(E), 404020(N) Elevation: 25m-30m AOD Site Area: 2.0 ha

Development proposals: New roundabout off existing A635 highway, with

supporting embankment.

Past site development: A635 Barnsley Road. Opencast mine in fields to south.

Made Ground: Shallow made ground from highway, deep made

ground associated with former opencast mine.

Natural Soils: Cohesive residual soils found to 2.50m.

Ground

Conditions Bedrock: Mudstone of Middle Coal Measures.

Groundwater: Found from 1.40m bgl in backfilled opencast.

Shallow mining: Voids encountered in two boreholes north of A635.

Environmental Assessment: Existing soils suitable for reuse or retention in any new

soft landscaping areas.

Ground gases: Contractor to monitor excavations for ground gases.

Remediation: If any imported soils used for landscaping areas they

will need to be chemically validated.

Geotechnical Considerations: Drilling and grouting required where shallow workings

identified.

Further Investigation: Additional investigation recommended around revised

roundabout footprint and to delineate highwall of

former opencast.

PHASE 2 GROUND INVESTIGATION REPORT

A635 Barnsley Road, Goldthorpe

TABLE OF CONTENTS

1.	INTRODUCTION1
2.	OBJECTIVES2
3.	THE SITE2
4.	HISTORY4 4.1. The Site 4.2. Surrounding Area
5.	GEOLOGY5
6.	MINING RISK ASSESSMENT & QUARRYING
7.	FIELDWORK
8.	LABORATORY TESTING11
9.	GROUND CONDITIONS
10.	GEOTECHNICAL CONSIDERATIONS
11.	ENVIRONMENTAL CONSIDERATIONS

11.5. Remediation Requirements11.6. Imported Soils	
12. WASTE DISPOSAL	22
13. REGULATORY APPROVAL	23
14. FURTHER INVESTIGATION	23
APPENDICES	
APPENDIX A - PROPOSED LAYOUT DRAWINGS	Δ
APPENDIX B - TESTING SUMMARY TABLES	E
APPENDIX C - SYMAS REPORT	C
APPENDIX D - DUNELM FACTUAL REPORT	D
APPENDIX E - HISTORIC MAPS	Е
APPENDIX F - EXPLORATORY LOGS	F
ADDENDLY COLLADODATODY TECTING DECLIETS	

PHASE 2 GROUND INVESTIGATION REPORT A635 Barnsley Road, Goldthorpe

1. INTRODUCTION

On the instruction of Barnsley Metropolitan Borough Council (BMBC), a Phase 2 Ground Investigation was undertaken by Dunelm Geotechnical and Environmental Ltd (Dunelm), under the supervision of Abbeydale Building Environment Consultants Ltd (Abbeydale BEC) on a site off of the A635 Barnsley Road, near Goldthorpe, Barnsley, in South Yorkshire.

The site is situated on the west side of Goldthorpe, centred on National Grid Reference 444324, 404048, with a site area of around 2.0 ha. See Figure 1.

FIGURE 1 - LOCATION PLAN

Dunelm produced a factual report of the findings of the ground investigation (Ref: D13071/00), dated June 2021, which can be presented to potential contractors for design and tendering purposes who can include their own interpretations of the factual information obtained from the Ground Investigation works undertaken.

This interpretative ground investigation report was produced for our client, Barnsley Metropolitan Borough Council, and their advisors and financiers; it should not be relied upon or transferred to any other parties without the express written authorisation of Abbeydale BEC and our client. If any other unauthorised third party comes into possession of this report they rely on it at their own risk and the authors owe them no duty of care or skill.

The comments and recommendations presented in this interpretative Ground Investigation report are based on the findings of a review of available information; ground conditions encountered during the intrusive investigation work and the associated laboratory testing results. There may be other conditions prevailing on the site which have not been disclosed by this investigation and which have therefore not been taken in to account by this report. Responsibility cannot be accepted for conditions not revealed by this investigation.

When writing this report the proposed development was for a new roundabout along the existing A635 Barnsley Road highway, and a supporting embankment at, or close to, existing ground levels. If there are changes to these proposals then some modification to the comments and recommendations given may be required. It should be noted that when the Ground Investigation works were scoped and carried out the proposed roundabout was in a different location to that currently proposed. The revised proposed site layout is shown on the site plan in Appendix A; the previously proposed position is shown on the layout plan included in the Dunelm Factual Report.

2. OBJECTIVES

This report has been undertaken to provide interpretation of the findings of the factual Ground Investigation undertaken by Dunelm, and an evaluation of the current site proposals with regard to geotechnical and engineering considerations to determine what impact the anticipated ground conditions will have on the integrity of the proposed new roundabout and any supporting structures

Consideration is also given to the potential risks from any contaminants in the existing soils to construction workers, and future receptors who may come into contact with underlying soils in any proposed soft landscaping areas.

3. THE SITE

The new roundabout is proposed along a section of the existing A635 Barnsley Road highway to the west of Carr Dike and Billingley Bridge, see Figure 2.

FIGURE 2 - SITE PLAN

Undeveloped fields are present to the north and south of the existing highway, both of which are currently being used to grow agricultural crops. The field on the north side of the A635 Barnsley Road is at a slightly higher elevation than road level, with the generally topography of the area sloping gently from north-west to south-east. A hedge forms the southern boundary of the field.

On the south side of the A635 Barnsley Road a belt of semi-mature woodland is present between the highway and the agricultural fields beyond, which is accessed via a track off A635 Barnsley Road. With ground levels falling to the south-east the level of field is estimated to be around 2.00m to 2.50m lower than road level.

Carr Dike runs roughly north to south on the eastern section of the site; this flows in a southerly direction, passing beneath A635 Barnsley Road in a culvert. As part of the construction of the new roundabout we understand that the alignment of the

existing culvert may need to be adjusted. The proposed roundabout will tie in to the existing road alignment to the east and west, with 2.00m wide grassed verges proposed along the outer extent of most of the new roundabout, and a 3.00m wide cycleway proposed along the northern side of the new roundabout. An access road will feed off the south of the new roundabout into the lower fields to the south of the existing A635 highway.

4. HISTORY

Historic Ordnance Survey (OS) maps of the site and surrounding area were previously obtained from Landmark Information Group, dated 12 June 2019 as part of a previous Coal Mining Risk Assessment undertaken for the originally proposed roundabout position. The historical maps are included in Appendix E. All measurements stated are approximate distances from the site boundaries to the recorded features.

4.1. The Site

The earliest OS map of 1854 shows that the site comprises open fields, Barnsley Road, Thurnscoe Dike (renamed Carr Dike by 1905) and Billingley Bridge. The site appears fairly similar to current day, apart from no woodland is shown bounding the south of Barnsley Road.

From 1962, the map shows that there is an embankment sloping down from Barnsley Road to the south. The 2000 OS map has a label of 'Quarry' in the field south of Barnsley Road. Prior to this map there was no mention of any on-site mining or quarrying activities.

The historical maps of the site largely remain unchanged to the most recent one of 2019, apart from the wooded area which is shown on site, just south of the road.

Although not depicted on the historic OS maps, opencasting of underlying coal resources is known to have taken place on the south side of the A635 highway within the vicinity of the site, dating to the early to mid-1990's.

4.2. Surrounding Area

The earliest map of 1854 shows the area surrounding the site to comprise of mostly open fields. There are a few residential houses in Billingley Green, 250m west of the site. A Sandstone Quarry is marked 500m east of the site, along Barnsley Road, however this is no longer shown on the next map of 1894. Other than this there is no evidence of other mining or quarrying activities.

There is no notable change in the area until 1905 when Goldthorpe Brick Works is shown 500m west of the site, just south of the old quarry. The Brick Works becomes disused by the map of 1931.

By 1966, the Brick Works has been demolished, however the outline of the former clay pit is shown until the 1990s.

5. **GEOLOGY**

The geological survey maps of the area, Sheet SE40SW, BGS Sheet 87 (Barnsley) and Yorkshire County Series Sheet 275SE have been examined. The site is shown to be underlain by the Pennine Middle Coal Measures, of Late Carboniferous age; dipping gently to the north, by around 3° to 5° from an assessment of outcrop patterns and dip indicators on the geological maps and underground contours on the County Series geological map.

The site is stratigraphically at the top of the Carboniferous Middle Coal Measures sequence, above the Shaft Coal seam, which is shown to outcrop just to the south of the site due to past extraction of the seam by opencast methods. The original crop of the seam is conjectured to have been around 120m further south prior to opencast operations.

The nearest surface geological fault is conjectured approximately 400m to the south of the site, trending north-west to south-east and downthrowing strata to the south-west. Numerous underground faults are recorded on the County Series geological sheet, predominantly within the Barnsley Coal seam, however faulting is also recorded in the Parkgate Coal in the south-west of the surrounding area.

Superficial drift deposits are present over the solid geology in the vicinity of Carr Dike, consisting of alluvium (silt and clay with sand and gravel lenses). The alluvium is also recorded in the field to the south of the road, however past opencast mining will have removed the superficial soils from across most of the area.

As highlighted above, made ground deposits associated with former opencast workings are recorded across most of the site and immediate vicinity; geological sheet SE40SW indicates the opencast was undertaken in two phases, with a conjectured line demarcating the different extents of the opencast phases.

A preliminary geological section has been produced using the geological map to summarise the underlying geological sequence under the site; see Figure 3.

6. MINING RISK ASSESSMENT & QUARRYING

A Coal Mining Risk Assessment report was previously carried out by Abbeydale BEC, dated July 2019 (ref: 151089MRA), for the previously proposed roundabout position. However, a reappraisal of the mining information with reference to the new roundabout location is provided below.

The presence of rock and mineral seams, including coal, which may have been mined or quarried in the area has been determined by the published geological maps and memoirs of the area, and the appended South Yorkshire Mining Advisory Service (SYMAS) report included in Appendix C.

Within the underlying geological sequence there are several named coal seams recorded to have been of economic importance, both at shallow depth (less than 30m below rockhead), and a greater depth. As outlined in the following sections the

geological records and SYMAS report have records of mining have occurred beneath the proposed roundabout by multiple extraction techniques.

FIGURE 3 - GENERALISED SECTION (VERTICAL EXAGGERATION X 5)

6.1. Opencast Mining

The shallowest coal seam is anticipated to be the Shafton Coal, recorded to be around 1.4m thick in the locality. A shaft around 100m north-west of the site records the Shafton Coal at a depth of around 27.4m (90ft), however with the site up-dip of the seam it would be anticipated at shallower depth under the new roundabout.

The SYMAS report states the Shafton Coal seam is recorded to have been worked by opencast in the vicinity of the proposed roundabout scheme; the approximate extent of the opencast is recorded on the plan provided with the SYMAS report. It is noted that the extents of the opencast are based on the BGS geological map and that SYMAS do not hold any abandonment plan for the former opencast working.

From the available information the opencast highwall is likely to be present just north of the opencasted area, through the southern part of the proposed roundabout.

The opencast workings are recorded to have occurred some time in the early to mid 1990s; SYMAS estimated that the depth of opencast was up to 15m in the north.

6.2. Shallow Mine Workings

The SYMAS report indicates that historic shallow mine workings in the Shafton Coal were identified during the opencast workings, with three bell pits / shafts

identified on the plan attached to the SYMAS report. For the two shafts in the southern field, the opencast workings removed any remnant coal and mining voids and the entire excavation was backfilled. The shaft in the northern field is described as disused, but no details relating to the capping of the shaft were given. However, the shaft is located ~150m from the location of the proposed roundabout, with the section of highway closest to the shaft shown to remain along its current route.

Although no historic mine shafts or coal pits are shown on the available geological maps or historical OS maps, there is the potential for the Shafton Coal to have been worked at shallow depth on the north side of the A635 highway in the past. Shallow mine workings may therefore exist to the north of the former opencast area, beneath the proposed roundabout footprint.

No other potentially shallow depth coal seams are recorded to have been worked across the area. However, the risk of unrecorded shallow mine workings affecting the site was deemed to be **high** based on the available recorded information.

6.3. Deep Mining

The geological map indicates that the next named coal seam is the Sharlston Top Coal (formerly known as the Double Smuts Coal), around 65m to 70m below the Shafton Coal and beneath the Mexbrough Rock Sandstone unit. The Sharlston Top seam is noted to be split by dirt partings but in places contains up to 1.2m (4ft) of coal.

With underground faulting recorded in the Barnsley and deeper Parkgate Coal seams on the County Series geological map, this would indicate that deep mining of these seams has occurred beneath the site. Underground contours on the County Series geological map suggest that the Barnsley Coal is likely to be present at an elevation of approximately -420m Below Ordnance Datum (BOD) (-13780ft) below the site. With ground levels of around 30m AOD in the vicinity of the site this would equate to the Barnsley Coal being at an estimated depth of 450m depth.

From the generalised stratigraphic column on the geological map the deeper Parkgate Coal would be anticipated around 250m below the Barnsley seam.

The resultant risk of any mining activities in the deep coal seams is only deemed to be **low**. These seams and any associated workings are sufficiently deep that collapse of any associated mine workings would not be considered to have the potential to affect the surface stability of proposed roundabout.

6.4. Mine Entries

One recorded mine entry (CA Ref: 444404-003) has been identified across the surrounding area, around 150m north-west of the new roundabout; the shaft is recorded to have extended to 27.43m (90ft) to the Shafton Coal.

In addition, two bell pits / shafts (CA Refs: 444403-008 & 444403-007) were uncovered during the former opencast excavation. It is understood that these were excavated out to their full depth as part of the opencast working, which was then fully backfilled once opencasting had ceased.

At this stage the presence of further unrecorded mine shafts / bell pits cannot be ruled out in areas where opencasting has not been undertaken, with an associated **moderate to high** resultant risk.

7. FIELDWORK

7.1. General

Fieldwork was undertaken from 12 April to 28 April, 23 September and 27 to 28 September 2021 in general accordance with Eurocode 7, BS5930:2015 and BS10175:2011(+A2:2017). The scope of proposed Ground Investigation was specified by Abbeydale BEC to confirm the ground conditions present, including the approximate location of the opencast highwall, and obtain information on the depth and state of the Shafton Coal where outside of the area of recorded opencast workings.

Detailed descriptions of the strata encountered are recorded in the exploratory hole logs in the Dunelm factual report, included as Appendix D for ease of reference. Other exploratory hole logs are included within Appendix F.

7.2. Exploratory Hole Locations

The relative ground levels and positions of the exploratory holes undertaken were assessed relative to existing features using a tape measure; the approximate locations of which are shown on Figure 4.

Based on the available information, targeted investigation was undertaken to confirm the depth and state of backfill in former opencast area, including investigating the area of the recorded highwall which has potential issues regarding differential movement between the area of opencast backfill and natural ground outside of the former opencast. Generally non-targeted exploratory locations were then used elsewhere across the site.

The locations of exploratory holes were restricted due to the presence of the existing highway and the areas of woodland that were present at the time of undertaking the intrusive works. Scheduled exploratory holes TP3 and TP10 could not be undertaken because there was insufficient space in the verge between the highway and the woodland.

No investigation was permitted in the wooded area itself.

OH1 was abandoned and moved to OH1A after the hand-dug inspection pit had been dug as the drilling rig could not get into position due the presence of trees.

7.3. Sampling Strategy

Representative disturbed samples of the soils and weathered rock encountered were taken throughout the course of the intrusive investigation works to facilitate subsequent geotechnical and environmental laboratory testing.

The sampling depths were taken based on professional judgement, the ground conditions encountered or at regular depths through the soil profile, or a combination of all three.

On completion of fieldwork the sample schedules were sent to Abbeydale BEC by Dunelm for the scheduling of subsequent laboratory testing.

FIGURE 4 - EXPLORATORY HOLE PLAN

7.4. Trial Pits

To allow a detailed assessment of the shallow soils and weathered bedrock, and to attempt to find the extent of the area of open cast, a total of eight trial

pits (TP1 to TP9, minus TP3 which could not be undertaken) were excavated using a JCB 3CX mechanical backhoe excavator with a 600mm wide toothed bucket, to depths of between 2.10m and 5.10m below ground level (bgl).

The trial pits were logged by a Dunelm Engineer from the arisings and examination of the sides and base of the trial pit from the surface. An assessment of the stability of each pit was also recorded.

On completion the trial pits were backfilled with arisings to leave in a safe state.

7.5. Window Sample Holes

A total of thirteen window sample holes (WS1 to WS13) were carried out across the site, ranging in depth from 1.00m and 4.00m bgl, using a tracked window sample rig.

As part of the window sampling in situ Standard Penetration Tests (SPTs) or Cone Penetration Tests (CPTs) were undertaken based on the ground conditions encountered, to provide in situ relative strength information. The SPTs utilised a 50mm split spoon sampler with a 70° taper, with the CPTs using a solid cone with a 90° taper, driven using a 63.5kg hammer dropping 750mm. The blow counts are recorded for every 75mm driven, as detailed on the appended exploratory logs along with the resultant N values for each test. Where a refusal (N>50) was encountered the total number of blows over the total penetration distance is recorded.

7.6. Rotary Openhole Boreholes

To provide information on the presence of shallow coal seams or associated mine workings, twelve rotary openhole boreholes (OH1A to OH12) were drilled to depths of between 10.26m bgl and 30.00m bgl, using a tracked top driven rotary drilling rig with 102mm diameter roads and a down the hole hammer, using water flush. The strata descriptions were logged by a Dunelm Geotechnical and Environmental Engineer from the flush arisings.

On completion monitoring standpipes were installed in each of the rotary boreholes to facilitate post-investigation groundwater and gas monitoring, with the exception of OH12 which was backfilled on completion.

7.7. Monitoring Installations

To facilitate post-investigation monitoring of the underlying ground gas and groundwater regimes gas monitoring standpipes were installed in each of the rotary openhole boreholes. The individual installation details are shown on the relevant logs for each exploratory hole.

Gas and groundwater monitoring using a Gas Data GFM436 gas monitor was undertaken on six monitoring visits by an Abbeydale BEC Site Engineer. The results of the monitoring are summarised on Table 3 in Appendix B.

8. LABORATORY TESTING

Geotechnical and chemical laboratory testing was scheduled by Abbeydale BEC and carried out by Dunelm's chosen laboratories as part of the requirements of the Ground Investigation.

Geotechnical laboratory testing was undertaken by Solmek Ltd and Professional Soils Laboratory Ltd (PSL) in accordance with BS1377:1990. To assess the geotechnical characteristics of the natural soils a total of seven samples were scheduled for Plasticity Index (Atterberg Limits) testing, with natural moisture content testing carried out on the remainder of samples of natural soils obtained for comparison with the plasticity index testing results. Particle Size Distribution tests and 2.5kg compaction tests with CBRs at each compaction point, were undertaken on three samples of the opencast backfill material. The geotechnical testing results are summarised on Table 1 in Appendix B and shown graphically on Figures 7 and 8.

Samples were also sent to Derwentside Environmental Testing Services Ltd (DETS) and Chemtech Environmental Ltd for chemical analysis for a range of heavy metals, semi-metals and Polycyclic Aromatic Hydrocarbons (PAHs); summarised on Tables 2A to 2D in Appendix B.

Testing certificates are included in the Dunelm factual report; see Appendix D, as well as Appendix G.

9. GROUND CONDITIONS

9.1. General

The ground conditions encountered are recorded in detail in the exploratory logs appended to this report (Appendix D) and summarised on two geological sections, Figures 5 and 6. Any diagram of the possible configuration of ground conditions between exploratory holes is conjectural and given for guidance purposes only. If deemed critical confirmation of intermediate ground conditions should be sought.

9.2. Made Ground

The four boreholes in the highway footpath found made ground associated with the highway, comprising various layers of macadam and sub-base materials to depths ranging from 0.47m bgl to 1.80m bgl.

BH1A and BH2 found topsoil and thin made ground from the surface to 0.70m bgl. The made ground comprised soft sand gravelly clay containing gravel of brick, sandstone, mudstone and clinker.

Across the southern field a mantle of topsoil was encountered from the surface to between 0.30m and 0.40m bgl. In the northern field, topsoil comprising clayey gravelly sand was found from the surface to a maximum depth of 0.30m bgl.

9.3. Backfilled Opencast Workings

The exploratory holes carried out in the fields to the south of the A635 highway were undertaken to assess the spatial extent and depth of the backfilled opencast workings recorded in this area. The information obtained from the intrusive investigation has been used to produce a geological section across the existing A635 highway and into the former opencast area, see Figure 5.

Beneath the topsoil, opencast backfill was encountered in two distinct forms; an upper layer of cohesive made ground comprising sandy gravelly clay, with gravel of mudstone, sandstone and coal, to a maximum depth ranging from 2.70m to 7.20m bgl. Plasticity testing on this cohesive made ground recorded modified plasticity index values of 26% to 27%, equating to a medium volume change potential in accordance with NHBC Ch.4.2. Results of the geotechnical testing undertaken on samples of the cohesive made ground are summarised in Table 4A. As summarised graphically on Figure 7, the moisture content values were generally below the plastic limit values of the two samples of the cohesive made ground sent for plasticity index testing.

Two samples of the cohesive made ground from TP4/2.50m and TP5/2.50m were scheduled for compaction testing to assess the dry density vs moisture content relationship of the soils. The tests recorded the maximum dry densities to range from 1.79Mg/m³ to 1.87Mg/m³ with optimum moisture contents from 14% to 17%. Natural moisture contents were recorded as 19% in TP4/2.50m and 21% in TP5/2.50m, 5% and 4% wet of the optimum respectively.

FIGURE 5 - GEOLOGICAL SECTION (SOUTH TO NORTH THROUGH OPENCAST)

In TP1, TP2, TP4 and TP8 the trial pits were extended to the northern extent of the southern field to try locate the highwall of the former opencast. The trial pits encountered made ground backfill to the full depths excavated up to the boundary fence. It is therefore interpreted that the highwall of the former opencast is within the wooded area between the field and the existing A635 Barnsley Road highway.

Cohesive Made Ground	Count	Minimum	Maximum	Mean
Moisture Content (%)	40	7.5	30	18.4
Liquid Limit (%)	2	50	50	50
Plastic Limit (%)	2	23	24	23.5
Fines (%)	2	89	93	91
Modified Plasticity Index (%)	2	26	27	26.5
Loss On Ignition (%)	2	7.8	11	9.4
SPT N Value	13	4	11	7.5
Sulphate (mg/l)	6	2.3	180	69.6
рН	6	5.5	7.6	7.0

TABLE 4A - COHESIVE MADE GROUND TESTING SUMMARY

Beneath the cohesive made ground a deeper layer of granular made ground was encountered, in the form of reworked mudstone. This was logged by the drillers as grey mudstone in the rotary openhole boreholes, however the low SPT N values and quick rates of drilling observed by our Site Engineer indicate that the mudstone was reworked and is indeed opencast backfill. The reworked mudstone made ground was encountered from depths between 2.70m bgl and 7.20m bgl to between 7.20m bgl and 8.70m bgl.

Three particle size distribution tests undertaken on the granular opencast backfill soils confirmed the field descriptions of clayey very sandy gravel / very clayey gravelly sand, with a medium cobble content in sample TP9/2,50m.

SPT N values in the granular made ground ranged between N6 to N26, with a mean value of N13. A summary of the SPT N values against depth is shown on Figure 8, highlighting a general increase in N value with depth.

9.4. Natural Soils

Beneath the topsoil and made ground several of the exploratory holes recorded natural cohesive soil in the form of firm sandy gravelly clay containing sandstone and mudstone, to between 2.20m to 4.20m bgl.

Natural Cohesive Soil	Minimum	Maximum	Mean	Count
Moisture Content (%)	8	31	16	45
Liquid Limit (%)	33	51	41	13
Plastic Limit (%)	19	33	23	13
Fines (%)	80	100	93	13

Natural Cohesive Soil	Minimum	Maximum	Mean	Count
Modified Plasticity Index (%)	13	28	19	13
SPT N Value	20	32	24	10
Sulphate (mg/l)	60	60	60	1
рН	7.8	7.8	7.8	1

TABLE 4B - NATURAL COHESIVE SOIL TESTING SUMMARY

Plasticity testing on the natural clay soils recorded modified plasticity index values to range between 13% to 28%, equating to a low to medium volume change potential when accounting for the fines contents of the samples tested. The moisture content of the natural clay soils were noted to be generally around or below the plastic limit of the samples, with the mean moisture content (16.3%) being below the mean plastic limit value of 22.9%.

A compaction test was undertaken on a sample of the natural clay soils from TP7/1.50m, recording a maximum dry density of 1.78Mg/m³ at the optimum moisture content of 15%. The natural moisture content of the sample was recorded as 19%, which is 4% wet of the optimum.

In the northern field, natural ground was encountered beneath the topsoil from 0.30m bgl. A medium dense to dense brown clayey gravelly sand was found to a maximum depth of 1.70m bgl. Underlying this was a firm to stiff brown mottled orange sandy gravelly clay containing siltstone. This clay was found to a maximum depth of 2.50m, where siltstone bedrock was encountered.

9.5. Bedrock

FIGURE 6 - GEOLOGICAL SECTION (WEST TO EAST ALONG EXISTING HIGHWAY)

The exploratory holes recorded bedrock across the site, ranging from depths of 2.05m bgl (TP7) to 5.30m bgl (OH3) where outside of the former opencast area,

increasing to between 7.20m bgl and 8.70m bgl inside the recorded former opencast area.

FIGURE 7 - INDEX PROPERTIES VS DEPTH GRAPH

Noticeable increases in SPT N value were recorded in the rotary openhole boreholes when bedrock was encountered, ranging from N40 to refusal (>N50); shown graphically on Figure 8.

Several coal seams were encountered in the underlying bedrock sequence on the north side of the A635 highway, see Figure 6. Interpretation of the investigation information suggests that there is leafing of the coal seams, with generally three coal seams interpreted. A 1.60m thick coal seam was recorded at very shallow depth in OH11, from 3.50m bgl, which could possibly have been eroded from the geological sequence to the west of this location.

Voiding was noted in two of the rotary openhole boreholes on the north side of the existing A635 Barnsley Road, from 12.00m bgl to 13.50m bgl in OH4 and from 9.00m bgl to 10.40m bgl in OH5. In both exploratory holes a total loss of drilling flush was recorded, with coal identified beneath the voids when drilling flush returned. These are interpreted to represent underground shallow mining of the Shafton Coal seam.

As well as the four boreholes in the existing highway, OH1A, OH2 and OH12 encountered coal seams up to 4.10m in thickness from as shallow as 9.00m bgl. No voids or losses of flush were recorded in these boreholes.

Although shown to be in the footprint of the former opencast, OH7 also encountered a 1.50m thick pocket of coal from 4.20m bgl, within the range of the opencast backfill recorded in adjacent rotary openhole boreholes. As shown on Figure 5 this seam appears to correlate with a coal seam recorded in rotary boreholes on the north side of the existing A635 highway, and also with the basal depth of the opencast made ground recorded in the other rotary openhole boreholes across the former opencast area.

The bedrock sequence between and below the coal seams was recorded to consist of grey mudstone, which extended beyond the basal depths of the rotary openhole boreholes, at a maximum of 30.00m bgl.

As water flush was used during the drilling, the depth of groundwater could not be determined during drilling of the boreholes. However, the trial pits recorded groundwater as shallow as 1.40m bgl in TP1, within the opencast infill. All of the other trial pits also recorded groundwater in the infilled opencast, with the greatest depth to groundwater in TP4 at 3.50m bgl.

In TP7, located outside the area of the former opencast, groundwater was encountered at 3.00m bgl in the mudstone bedrock sequence.

10. GEOTECHNICAL CONSIDERATIONS

10.1. General

An outline plan was available when completing this report. It has been assumed that a new roundabout with embankment is to be constructed at, or close to, existing ground levels. No buildings or hard retaining structures are proposed as part of the development works. If there are changes to these proposals, then some modification to the comments and recommendations given will be required.

FIGURE 8A - N VALUE VS DEPTH GRAPH (IN WINDOW SAMPLE HOLES)

10.2. Opencast Mining

From the investigation data, the base of the opencast was found between 7.20m to 8.70m bgl. See Figure 5. The SPT N values in the opencast backfill generally recorded an increase in relative strength / density with depth, ranging from N4 to N26.

The highwall was not positively located, with trial pits carried out up to the northern boundary of the southern field finding opencast infill material. The location of the highwall is therefore presumed to within the wooded area

between the southern field and the A635 Barnsley Road highway. There is the potential for differential movement where transitioning from natural soils on the northern side of the former opencast and deep made ground where opencast activities previously occurred.

FIGURE 8B - N VALUE VS DEPTH GRAPH (IN OPENCAST)

10.3. Shallow Mine Workings

The SYMAS report indicates that historic shallow mine workings in the Shafton Coal were encountered during the opencast workings, and the workings were fully excavated during the opencast operations.

Coal seams were encountered in all seven of the boreholes located north of the opencast area. OH1 found up to 4.00m of intact coal. However, voids were encountered in OH4 and OH5, 1.50m thick between 12.00m and 13.50m bgl in OH4 and 1.40m thick in OH5 from 9.00m to 10.40m bgl. Coal was recorded beneath the voids in both of these exploratory holes.

To maintain a sufficient thickness of rock cover above the recorded shallow mine workings to mitigate the potential impact from any future collapse, a minimum rock cover of 40.00m would be required at OH4 and 14.00m at OH5; 10 x the recorded working thickness. Actual rock cover thickness were only recorded to be 8.00m and 5.40m respectively in OH4 and OH5 when accounting for the recorded rockhead levels. OH12 carried out to the north of the existing highway encountered a 0.95m thick coal seam at 19.25m bgl, with a rock cover of 17.50m.

It is therefore deemed that the shallow workings identified in OH4 and OH5 have the potential to adversely affect the surface stability of the existing highway and proposed new roundabout, should a collapse of the workings occur, with a **very high** resultant risk. Any shallow mine workings will need to treated by drilling and grouting to substantially fill any remaining voids in the shallow mine workings prior to construction of the new roundabout.

The potential for encountering unrecorded bell pits/shafts in the wooded area between the existing A635 highway and the area of infilled opencast mining cannot be ruled out at this stage.

10.4. New Embankments or Retaining Structures

The proposed layout included an embankment on the southern side of the roundabout, to accommodate the difference in ground levels. Consideration should be given to ensure the internal stability of any embankments with a gradient steeper than 1(v) in 3 (h).

10.5. Highways & Hardstanding

Highways and hardstanding will need to be constructed on re-engineered material. At this stage a minimum CBR of 2.5% can be assumed provided that the formation is proof rolled and any soft spots are removed.

To assess the sensitivity of the opencast backfill to changes in moisture content, compaction tests were carried out on two samples of the cohesive opencast backfill; the results are summarised graphically on the summary sheets in Appendix B. The results highlighted that maximum dry densities of between 1.79Mg/m³ and 1.87Mg/m³ can be achieved at the optimum moisture contents of 14% to 17%, with CBR values at optimum moisture content above 10%. Natural moisture contents of the samples were noted to be 4% to 5% wet of the optimum values in the samples tested.

For earthworks classification purposes the opencast backfill soils would classify as cohesive fill (Class 2) due to the percentage of fine particles being

greater than the 15% cutoff for granular fill (Class 1), based on the particle size distribution tests undertaken on samples of the opencast backfill.

To provide regulation of the opencast backfill under the highway footprint it would be recommended to excavate the upper 2.00m of the made ground, proof roll the formation and place the soils back in compacted layers, in accordance with Specification for Highways Works (SHW) Series 600. Any soft spots at formation level should either be locally excavated and recompacted, or single sized stone rolled in to stiffen the formation.

Compaction tests on a sample of the natural cohesive soil from TP7, to the north-west of the opencast area, show that a CBR of 10% can be achieved provided that the moisture content remains below 19%. The average moisture content of the natural cohesive soil was 16.3%, ranging from 8.0% to 31.0%. The maximum dry density of 1.78Mg/m³ was achieved at the optimum moisture content of 15% if the natural soils were reused as general cohesive fill as part of the proposed works.

10.6. Drainage & Excavatability

Some difficulties in excavation of trenches for drains in the made ground and bedrock should be anticipated. Consideration should be given to providing safe temporary support of excavations within made ground or where greater than 1.2m depth.

Any excavations should be benched at no greater than 1(v) in 2(h) to provide a suitable key into the surrounding strata and to maintain temporary stability of the excavations.

10.7. Chemical Precautions

To assess the potential for chemical attack of any buried concrete substructures by the existing soils, sulphate and pH testing was undertaken on thirteen samples of the made ground and natural soil as part of the chemical analysis suite indicate that Class DS-1 (ACEC Class AC-1s) can be used on this site in accordance with BRE Special Digest 1:2005.

11. ENVIRONMENTAL CONSIDERATIONS

11.1. Proposed Site Use

We understand that the current development proposal is for the construction of a new roundabout. A proposed layout plan is included in Appendix A.

The majority of the site will be covered by hardstanding, which will therefore break potential pathways between any underlying contaminants and future site users. However a 2.00m wide grassed verge will be provided around most of the highway area, as well as within the centre of the proposed roundabout. In these areas there is the potential for users of the footways to potentially come into contact with any shallow depth soils.

There is also a lesser potential for construction workers to come into contact with existing soils, and standard precautionary measures should be employed to reduce the potential for dermal contact and/or inhalation of dust or vapours. Good hygiene practises and facilities should also be provided as a standard precautionary measure.

Based on the proposed end use of the site any chemical testing should be compared against current Soil Guideline Values for a commercial land use scenario when carrying out a Generic Quantitative Risk Assessment (GQRA), due to the limited potential exposure to the underlying shallow depth soils.

11.2. On Site Contamination

Part of the site is known to have been previously been an opencast mine, with a subsequent **medium** risk of potential contamination resulting from this.

No obvious visual or olfactory signs of potential contamination were identified during the intrusive investigation undertaken. Although no obvious evidence of potential contamination was noted during the intrusive Ground Investigation works, the made ground was highlighted as the most likely source of any contamination. Chemical testing therefore focused on these soils, to determine the chemically suitability of the made ground for reuse.

Although the proposed end use for the site is not residential, after the chemical results were compared to guideline values for commercial/industrial there were no elevations, so the results were compared against a more sensitive land use, residential with the potential for homegrown produce guideline.

Soils chemical testing, summarised on Tables 2A to 2C, indicate that all values of heavy metals, semi-metals, Polcyclic Aromatic Hydrocarbons (PAH) and Total Petroleum Hydrocarbons (TPH) are below current GQRA threshold values, even for a residential end use with the potential for homegrown produce.

Soil leachate testing (see Table 2D) indicate that all levels are below the either Environmental Quality Standards (EQS) or UK Drinking Water Standards (DWS).

11.3. Ground Gases

The southern edge of the site consists of an infilled opencast mine. In addition, shallow mine workings were found during the investigation, which could potentially be a source of gas generation.

Post-investigation ground gas monitoring was undertaken on six visits since installation of the monitoring standpipes, as summarised on Table 3 in Appendix B. Trace amounts of methane (CH₄) were recorded throughout the monitoring, to a maximum of 0.2%, with a peak carbon dioxide (CO₂) concentration of 3.9%. Flow rates were generally low, with a maximum rate of -5.4 l/h across all of the monitoring locations and visits undertaken.

Unless any buildings or confined spaces are proposed the risk of ground gases is considered to be **negligible** as gases will be able to naturally vent to the

atmosphere and won't have the potential to accumulate in any enclosed spaces.

As a standard health and safety precaution the appointed contractor should ensure that any excavations requiring personnel-entry should be monitored for the presence of any hazardous ground gases prior to entry, and throughout the time that personnel are present within the excavation.

11.4. Invasive Species

The vegetation in and around the site has been examined. No obvious signs of potential invasive plant species were noted during the site walkover undertaken. However, because weedkiller could have been applied prior to carrying out our walkover survey, not seeing any signs of invasive plants during our brief time on site cannot be a guarantee that they are not present on or around the site.

Vigilance should be maintained throughout the development process for any signs of potential invasive plant species.

11.5. Remediation Requirements

The chemical testing undertaken has confirmed that the existing soils are suitable for retention or reuse close to the surface in any proposed soft landscaping areas.

Unless any buildings are proposed a ground gas risk assessment is not required as there are no areas where ground gases could accumulate and cause a potential risk to future receptors. However, any excavations that require personnel access should be monitored for ground gas emissions before access is granted, as a standard precautionary measure.

11.6. Imported Soils

If any imported soils are required to be brought to site to facilitate the proposed grassed verges, they will need to be validated to confirm their chemical suitability, and that they do not pose a risk to future receptors. The soils should be validated in accordance with Yorkshire And Lincolnshire Pollution Advisory Group (YALPAG) guidance "Verification Requirements for Cover Systems" version 4.1, dated June 2021.

The scope and frequency of analysis required to validate any imported soils will be dependent on the source and/or historical setting of the source site and the volume of soils imported to site.

12. WASTE DISPOSAL

Any waste arising from development of the site, such as excess soil or material deemed unsuitable for retention on site, should be disposed of in accordance with the Duty of Care Regulations. If any soils are being disposed directly to a landfill site Waste Acceptance Criteria (WAC) analysis may be required in addition to the basic

environmental screen testing undertaken, to determine the most appropriate disposal facility for the waste in accordance with the requirements of the current Landfill Directive.

The chemical testing results undertaken as part of the ground investigation works should be forwarded to any prospective waste handler to determine their formal waste classification for any soils requiring off-site disposal.

13. REGULATORY APPROVAL

The conclusions and recommendations in this report are based on a review of available information and observations made during the site walkover survey undertaken. The conclusions cannot be guaranteed to gain regulatory approval if this report is required as part of a planning application. If it is required as such it should be passed to the relevant regulatory bodies for their comment and approval.

14. FURTHER INVESTIGATION

A programme of treatment works for shallow mine workings will need to be compiled to substantially fill any voids where shallow mining has occurred and has the potential to adversely affect the surface stability of the site.

To determine the location of the highwall within the wooded area to the south of A635 Barnsley Road, a series of trial pits could be excavated across this area once access to the wooded area is available. If made ground extends beyond the achievable depth of the excavator, or if natural ground is not encountered, then a series of window sample holes / dynamic probe holes could be undertaken to assess the geometry of the former opencast highwall under the area of the new roundabout.

Report 151089GI | November 2021

APPENDIX A - PROPOSED LAYOUT DRAWINGS

APPENDIX B - TESTING SUMMARY TABLES

										Sheet	1 of 3
Exploratory Hole	Depth (m bgl)	Water Content (%)	Liquid Limit - LL (%)	Plastic Limit - PL (%)	Plasticity Index - IP (%)	Passing 0.425mm (%)	Modified Plasticity - IP' (%)	PSD D ₆₀	PSD D ₁₅	Dry Density (Mg/m³)	Soil Ref.
OH1	0.10	25					, ,				
OH1	0.50	27									
OH1	1.00	17	37	20	17	86	14.62				
OH10	0.10	24									
OH10	0.50	24									
OH10	1.00	31									
OH10	1.20	22									
OH10	2.70	11									
OH10	4.20	19									
OH10	5.70	20									
OH10	7.20	16									
OH10	8.70	7.2									
OH10	10.20	9									
OH10	11.70	6.6									
OH2	0.10	28									
OH2	0.50	22									
OH2	1.00	19	41	24	17	85	14.45				
OH4	1.00	23	43	23	20	90	18				
OH6	0.10	24									
OH6	0.50	23	50	24	26	89	23.14				
OH6	1.00	16									
OH6	1.20	23									
OH6	2.70	18									
OH6	4.20	13									
OH6	5.70	14									
OH6	7.20	7.9									
OH6	8.70	4.4									
OH6	10.20	7.1									
OH6	11.70	15									
OH7	0.10	25									
OH7	0.50	22									
OH7	1.00	22									
OH7	1.20	15									
OH7	2.70	27									
OH7	4.20	11									
OH7	5.70	13									
OH7	7.20	14									
OH7	8.70	10									
OH7	10.20	6.6									
OH7	11.70	11									
OH7	13.20	5.6									
OH7	14.70	5.7									
OH8	0.10	29									
OH8	0.10	19									
UП8	0.50	19									

GEOTECHNICAL RESULTS SUMMARY

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089 **TABLE 1**

										Sheet	2 of 3
Exploratory Hole	Depth (m bgl)	Water Content (%)	Liquid Limit - LL (%)	Plastic Limit - PL (%)	Plasticity Index - IP (%)	Passing 0.425mm (%)	Modified Plasticity - IP' (%)	PSD D ₆₀	PSD D ₁₅	Dry Density (Mg/m³)	Soil Ref.
OH8	1.00	18									
OH8	1.20	7.5									
OH8	2.70	9.4									
OH8	4.20	22									
OH8	5.70	17									
OH8	7.20	10									
OH8	8.70	21									
OH8	10.20	7.5									
OH8	11.70	9.4									
OH9	0.10	24									
OH9	0.50	30									
OH9	1.00	21	50	23	27	93	25.11				
OH9	1.20	22									
OH9	2.70	17									
OH9	4.20	10									
OH9	5.70	21									
OH9	7.20	8.1									
OH9	8.70	4.6									
OH9	10.20	13									
TP1	1.50	26						0.2			
TP2	1.50	12						2.725			
TP4	2.50	19									
TP5	2.50	21									
TP7	1.00	20	51	23	28	99	27.72				
TP7	1.50	19									
TP7	3.00	12									
TP9	0.50	20	45	24	21	96	20.16				
TP9	2.50	18						36.517	0.6		
WS01	0.40	11									
WS01	0.70	14	40	20	20	100	20				
WS02	0.20	23									
WS02	0.40	16									
WS02	0.60	14	36	20	16	80	12.8				
WS03	0.20	21									
WS03	0.60	19	48	25	23	100	23				
WS04	0.10	13									
WS04	0.50	8									
WS04	1.00	13									
WS05	0.20	19									
WS05	0.40	19									
WS05	1.00	19									
WS06	0.80	11									
WS06	1.30	18									
WS06	1.90	15									

GEOTECHNICAL RESULTS SUMMARY

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089 **TABLE 1**

										Sheet	3 of 3
Exploratory Hole	Depth (m bgl)	Water Content (%)	Liquid Limit - LL (%)	Plastic Limit - PL (%)	Plasticity Index - IP (%)	Passing 0.425mm (%)	Modified Plasticity - IP' (%)	PSD D ₆₀	PSD D ₁₅	Dry Density (Mg/m³)	Soil Ref.
WS07	0.15	16									
WS07	0.70	15									
WS07	1.30	18									
WS07	1.80	15	40	21	19	100	19				
WS07	2.20	17									
WS07	2.90	14									
WS07	3.70	12									
WS08	0.20	17									
WS08	0.40	19									
WS08	0.90	17									
WS08	1.80	16	50	26	24	100	24				
WS08	2.50	16									
WS09	0.10	20									
WS09	0.60	12									
WS09	0.90	13	39	20	19	100	19				
WS09	1.50	15									
WS09	1.90	13									
WS10	0.20	19									
WS10	0.90	13	35	19	16	80	12.8				
WS10	1.80	13									
WS11	0.10	20									
WS11	1.80	14									
WS12	0.55	15									
WS12	0.80	16									
WS13	0.20	19									
WS13	0.70	18									
WS13	1.80	13	33	17	16	95	15.2				

GEOTECHNICAL RESULTS SUMMARY

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089 **TABLE 1**

						R	eside	ntial	With I	Home	grow	n Pro	duce	(RwH	P)				Sh	eet 1 o	of 1
			Toxic										Phytoto	xic		Organ	ics	Other	,		
Explorator Hole	y Depth (m)	Date	Arsenic As	Beryllium Be	Cadmium Cd	Chromium (III) Cr	Chromiun (VI) Cr	Lead Pb	Mercury Hg	Selenium Se	Nickel Ni	Vanadiur V	n Copper Cu	Boron B	Zinc Zn	SOM	Phenols	Cyanide (total) Cn	Asbestos	Sulphate g/l	pH (units)
ОНЗ	0.70	21/04/2021	-		-	-	-	-	-	-	-		-		-					-	7.7
OH4	0.70	21/04/2021	-		-	-	-	-	-	-	-		-		-					-	7.4
TP1	1.00	22/04/2021	-		-	-	-	-	-	-	-		-		-					-	7.1
TP2	0.20	22/04/2021	-		-	-	-	-	-	-	-		-		-					-	7.4
TP4	3.00	23/04/2021	-		-	-	-	-	-	-	-		-		-					-	7.0
TP5	0.50	22/04/2021	-		-	-	-	-	-	-	-		-		-					-	7.3
TP5	3.00	22/04/2021	-		-	-	-	-	-	-	-		-		-					-	6.9
TP7	1.00	22/04/2021	-		-	-	-	-	-	-	-		-		-						7.8
WS01	0.10	27/09/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	3.4	-	-	N.D	-	7.8
WS06	0.20	28/09/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	0.8	-	-	N.D	-	7.8
WS11	0.50	28/09/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	3.3	-	-	N.D	-	7.7
WS12	0.20	27/09/2021	-	-	-	-	-	-	-	-	-	-	-	-	-	3.4	-	-	N.D	-	7.1

						1	1				I I		I I				l	1
Number	12	4	12		12	12	12	12	12	4	12	4	12	4	4	4	11	12
Average	10.91	1.28	0.37		1.00	39.50	0.21	0.97	30.42	36.75	34.00	1.00	117.17	2.73	0.50	1.00	0.05	7.42
Minimum	4	1	0.1		1	16	0.05	0.5	17	29	15	8.0	62	8.0	0.5	1	0.01	6.9
Maximum	22	1.6_	2.4		1	153	0.5	1.8	50	42	75	1.4	290	3.4	0.5	1	0.18	7.8
Standard Dev	5.26	0.25	0.65		0.00	37.39	0.22	0.39	11.29	5.56	16.57	0.28	63.40	1.28	0.00	0.00	0.05	0.34
US95	13.6	00	0.7			58.9	0.3	1.2	36.3 180		42.6	1.3	150.0		0.5	1.0	0.1	7.6
Source: LQM S4UL 2015	37	1.7	11	910	6.0	200	40	250	180	410	2400	290	3700	%	280	50	0.5	5 to 9
	37 cs4L		26		_26 cs₄	210 CS4L										DUTCH	BRE	

Notes:

- Levels expressed as mg/kg (ppm) unless stated.
 Soil guideline values are for RwHP.
- 3. Tested levels below S4UL are shown as -For actual result see certificate sheet.

CHEMICAL RESULTS ASSESSMENT

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089 **TABLE 2A**

						Res	identia	d With	ı Hon	negro	wn P	roduc	e (Rw	/HP)					
			Proba	ble carcino	ogens (2)	Poss	ible carcinog	gens ⁽²⁾					•	•				Sheet 1	of 1
Explorator Hole	Depth (m)	Soil Organic Matter (%)	Benzo (a) Anthracene		Benzo (a) Pyrene	Chrysene	Benzo (b&k) Fluoranthene	Indeno (1,2,3-cd) Pyrene	Fluorene	Phen- anthrene	Pyrene	Acenaph- thylene	Benzo (g,h,i) Perylene	Acenaphthene	Anthracene	Naphthalene	Fluoranthene	Carcinogenic PAH Total	PAH 16 Total
OH3	0.70		-	0.4	-	-	-	-	-	-	-	-	-	-	-	-	-	2.20	4
OH4	0.70		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.70	1.6
TP1	1.00		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.70	1.6
TP2	0.20		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.70	1.6
TP4	3.00		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.70	1.6
TP5	0.50		-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	0.70	1.6
TP5	3.00		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.70	1.6
TP7	1.00		-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	0.70	1.6
WS01	0.10	3.4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.34	0.79
WS06	0.20	0.8	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	0.20	0.34
WS11	0.50	3.3	-	-	-	-	-	-	-	-	-	-	-	-	ı	-	-	0.16	0.34
WS12	0.20	3.4	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	0.42	0.84

īi L																		
A	Number	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12		12
<u>≥</u>	Average		0.10	0.10	0.10	0.20	0.10	0.08	0.09	0.11	0.07	0.12	0.07	0.08	0.07	0.12		1.46
_	Minimum	0.02	0.02	0.02	0.03	0.05	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02		0.34
RE	Maximum	0.2	0.4	0.3	0.3	0.6	0.4	0.2	0.2	0.3	0.1	0.6	0.1	0.2	0.1	0.3		4
2	Standard Dev	0.05	0.10	0.07	0.07	0.14	0.10	0.05	0.04	0.07	0.04	0.16	0.04	0.05	0.04	0.07		0.95
5	US95		0.2	0.1	0.1	0.3	0.2	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.2		2.0
380	Source: LQM S4UL 2015	7.2	0.24	2.2	15	2.6	27	170	95	620	170	320	210	2400	2.3	280		
ò				5.0													1	

4 Neville Street, Wakefield, WF1 5EF | Tel: 01924 376622 | E-mail: info@abbeydalebec.com

- 1. Levels expressed as mg/kg (ppm) unless stated.
 2. International Agency for Research on Cancer (IARC) classifications
 3. Soil guideline values are for RwHP.
- 4. Tested levels below S4UL are shown as -For actual result see certificate sheet.
- 5. Levels presented for SOM 1% -

Higher concentrations may be permissible

PAH RESULTS ASSESSMENT

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089

TABLE 2B

	Residential With Homegrown Produce (RWHP) Sheet 1 of 1																	
			Aliphatic								Aromatic							
Exploratory Hole	y Depth (m)	Date	Aliphatic C5-C6 mg/kg	Aliphatic C6-C8 mg/kg	Aliphatic C8-C10 mg/kg	Aliphatic C10-C12 mg/kg	Aliphatic C12-C16 mg/kg	Aliphatic C16-C21 mg/kg	Aliphatic C21-C35 mg/kg	Aromatic C6-C7 mg/kg	Aromatic C7-C8 mg/kg	Aromatic C8-C10 mg/kg	Aromatic C10-C12 mg/kg	Aromatic C12-C16 mg/kg	Aromatic C16-C21 mg/kg	Aromatic C21-C35 mg/kg		
TP1	1.00			-	-	-	-	-	-	-	-	-	-	-	-	-		
TP4	2.00			-	-	-	-	-	-	-	-	-	-	-	-	-		
TP5	2.00			-	-	-	-	-	-	-	-	-	-	-	-	-		
TP8	1 00			_	_	_	_	_	_	_	_	_	_	_	_	_		

ECT	Number	4	4	4	4	4	4	4	4	4	4	4	4	4	4
AB	Average	0.01	0.01	0.01	1.50	1.20	1.50	3.40	0.01	0.01	0.01	0.90	0.50	0.60	1.40
3PJ	Minimum	0.01	0.01	0.01	1.5	1.2	1.5	3.4	0.01	0.01	0.01	0.9	0.5	0.6	1.4
789.	Maximum	0.01	0.01	0.01	1.5	1.2	1.5	3.4	0.01	0.01	0.01	0.9		0.6	1.4
P 1510	Standard Dev US95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
N - RWH	Source: LQM S4UL 2015	42	100	27	130 (48)v	1100 (24)	65000* (8.48)	65000* (8.48)	70	130	34	74	140	260	1100

- Notes:

 1. Levels expressed as mg/kg (ppm) unless stated.

 2. Soil guideline values are for RwHP.

 3. Tested levels below S4UL are shown as For actual result see certificate sheet.
- 4. Levels presented for SOM 1% -
- Higher concentrations may be permissible
- 5. * Combined analysis for C16 to C35 < 65000 mg/kg

TPH RESULTS ASSESSMENT

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089 **TABLE 2C**

Sheet	1	of	1
-------	---	----	---

Exploratory Hole	Depth (m)	Date	Class	Arsenic As	Beryllium Be	Boron B	Cadmium Cd	Chromium (total) Cr	Copper Cu	Lead Pb	Mercury Hg	Nickel Ni	Selenium Se	Vanadium V	Zinc Zn	Cyanide (tot) Cn (mg/l)	Phenols (mg/l)	Sulphate (mg/l)	pH (units)	PAH (Total)
TP4	2.00	23/04/2021		-		-	-	-	-	-	-	-	-		-			-	5.60	
TP5	2.00	22/04/2021		-		-	-	-	-	-	-	-	-		-				5.50	

Number	2	0	2	2	2	2	2	2	2	2	0	2	0	0	1	2	0
Average	0.2		12.00	0.030	1.025	2.15	0.6	0.0	9.50	0.9		9.7			2	5.6	
Minimum	0.16		12	0.03	0.25	0.9	0.55	0.01	1	0.54		3.3			2.1	5.5	
Maximum	0.32		12	0.03	1.8	3.4	0.55	0.02	18	1.3		16			2.1	5.6	
Standard Dev	0.1		0.00		1.096	1.77	0.0	0.0	12.02	0.5		9.0				0.1	
US95	0.7		12.00	0.030	5.918	10.04	0.6	0.0	63.17	3.3		49.7				5.9	
⁴Water Supply Regulations (2000)	10		1000	5	50	2000	25	1	20	10	50	250	50		250		0.1
⁴Environmental Quality Standard	50	12	2000	0.09	4.7	6	7.2	0.05	20	250	20*	50	1000	0.1**	400	6-9	0.1

Notes:

- 1. Levels expressed as ug/l (ppb) unless stated.
 2. * Assuming <100mg CaCO3/1
 3. ** 0.1 = LOD, EQS limits = 0.03 mg/l
 4. Elevations assessed against WSR and EQS whichever is lowest limit value. Concentrations below limit values given as -.

LEACHATE RESULTS ASSESSMENT

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089 **TABLE 2D**

												Sileet 1 01 3
Exploratory Hole	Date/Time	Flow Rate I/h	Methane Peak CH ₄ %	Carbon Monoxide CO (ppm)	Hydrogen Sulphide H ₂ S (%)	Carbon Dioxide CO ₂ (%)	Oxygen O ₂ (%)	VOCs ppm	Water Level / mBGL	Pressure . (mbars)	Pressure Rise/Fall /Steady	Remarks
OH1	10/05/2021	-0.6	0.0	0.0	0.0	3.6	13.5	1.0	2.9	994	S	Overcast, dry, 13°C.
OH1	14/05/2021	-2.2	0.2	0.0	0.0	0.4	17.7	1.0	2.95	1009	F	Cloudy, dry, 11°C.
OH1	21/05/2021	0.0	0.0	0.0	0.0	0.3	20.1	1.0	2.85	985	S	Cloudy, drizzly, 12°C.
OH1	04/06/2021	0.0	0.0	0.0	0.0	0.9	19.7	1.0	3.02	1026	S	Hot, sunny, dry, slight breeze, 17°C.
OH1	11/06/2021	-2.7	0.0	0.0	0.0	1.0	20.0	1.0	3	1015	S	Cloudy, dry, windy, 18°C.
OH1	17/06/2021	0.0	0.0	0.0	0.0	1.2	19.7	1.0	3.05	1010	S	Overcast, dry, slight breeze, 16°C.
OH10	10/05/2021	-5.4	0.1	0.0	0.0	0.2	16.7	1.0	0.98	994	S	Overcast, dry, 13°C.
OH10	14/05/2021	0.0	0.2	0.0	0.0	2.0	15.7	1.0	1.05	1010	S	Cloudy, dry, 11°C.
OH10	21/05/2021	-3.3	0.0	0.0	0.0	2.1	10.7	1.0	0.68	986	S	Cloudy, drizzly, 12°C.
OH10	04/06/2021	4.0	0.0	0.0	0.0	3.1	18.5	1.0	1.13	1025	S	Hot, sunny, dry, slight breeze, 17°C.
OH10	11/06/2021	-0.1	0.0	0.0	0.0	2.7	18.6	1.0	1.1	1015	F	Cloudy, dry, windy, 18°C.
OH10	17/06/2021	0.0	0.0	0.0	0.0	3.1	19.6	1.0	1.11	1010	F	Overcast, dry, slight breeze, 16°C.
OH11	10/05/2021	0.0	0.0	0.0	0.0	2.3	8.9	1.0	2.95	994	S	Overcast, dry, 13°C.
OH11	14/05/2021	0.0	0.2	0.0	0.0	1.6	8.0	1.0	2.92	1011	S	Cloudy, dry, 11°C.
OH11	21/05/2021	0.0	0.0	0.0	0.0	1.7	10.4	1.0	2.68	985	F	Cloudy, drizzly, 12°C.
OH11	04/06/2021	0.4	0.0	0.0	0.0	3.1	3.0	1.0	3.09	1025	S	Hot, sunny, dry, slight breeze, 17°C.
OH11	11/06/2021	0.0	0.0	0.0	0.0	3.9	2.2	1.0	3.15	1017	S	Cloudy, dry, windy, 18°C.
OH11	17/06/2021	0.0	0.0	0.0	0.0	3.3	3.9	1.0	3.25	1011	S	Overcast, dry, slight breeze, 16°C.
OH2	10/05/2021	0.0	0.1	0.0	0.0	0.9	14.7	1.0	2.7	994	S	Overcast, dry, 13°C.
OH2	14/05/2021	0.0	0.2	0.0	0.0	1.5	13.4	1.0	2.75	1011	S	Cloudy, dry, 11 ^o C.
OH2	21/05/2021	0.0	0.0	0.0	0.0	2.0	12.0	1.0	2.66	986	R	Cloudy, drizzly, 12°C.
OH2	04/06/2021	0.2	0.0	0.0	0.0	0.7	19.0	1.0	2.85	1025	S	Hot, sunny, dry, slight breeze, 17°C.

NR = Not recorded
-If required, on completion of any remaining monitoring visits, a full ground gas risk assessment including a complete Table 3 will be issued under separate cover. -On receipt this assessment should be included within Appendix B of this site investigation report.

GAS MONITORING RESULTS

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089 TABLE 3

												Sheet 2 of 3
Exploratory Hole	Date/Time	Flow Rate I/h	Methane Peak CH ₄ %	Carbon Monoxide CO (ppm)	Hydrogen Sulphide H ₂ S (%)	Carbon Dioxide CO ₂ (%)	Oxygen O ₂ (%)	VOCs ppm	Water Level / mBGL	Pressure (mbars)	Pressure Rise/Fall /Steady	Remarks
OH2	11/06/2021	0.0	0.0	0.0	0.0	1.7	17.9	1.0	2.85	1016	F	Cloudy, dry, windy, 18°C.
OH2	17/06/2021	0.0	0.0	0.0	0.0	2.3	17.1	1.0	2.83	1011	S	Overcast, dry, slight breeze, 16°C.
OH3	10/05/2021	0.0	0.0	0.0	0.0	0.8	14.4	1.0	2.85	994	S	Overcast, dry, 13°C.
OH3	14/05/2021	0.0	0.2	0.0	0.0	0.9	13.8	1.0	3.16	1011	S	Cloudy, dry, 11°C.
OH3	21/05/2021	0.0	0.0	0.0	0.0	0.9	14.3	1.0	3.19	986	S	Cloudy, drizzly, 12°C.
OH3	04/06/2021	0.2	0.0	0.0	0.0	1.3	13.4	1.0	4.05	1025	S	Hot, sunny, dry, slight breeze, 17°C.
OH3	11/06/2021	0.3	0.0	0.0	0.0	2.0	13.2	1.0	4.48	1017	S	Cloudy, dry, windy, 18°C.
OH3	17/06/2021	0.0	0.0	0.0	0.0	3.4	11.6	1.0	4.72	1011	S	Overcast, dry, slight breeze, 16°C.
OH4	10/05/2021	0.0	0.0	0.0	0.0	1.4	10.6	1.0	1.3	994	S	Overcast, dry, 13°C.
OH4	14/05/2021	0.0	0.1	0.0	0.0	0.1	16.8	1.0	1.35	1011	S	Cloudy, dry, 11°C.
OH4	21/05/2021	0.7	0.0	0.0	0.0	1.8	9.8	1.0	1.25	986	S	Cloudy, drizzly, 12°C.
OH4	04/06/2021	0.0	0.0	0.0	0.0	0.7	18.1	1.0	1.74	1025	S	Hot, sunny, dry, slight breeze, 17 ^o C.
OH4	11/06/2021	0.1	0.0	0.0	0.0	2.3	14.2	1.0	1.86	1017	S	Cloudy, dry, windy, 18°C.
OH4	17/06/2021	0.0	0.0	0.0	0.0	2.2	14.7	1.0	1.9	1011	S	Overcast, dry, slight breeze, 16°C.
OH5	10/05/2021	0.0	0.0	0.0	0.0	0.2	16.9	1.0	3.35	994	S	Overcast, dry, 13°C.
OH5	14/05/2021	-3.0	0.2	0.0	0.0	0.2	17.6	1.0	3.37	1011	S	Cloudy, dry, 11 ^o C.
OH5	21/05/2021	0.0	0.0	0.0	0.0	0.1	18.6	1.0	3.22	986	S	Cloudy, drizzly, 12°C.
OH5	04/06/2021	0.3	0.0	0.0	0.0	0.2	18.0	1.0	3.44	1025	S	Hot, sunny, dry, slight breeze, 17°C.
OH5	11/06/2021	0.0	0.0	0.0	0.0	0.3	19.2	1.0	3.4	1017	S	Cloudy, dry, windy, 18°C.
OH5	17/06/2021	0.0	0.0	0.0	0.0	0.4	19.1	1.0	3.42	1011	S	Overcast, dry, slight breeze, 16°C.
OH6	10/05/2021	0.0	0.1	0.0	0.0	0.2	17.7	1.0	1.08	994	S	Overcast, dry, 13°C.
OH6	14/05/2021	0.0	0.2	0.0	0.0	0.4	17.8	1.0	1.13	1011	S	Cloudy, dry, 11°C.

NR = Not recorded
-If required, on completion of any remaining monitoring visits, a full ground gas risk assessment including a complete Table 3 will be issued under separate cover.
-On receipt this assessment should be included within Appendix B of this site investigation report.

GAS MONITORING RESULTS

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

Number: 151089 TABLE 3

							1					
Exploratory Hole	Date/Time	Flow Rate I/h	Methane Peak CH ₄ %	Carbon Monoxide CO (ppm)	Hydrogen Sulphide H ₂ S (%)	Carbon Dioxide CO ₂ (%)	Oxygen O ₂ (%)	VOCs ppm	Water Level / mBGL	Pressure (mbars)	Pressure Rise/Fall /Steady	Remarks
OH6	21/05/2021	0.0	0.0	0.0	0.0	0.4	19.9	1.0	0.97	986	S	Cloudy, drizzly, 12°C.
OH6	04/06/2021	0.0	0.0	0.0	0.0	0.4	20.3	1.0	1.2	1025	S	Hot, sunny, dry, slight breeze, 17°C.
OH6	11/06/2021	0.4	0.0	0.0	0.0	0.5	20.0	1.0	1.06	1016	S	Cloudy, dry, windy, 18°C.
OH6	17/06/2021	0.0	0.0	0.0	0.0	0.6	20.2	1.0	1.18	1011	S	Overcast, dry, slight breeze, 16°C.
OH7	10/05/2021	0.0	0.1	0.0	0.0	0.3	16.9	1.0	1.16	994	S	Overcast, dry, 13°C.
OH7	14/05/2021	-2.0	0.2	0.0	0.0	0.4	16.6	1.0	1.18	1011	S	Cloudy, dry, 11°C.
OH7	21/05/2021	0.0	0.0	0.0	0.0	0.4	16.6	1.0	1.05	986	S	Cloudy, drizzly, 12°C.
OH7	04/06/2021	0.2	0.0	0.0	0.0	0.4	19.8	1.0	1.25	1025	S	Hot, sunny, dry, slight breeze, 17°C.
OH7	11/06/2021	0.0	0.0	0.0	0.0	1.6	18.6	1.0	1.23	1016	S	Cloudy, dry, windy, 18°C.
OH7	17/06/2021	0.0	0.0	0.0	0.0	0.8	19.9	1.0	1.25	1011	S	Overcast, dry, slight breeze, 16°C.
OH8	10/05/2021	0.0	0.1	0.0	0.0	1.1	17.3	1.0	1.12	994	S	Overcast, dry, 13°C.
OH8	14/05/2021	0.0	0.2	0.0	0.0	0.2	17.7	1.0	1.26	1010	s	Cloudy, dry, 11°C.
OH8	21/05/2021	0.0	0.0	0.0	0.0	0.1	19.0	1.0	1.1	985	F	Cloudy, drizzly, 12°C.
OH8	04/06/2021	0.0	0.0	0.0	0.0	0.0	20.7	1.0	1.34	1026	R	Hot, sunny, dry, slight breeze, 17°C.
OH8	11/06/2021	0.6	0.0	0.0	0.0	0.1	20.7	1.0	1.3	1016	F	Cloudy, dry, windy, 18°C.
OH8	17/06/2021	0.0	0.0	0.0	0.0	0.3	20.4	1.0	1.3	1010	S	Overcast, dry, slight breeze, 16°C.
ОН9	10/05/2021	0.0	0.0	0.0	0.0	0.9	15.7	1.0	0.95	994	S	Overcast, dry, 13°C.
ОН9	14/05/2021	0.0	0.2	0.0	0.0	0.3	17.9	1.0	1	1010	F	Cloudy, dry, 11°C.
ОН9	21/05/2021	0.0	0.0	0.0	0.0	0.2	20.0	1.0	0.89	986	S	Cloudy, drizzly, 12°C.
ОН9	04/06/2021	0.0	0.0	0.0	0.0	0.6	20.0	1.0	1.08	1025	S	Hot, sunny, dry, slight breeze, 17°C.
ОН9	11/06/2021	2.1	0.0	0.0	0.0	0.6	20.4	1.0	1.05	1016	S	Cloudy, dry, windy, 18°C.
ОН9	17/06/2021	0.0	0.0	0.0	0.0	0.5	20.4	1.0	1.05	1011	S	Overcast, dry, slight breeze, 16°C.

NR = Not recorded
-If required, on completion of any remaining monitoring visits, a full ground gas risk assessment including a complete Table 3 will be issued under separate cover.
-On receipt this assessment should be included within Appendix B of this site investigation report.

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

GAS MONITORING RESULTS

TABLE 3

Number: 151089

4 Neville Street, Wakefield, WF1 5EF | Tel: 01924 376622 | E-mail: info@abbeydalebec.com

MOISTURE-DENSITY RELATIONSHIP

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

TP5 / 2.5m Number: 151089

MOISTURE-DENSITY RELATIONSHIP

Client: BMBC

Project: A635 Barnsley Road, Goldthorpe

TP7 / 1.5m Number: 151089

APPENDIX C - SYMAS REPORT

MINERAL REPORT

Date:

28th May 2019

My Ref:

M108A/13

CONFIDENTIAL

NEW ROUNDABOUT PROPOSAL- A635 BARNSLEY ROAD GOLDTHORPE APPROACH

SITUATION A new ro

A new roundabout is proposed on the A635 in order to access adjacent employment land. The location of the proposed roundabout is illustrated on the

attached drawing M108A/13A.

This report provides a review of the mining and geological history of the site and makes recommendations with regard to mining legacy risks the requirement for

site investigation and remediation.

GEOLOGY

Geological records show that the site is located on shales, mudstones and

sandstones of the Middle Coal Measures.

The Shafton Coal Seam (approx. 1400mm thick) is conjectured to outcrop to the

south and dips gently to the north at approximately 3 to 5 degrees.

There are no geological faults or fissuring recorded in the immediate area.

MINING

Opencast

The Shafton Coal Seam was opencast in this vicinity in the early to mid-1990's. The <u>approximate</u> position of the opencast extraction is detailed on the attached drawing M108A/13A as reproduced from British Geological survey sheet SE40SW. SYMAS does not have a copy of the opencast abandonment plan. (if one exists)

It is estimated that the excavation depth ranged from between 0m near the outcrop position to around 15m in the north.

The opencast high wall is likely to be positioned just to the north of the extraction area through the proposed roundabout position.

Shallow Mining

Shallow historic mine workings in the Shafton Coal Seam were encountered during the opencast works. The opencast excavation removed the remnant coal and mining voids and the entire excavation was then backfilled. Two mine entries were encountered and removed in the approximate positions illustrated on the attached drawing. Further unrecorded mine workings may be present beneath the roundabout position to the north of the opencast area.

Tel: (01226)772689 Fax: (01226)772688

E-mail: symas@barnsley.gov.uk **Website:** www.barnsley.gov.uk/symas

MINERAL REPORT

Continuation Sheet

2

Deep Mining

The site has been affected by deep coal mining operations in the past but will not be affected by deep mining subsidence for the foreseeable future.

FORMER LAND USE Other than the former opencast site there are no other records of any industrial activities within the vicinity of this site.

LANDFILL

According to the Borough Landfill Register the site does not lie within 250 m of a landfill operation.

CONCLUSIONS

- 1. The site is stable from the deep mining subsidence aspect and it should remain so for the foreseeable future.
- 2. For planning permission purposes the site is located in a High Risk Coal Authority coal mining referral area due to the presence of opencast backfill, the opencast highwall and the potential for unrecorded shallow coal mine workings to the north of the opencast extraction area.

The site is therefore at risk from a number of shallow mining legacy risks including creep settlement of opencast backfill, differential settlement across the highwall and ground instability due to the potential presence of shallow coal mine workings.

A coal mining risk assessment will therefore be required to accompany the planning application.

- 3. A geotechnical site investigation and appraisal of the site will be required to
 - confirm the position of the opencast highwall
 - investigate the suitability and level of compaction of the opencast backfill
 - confirm the depth and condition of the Shafton Coal seam to the north of the highwall.
 - provide recommendations regarding the need for any ground remediation or design mitigation to ensure the ongoing stability and sustainability of the proposed roundabout and highway.
- 4. Precautions with regard to potential fugitive gases should be employed during site investigation works and where site operatives are required to work in deep/confined excavations.

MINERAL REPORT

Continuation Sheet

THIS REPORT IS BASED ON AND LIMITED TO THE RECORDS IN THE POSSESSION OF SYMAS AT THE TIME THE ENQUIRY IS ANSWERED.

Copyright in this mineral stability report belongs to SYMAS. All rights are reserved and unauthorised use is prohibited. Copyright is not transferred to external parties by possession of this report, however, those for whom the report is compiled have the right to use it.

This report was prepared by Paul James on the 28th May, 2019.

P. James,

Principal Mining Engineer.

APPENDIX D - DUNELM FACTUAL REPORT

CONTRACT NO: D10371

FACTUAL REPORT ON SITE INVESTIGATION FOR LAND AT

A635 BARNSLEY ROAD, GOLDTHORPE

PREPARED FOR:

BARNSLEY METROPOLITAN BOROUGH COUNCIL

• FOUNDATION HOUSE • ST. JOHN'S ROAD • MEADOWFIELD • DURHAM • DH7 8TZ • TEL: 0191 378 3151 • FAX: 0191 378 3157

Contract No.	D10371
Job Name	A635 BARNSLEY ROAD, GOLDTHORPE

REPORT REVISIONS

Revision No.	Issue Date	Details
D10371/00	03.06.2021	Draft report for approval

VERIFICATION

Revision No.	Issue Date		Written By	Checked By	Verified By
D10371/00	03.06.2021	Initials	SH	BL	JH
		Signature	Stewart		

CONTENTS

1	INTE	RODUCTION	1
	1.1	SCOPE OF WORKS	1
	1.2	GENERAL	1
2	SITE	E LOCATION & FEATURES	1
3	FIEL	LDWORK	2
	3.1	INTRODUCTION	2
	3.2	EXPLORATORY HOLE LOCATIONS	2
	3.3	STRATA DESCRIPTIONS	2
	3.4	SAMPLING	2
	3.5	IN-SITU TESTING	3
	3.6	MONITORING WELLS	3
4	LAB	BORATORY TESTING	3
	4.1	GEOTECHNICAL	3
	4.2	CHEMICAL	3

LIST OF APPENDICES

APPENDIX A	DRAWINGS
APPENDIX B	EXPLORATORY HOLE RECORDS
APPENDIX C	PHOTOGRAPHS
APPENDIX D	GEOTECHNICAL LABORATORY RESULTS
APPENDIX E	CHEMICAL LABORATORY RESULTS
APPENDIX F	DUNELM NOTES ON LIMITATIONS

1 INTRODUCTION

1.1 SCOPE OF WORKS

Dunelm Geotechnical and Environmental Ltd (Dunelm) were commissioned by Barnsley Metropolitan Borough Council (BMBC), to carry out a site investigation of land at A635 Barnsley Road, Goldthorpe with Abbeydale Building Environment Consultants (ABEC) acting as geotechnical consulting engineers.

The objectives of the investigation were as follows:

- To determine the typical nature, thickness and engineering parameters of the made ground and natural strata.
- To determine the nature and extent of potential contamination within the site.
- To recover samples of made ground and natural strata for chemical and geotechnical laboratory testing.

Fieldwork was undertaken generally as specified in the contract documents provided by BMBC. The fieldwork was carried out between 12th April and 28th April 2021.

Following the completion of the fieldwork selected soil samples were submitted for a range of geotechnical and chemical testing.

This report presents the factual information obtained during the investigation; interpretation of this data was outside the remit of this report.

1.2 GENERAL

Guidance contained in the following Standards has been followed during the investigation work as appropriate: BS5930:2015+A1:2020, BS10175:2011+A2:2017; BS1377-1:2016; BS EN ISO 14688-2:2018 and BS EN ISO 14689:2018.

The information contained in this report is as indicated on the site plan shown in Appendix A, and the areas accessible during the ground investigation.

This report is for the exclusive use of BMBC and their agents. No third party may rely upon, or reproduce, the contents of this report without the written approval of Dunelm.

This report is based on the data obtained from the exploratory holes and from the subsequent tests carried out. There is always a possibility of variation in the ground conditions between boreholes. Responsibility cannot be accepted for conditions not revealed by the investigation. Any diagram or opinion of the possible configuration of the findings is conjectural and given for guidance only, and confirmation of intermediate ground conditions should be considered if deemed necessary. Dunelm's Notes on Limitations are included in Appendix F.

2 SITE LOCATION & FEATURES

The site is located 20km north east Sheffield city centre. The approximate centre of the site is at National Grid Reference 444421, 404022.

A site location plan is presented as Drawing No. D10371/01 in Appendix A to this report.

The site is a proposed highway junction on an existing section of the A635 Barnsley Road near Goldthorpe, in South Yorkshire. The site is currently a farmers field, with the existing Barnsley Road highway running roughly east west through the northern portion of the site. A cluster of trees

separates the highway from the field, with a track through the trees granting access into the field. The ground slopes gently towards the south.

3 FIELDWORK

3.1 INTRODUCTION

The fieldwork comprised the following:

Number	Exploratory Hole Label	Method
12	OH1, OH1A, OH2, OH3, OH4, OH5,	Rotary Open Hole Drilling
	OH6, OH7, OH8, OH9, OH10, OH11	
7	TP1, TP2, TP4, TP5, TP7, TP8, TP9	Machine Excavated Trial Pit

Termination reasons are listed in the table below:

Number	Exploratory Hole Label	Termination reason
6	TP1, TP2, TP4, TP5, TP8, TP9	Due to pit instability

On completion all exploratory positions were backfilled immediately in accordance with instructions from BMBC.

Photographs of the above mentioned trial pits are presented in Appendix C.

3.2 EXPLORATORY HOLE LOCATIONS

The locations of each of the above exploratory holes were provided by BMBC prior to mobilisation to site. The approximate locations are shown on Drawing No's. D10371/02 & D10371/03 in Appendix A.

3.3 STRATA DESCRIPTIONS

Descriptions of the strata encountered in each of the exploratory holes are presented on the exploratory hole record sheets in Appendix B to this report. Strata descriptions are based on an examination of the strata, together with consideration of the in-situ testing results and laboratory test data.

Strata descriptions have been completed in accordance with BS5930:2015+A1:2020, BS EN ISO 14688-2:2018 and BS EN ISO 14689:2018 as appropriate.

3.4 SAMPLING

Samples were recovered during the investigation works in general accordance with the contract specification.

Samples of soil for chemical analysis were placed into suitable sample containers as specified by the chemical testing laboratory. Samples of soil for geotechnical testing were recovered in accordance with the principles of BS EN ISO 22475-1:2006 and BS5930:2015+A1:2020.

3.5 IN-SITU TESTING

In-situ Standard Penetration Tests (SPTs) were carried out in the rotary boreholes at a frequency in general accordance with the contract specification.

SPT tests were carried out in accordance with BS EN ISO 22476-3 2005 + A1:2011 in order to determine the relative density of the granular soils and an indication of the undrained shear strength of cohesive soils. The results of these tests are shown as 'N' values on the exploratory hole records, with the blow counts for each increment shown in brackets.

In situ hand shear vane tests were carried out at various locations. The results are presented at the relevant depth of the borehole logs included in Appendix B.

3.6 MONITORING WELLS

On completion of drilling, monitoring wells were installed in selected boreholes to enable BMBC to carry out subsequent gas and groundwater monitoring. The construction of the wells was as specified during the works by ABEC. Details of the installations are shown on the exploratory hole records and summarised in Table B1 in Appendix B.

Each well consisted of a lower slotted section of 50mm diameter HDPE standpipe surrounded by single size non-calcareous gravel, with an upper section of plain HDPE pipe surrounded by a bentonite cement seal.

Each of the wells was fitted with a suitable bung and gas tap to allow for gas and groundwater monitoring, and a protective steel cover to prevent damage to the installation.

Boreholes not fitted with a monitoring installation were backfilled in general accordance with the specification or subsequent instruction from ABEC.

4 LABORATORY TESTING

4.1 GEOTECHNICAL

Geotechnical laboratory testing, as scheduled by ABEC, was carried out on selected samples in accordance with techniques in BS 1377-1:2016 and BRE SD1: 2005. The testing was undertaken by a UKAS accredited laboratory and the results are presented in Appendix D.

4.2 CHEMICAL

Samples as scheduled by ABEC were tested for a range of contaminants by an MCERTS accredited laboratory. The results of these tests are presented in Appendix E.

APPENDIX A

Drawings

Ordnance Survey	cor	vright 2012 All	rights reserved	Licence number	100048410
Ordinance Survey	e Ciowii col	MINUIL ZUIZ MII	Hullis reserved.	FICELICE HUILIDEL	100040410.

DUNELM	Contract: A635 Barnsley Road, Goldthorpe Contract No D10371									
STATEGRASME & ENGIL BAMENTAL	Client: Barnsley Metropolitan Borough Council									
TEL: 0191 378 3151	Drawing Title:	Site Location Pla	n							
Drawing & Revision No: D10371/01 - 00	Date: May 2021	Scale: NTS	Status: Final	Drawn by: SH						

Ν

APPENDIX B

Exploratory Hole Records

INFORMATION GENERALLY RELATING TO ALL EXPLORATORY HOLE RECORDS

GENERAL

Borehole/Trial Pit No

The exploratory hole identity number used throughout the report.

Site

The ground investigation project name.

Client

Client's name responsible for funding the ground investigation project.

Ground Level and Location

The precise ground level in meters above Ordnance Datum at the exploratory hole location from which the reduced level for each stratigraphic boundary is calculated. The exploratory hole position is given as either national grid-coordinates or local grid as specified.

ABBREVIATIONS

<u>Samples</u>

B Bulk disturbed sample generally representative of the soil type for cohesive and fine granular soils.

BRE Sample taken for electrochemical testing

C Core soil samples

Small disturbed tub sample normally taken at intermediate depth between other sampling or testing operations. The sample is stored in an airtight container.

ES Sample of potentially contaminated materials.

Piston Sample

PF An attempted but failed piston sample

U 100mm diameter undisturbed thick-walled sample (OS-TK/W)

UT 100mm diameter undisturbed thin walled sample (OS-T/W)

UF/UTF An attempted but failed 100mm undisturbed sample.

W Water sample.

EW Water sample for contamination testing

In-situ Testing

CBR California Bearing Ratio mould sample or test.

SPT Standard Penetration Test (SPT) using the split barrel sampler (S) or solid cone (C). The corresponding 'N' value is given in the test result column.

SWPen Self-Weight Penetration

PID On Site Volatile Headspace Testing by Photo Ionisation Detector

HVP Hand Shear Vane test

Rock Quality and Core Recovery

TCR Total core recovery - The length of the recovered core expressed as a percentage of the length of core run.

SCR Solid Core Recovery - The sum length of all core pieces (measured along the centre of the core), expressed as a percentage of the length core run.

RQD Rock Quality Designation- The sum length of all core pieces that are 100mm or longer (measured along the centre of the core), expressed as a percentage of the length of core run.

FI Fracture Index- The number of fractures per 1000mm length of solid core.

NI Non-intact- The material recovered in a non-intact state.

NR No recovery from the core run.

AZCL Assessed Zone of Core Loss.

Cobble Content

Low <10%, medium 10 - 20%, high >20%

Exploratory Hole Log Legend

Monitoring Installation Legend:

Dunelm Geotechnical & Environmental Ltd Foundation House, St John's Road, Meadowfield Durham, DH78TZ Tel: 0191 378 3151 Fax: 0191 378 3157 e-mail: admin@dunelm.co.uk web: www.dunelm.co.uk

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

SPT Hammer Ref: CD1

Test Date: 04/12/2020 Report Date: 04/12/2020

File Name: CD1.spt

Test Operator: SP

Instrumented Rod Data

Diameter d_r (mm): 54

Wall Thickness t_r (mm): 6.5

Rod Length l_r (m): 1.0

Assumed Modulus E_a (GPa): 208

Accelerometer No.1: 6178

Accelerometer No.2: 5843

SPT Hammer Information

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 14.0

Comments / Location

Calculations

Area of Rod A (mm2): 970 Theoretical Energy E_{theor} (J): 473 Measured Energy E_{meas} (J): 282

Energy Ratio E_r (%):

60

Signed: Scott Pincher

Title: Director

В1

Table No.

Contract:	A635 Barnsley Road, G	Contract No: D10371									
Client:	Barnsley Metropolitan	Barnsley Metropolitan Borough Council									
Drawing:	Instrumentation Sumn	mary									
Date:	20/05/2021	Status:	Final								

BH No.	Instrument	Instrument	Respon	se Zone	Surface Protection
	Туре	Dia. (mm)	Top (m)	Base (m)	
OH1A	SP	50	0.50	6.00	Flush Cover.
OH2	SP	50	0.50	6.00	Flush Cover.
OH4	SP	50	0.50	6.00	Flush Cover.
OH5	SP	50	0.50	6.00	Flush Cover.
OH6	SP	50	0.50	6.00	Flush Cover.
OH8	SP	50	0.50	6.00	Flush Cover.
ОН9	SP	50	0.50	6.00	Flush Cover.
OH10	SP	50	0.50	6.00	Flush Cover.
OH11	SP	50	0.50	6.00	Flush Cover.

DUNELM	Contract: A635 Barnsley Road, Goldthorpe Contract No: D10371								
PROFES OF THE & ENGINEERING	Client: Barnsley Metropolitan Borough Council								
TEL: 0191 378 3151	Table Title: Installation Summ	ary Sheet							
Table & Revision No: B1 - 0	Date: May 2021	Scale: NA	Status: Final	Drawn by: SH					

Client: Barnsley Metropolitan Borough Council

BOREHOLE RECORD

Driller: LP

Borehole OH01

Scale 1:50

Site: A635 Barnsley Road, Goldthorpe Contract No: D10371

Logged By: RJ Sheet 1 of 1

Method: Rotary Open Hole Drilling										Chec	ked By: E		Dates:	12/04/202	1	
	SAMPLE						ter									
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater		S	TRATA I Descri	RECORI iption	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B D ES	0.10 0.10 0.50 - 0.90 0.50 0.50						- - - - - -	Stiff, thinly lan	ninated, li	ight brow	n to light	yey topsoil. Frequent grey, slightly sandy Gravel is angular to sandstone and coal.	0.40			
D	1.00						-1 12/04/2021 1700 (0.00) Dry -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		En	d of Boreh	ole at 1.20 r	m	- (0.80) - 1.20			
Depth Struck (m)	Casing Wate Depth (m) Leve	r Minuto	s sea	Vater led (m) Fr	om (m)	To (m) Tin	ne (hr) Diameter (mm)	Depths (m)	Diameter (mm)		General Remarks 1. Hand dug inspection	on pit to 1.2	0m.		

BOREHOLE RECORD

Borehole OH01A

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Client: Barnsley Metropolitan Borough Council Driller: LP Logged By: RJ Sheet 1 of 4

	Бапізіеу						gii (Journal				Dillie	л. ЦГ	Logge	и ву. къ	Sileet 1 0	7		
Method	l: Rotary	Open	Hol	le [Orilli	ing						Chec	cked By: B	L		Dates:	26/04/2021	1 - 27/04/2	021
	SAMP	LE DE	ΓΑΙΙ	LS				je j											
Туре	Depth From-To (m	N (o		TCR %	SCR %	RQD %	FI	(Casing) Groundwater			S	TRATA I Descr	RECORE iption)		Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10			•				-	is an muds MAD	igular to s stone. Fr DE GROU	subangul equent ro JND: Ligh	ar, fine to ootlets no it greyish	coarse of ted. brown, cla	velly topsoi sandstone ayey sandy	and gravel.	(0.20) - 0.20 - (0.50)			
D ES	0.50 0.50									lstone, m				arse of bri ceramic fr		0.70			
D	1.00							- 26/04/2021 1700 (0.00) Dry	Crav	light bro el is ang Istone ar	jular to su	it grey, sli bangular	ightly sand , fine to co	ly gravelly earse of mu	CLAY. idstone,	1.20			
								(0.00) Dry 27/04/2021 0800 (0.00) Dry 1.20 - 9.00 100 % Water	Brow	vn CLAY.	Rare cer gged fror	amic frag n flush re	ments not turns.	ed. Drillers	•	`		 	
								- 2											
								- - -								— (2.60) — — —			
								- 3 - -								- - - - -			
								- 4	Grey retur		ONE. Dr	llers desc	cription log	gged from f	lush	3.80			
																- - - - -			
								- -5 - -								- - - - - -			
								- - - - -											
								- - - - 7								(5.20)			
								-								- - - - -			
								- 8 - 1											
								- 9 9.00 - 18.00 - 90 % Water	Black	k COAL.	Drillers d	escriptior	n logged fr	om flush re	eturns.	9.00			
																- - -			
			\top									Continued o	n next sheet						
	Ground W					Έ	Ch	iselling / Hard Strata	i	Casing	Depths		iameter	General R	emarks	1	1		
Depth Struck (m)	Casing Wa		utes		ater ed (m	Fr	om (m)	To (m) Tin	ne (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand du	g inspectio	n pit to 1.2	0m.		
Struck (m)	Depth (m) Le	vei		seal	eu (M	,	. ,		•	(mm) 150	6.50	(mm) 150 122	6.50 30.00						

ı			nd Water				Chiselling / Hard Strata			Casing Depths		iameter	General Remarks
	Depth Struck (m)	Casing Depth (m)	Water Level	Minutes	Water sealed (m)	From (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand dug inspection pit to 1.20m.
									150	6.50	150	6.50	
ı											122	30.00	
ı													
ı													
ı													
ı													
ı													
ı						i							
ı	Log last u	pdated 02/	06/2021										

Client: Barnsley Metropolitan Borough Council

BOREHOLE RECORD

Borehole OH02

Scale 1:50

Site: A635 Barnsley Road, Goldthorpe Contract No: D10371

> Driller: LP Logged By: RJ Sheet 1 of 4

Method: Rotary Open Hole Drilling										Chec	ked By: E	3L	Dates:	12/04/202	1 - 13/04/20	021	
	SAMPLE						ter										
Туре	Depth From-To (m)	N (cu)			RQD %	FI	(Casing		S	TRATA F Descri		D	Depth (m)	Level (m AOD)	Legend	We Bac	
Type D ES B D ES D	Depth		TCR %		RQD %	FI	(Buise c) (Control of the control of	rootlets noted MADE GROU gravelly clay. brick, sandst Firm, light bri intermediate coarse of san	UND: Darid. UND: Soft Gravel is one, mud: own to lig plasticity. ndstone a	k brown s. , dark to l angular t stone and ht grey, sl Gravel is nd mudste	andy clay ight brow o subang clinker. ightly san angular t	rey topsoil. Frequent In, slightly sandy Jular, fine to coarse of Indy gravelly CLAY of Ito subangular, fine to			Legend		
							- - -										
ļ	1			$oxed{oxed}$	_	ليا		L		Continued or	next sheet						
	Ground Wat		_		1	Ch	iselling / Hard Strat		g Depths	Hole Di	ameter	General Remarks					
Depth	Casing Wate		s V	Nater	, Fi	rom (m)	To (m) Tir	me (hr) Diameter	Depth (m)	Diameter	Depth (m)	1. Hand dug inspection	n pit to 1.2	0m.			
Struck (m)	Depth (m) Level	1 171016	sea	aled (m)) '	(111)	.5 ()	(mm) (50	2.60	(mm) 150	2.60	, , , , , ,	. –				

2.60 30.00

BOREHOLE RECORD

Borehole OH03

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Client: Barnsley Metropolitan Borough Council Driller: LP Logged By: RJ Sheet 1 of 3

Method: Rotary Open Hole Drilling Checked By: BL Dates: 21/04/2021 - 22/04/2021

Method: Rotary Open Hole Drilling								Checked By: BL	Dates:	21/04/202	1 - 22/04/20	.021	
	SAMPLE	DETA	ILS				_ fer						
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfill	
	0.20 0.20 0.40 0.40 0.70 - 0.80 0.70 0.70 1.00		F	<i>δ</i>			21/04/2021 1700 (0.00) Dry 22/04/2021 0800 (0.00) Dry 1.20-11.00 100 % Water	MADE GROUND: Black macadam. MADE GROUND: Dark grey to black, slightly sandy gravel. Gravel is angular to subangular, fine to coarse of macadam and brick. MADE GROUND: Reddish brown, slightly sandy, gravel. Gravel is angular to subangular, fine to coarse of brick, macadam, sandstone and mudstone. MADE GROUND: Soft, dark to light brown, slightly sandy gravelly clay. Gravel is angular to subangular, fine to coarse of brick, sandstone, mudstone and coal. Occasional rootlets noted. Firm, light brown to light mottled grey, sandy gravelly CLAY. Gravel is subangular to subrounded, fine to coarse of sandstone and mudstone. Brown CLAY. Drillers description logged from flush returns.	(0.10) (0.11) (0.17) (0.05) (0.07) (0.05) (0.08) (0.60) (0				
								Continued on payt sheet	(5.70)				
		L			<u> </u>			Continued on next sheet					
	Ground Wat					Ch	iselling / Hard Strata	Casing Depths Hole Diameter General Remarks					
Depth C	Casing Water		V	Vater	F	rom (m)	To (m) Tin	Diameter Depth (m) Diameter Depth (m) Depth (m	pit to 1.2	0m.			
Struck (m) De	epth (m) Level	I	'S sea	iled (m) [ioni (III)	10 (111)	(mm) Depth (m) (mm) Depth (m) That a day in special	, 				

Client: Barnsley Metropolitan Borough Council

BOREHOLE RECORD

Borehole OH04

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Driller: LP Logged By: RJ Sheet 1 of 4

Method: Rotary Open Hole Drilling Checked By: BL Dates: 20/04/2021 - 21/04/2021

Method	: Rotary O	pen H	ole I	Drilli	ng						Che	cked By: I	BL	Dates:	20/04/202	1 - 21/04/20	021
	SAMPLE	DETA	ILS				iter										
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater			\$		RECORI ription	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES B D ES D ES	0.20 0.20 0.45 0.45 0.45 0.70 0.70 1.00					-	1 20/04/2021 180 (0.00) Di 21/04/2021 080	MA Gra MA Gra mad Firr ang and	avel is and IDE GRO avel is and cadam, so many light to gular to sud coal.	UND: Da gular to s UND: Re- gular to s andstone dark bro ubangular	rk grey to ubangula ddish bro ubangula and mud wn, sandy r, fine to c	black, slig r, fine to co wn, slightl r, fine to co stone. y gravelly oarse of s	ghtly sandy gravel. oarse of macadam. y sandy, gravel. oarse of brick, CLAY. Gravel is eandstone, mudstone from flush returns.	(0.10) 0.10 (0.30) 0.40 (0.07) 0.47 (0.73)			
						-	(0.00) Dr 1.20 - 4.0 100 % Wate	y 0									
						-	4 4.00 - 8.3 90 % Wate	er Gre		TONE. D	rillers des	cription lo	gged from flush	4.00			
						-	5	rett	urns.					- - - - - - - - - - - - - - - - - - -			
						-	6							(4.30)			
						-	7							- - - - - - - - - - - - - - - - - - -			
						-	8.30 - 12.0 80 % Wate	Gre					from flush returns.	8.30 (0.50) 8.80			
						-					0			- - - - -			
	Ground Wat	er (m)			1	Chi	selling / Hard Stra	ıta	Casin	g Depths	Continued of Hole I	on next shee Diameter	General Remarks	1	1		
Depth	Casing Wate	r T	۱۸	/ater	\vdash				Diameter		Diameter		1. Hand dug inspectio	n nit to 1 0	Ωm		
struck (m) D				led (m) Fr	rom (m)	To (m) 1	Time (hr)	(mm)	Depth (m)	(mm)	Depth (m)	i . i ianu uug mspectio	τι ριι ιΟ 1.Ζ	OIII.		

BOREHOLE RECORD

Borehole OH05

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Client: Barnsley Metropolitan Borough Council Driller: LP Logged By: RJ Sheet 1 of 4

Client:	Barnsley M	etropo	litar	ı Bo	rou	gh (Council					Drille	r: LP	Logged By: RJ	Sheet 1 of	4		
Method	I: Rotary O	pen H	ole l	Drill	ing							Chec	ked By: E	BL	Dates:	22/04/202	1 - 23/04/20	021
	SAMPLE						ъ	J										
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater				S	TRATA I Descr	RECORI iption	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
	0.00								GRA	VEL fill. (Drillers D	escriptio	n).		-			
D ES	0.20 0.20														(0.70)			
B D ES D	0.70 0.70 0.70 1.00						- 1		MAD	E GROU	IND: Bas	alt. (Drille	ers Descri	ption).	0.70			
ES	1.00						22/04/2021 (0.00) 23/04/2021	1700) Dry 0800	retur	ns.				ged from flush	1.20			
							(0.00) 1.20 - 100 % \) Dry - - 8.50	Brow	n CLAY.	Drillers d	escription	n logged f	from flush returns.	1.50			
							- 2								 - -		 	
															(2.30)			
							- 3								-			
							- 4	-	Grey		ONE. Dri	llers desc	cription lo	gged from flush	3.80			
									retui	113.					- - -			
							•								- - -			
							- 5											
							-								- - -			
							-6								(4.70)			
							- 7								-			
															-			
															<u> </u>			
							- 8								<u>-</u> -			
							8.50 - 80 % \	- 9.00 Water	Black	k COAL.	Drillers d	escriptior	ı logged f	from flush returns.	8.50			
							- 9 9.00 - 1 0 % \	10.40 Water	VOIE).					9.00			
							-								- - -			
												continued or	n next shee	t	_ (1.40)			
_	Ground Wat		_		Έ	Ch	iselling / Hard	Strata			Depths	Hole D	iameter	General Remarks	•		•	•
Depth Struck (m)	Casing Wate Depth (m) Leve		s sea	Vater led (m) Fi	rom (m)	To (m)	Time	e (hr)	Diameter (mm)	Depth (m) 12.00	Diameter (mm) 139 122	Depth (m) 12.00 30.00	1. Hand dug inspectio	n pit to 1.2	0m.		
					-													

BOREHOLE RECORD

Borehole OH06

Scale 1:50

Contract No: D10371 **Site:** A635 Barnsley Road, Goldthorpe

Client: Barnsley Metropolitan Borough Council

Driller: LP

Logged By: RJ

Sheet 1 of 2

!	Janisicy						9 0									Loggot		-	10/21/77	4 4=15::	004
Metho	d: Rotary					ng	-						Che	cked By: I	BL			Dates:	12/04/202	1 - 15/04/2	021
Туре	Depth From-To (DETA N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater				s	TRATA Descr		D			Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10			-	S	œ			\dashv							ent rootlet		(0.30)			
B D ES	0.50 - 0.9 0.50 0.50	0								grave	elly CLA	of high	plasticity.	Gravel is	s a	ey, slightly ngular to ndstone a		(0.50)			
D D	1.00						-	12/04/2021 1	1700	Stiff, to su coal.	bangula	y, slightly r, fine to	sandy goorse of	ravelly Cl mudston	LA` e, :	Y. Gravel i sandstone	s angular e and	0.80			
SPT (S)	1.20 1.20 - 1.6	5 (N=10 (1,1/2,2,3 ,3)				-	12/04/2021 1 (0.00) 15/04/2021 0 (0.00) (0.00) 1.20 - 4 100 % W	Dry	Brow	n CLAY.	Drillers o	descriptio	n logged	fro	m flush re	eturns.	1.20			
D SPT (S)	2.70 2.70 - 3.1		N=6 (1,1/1,1,2 ,2)					(2.70)	Dry									(3.00)			
D SPT (S)	4.20 4.20 - 4.6	5 (N=8 (2,2/2,2,2 ,2)				- - - - - -	4 (4.20) 4.20 - 1' 90 % W	Dry – 1.70 /ater		MUDST flush ret		eathered.	Drillers o	des	scription la	gged	4.20			
D SPT (S)	5.70 5.70 - 6.1		N=10 (2,2/2,2,3 ,3)					(4.20) 6	Dry									(3.00)			
D SPT (S)	7.20 7.20 - 7.6		N=40 (4,8/12,5, 16,7)				-	7 (5.70)	Dry –	Grey		ONE. Dr	illers des	cription lo	pgg	ed from fl	ush	7.20			
D SPT (S)	8.70 8.70 - 8.9	(N=50+ (10,15 for 65mm/50 for 65mm)				-	(5.70) 9	Dry									(4.84)			
	Ground	Wate	r (m)			\mathbf{I}	Chis	selling / Hard S	trata		Casino	Depths	Continued o	n next shee	G	eneral Re	marke				
Depth	Casing V	Vater	Minute		Vater	-	om (m)		Time	(hr)	Diameter	Depth (m)	Diameter	Depth (m)	$\overline{}$			n pit to 1.2	0m.		
Struck (m)		evel_	ivilliule		iled (m)	om (m)	To (m)	ııme	(111)	(mm) 150	5.70	(mm) 150 122	5.70 12.04	 	440	, 3p 3000				

BOREHOLE RECORD

Borehole OH06

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

> Driller: LP Logged By: RJ Sheet 2 of 2

Client: Barnsley Metropolitan Borough Council Method: Rotary Open Hole Drilling Checked By: BL Dates. 12/04/2021 - 15/04/2021

Method	: Rotary O	pen Ho	ole l	Drilli	ing						Chec	ked By: E	3L	Dates:	12/04/202	1 - 15/04/20	021
	SAMPLE						ter				<u> </u>						
Туре	Depth From-To (m)	N (cu)	TCR %		RQD %	FI	(Casing) Groundwater			S	TRATA I Descr	RECORI iption	D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D SPT (S)	10.20 10.20 - 10.36	N=50+ (25/40,10 for 15mm)					- 10 . (5.70 		rey MUDST turns.	ONE. Dr	illers desc	cription lo	gged from flush				
D SPT (S)	11.70 11.70 - 12.04						- 11 - 11) Dry									
SPT (S)	11.70 - 12.04	N=50+ (9,11/14, 21,15 for 40mm)					- 1215/04/2021 (5.70)	1700		En	d of Boreho	ole at 12.04	m	12.04			
							- 13 - 13 										
							- 14 - 14 							- - - - - -			
						-	- - 15 - - -							_ _ _ _ _ _ _ _			
							-16 -1.										
						-	- - - 17 - - -							- - - - - - -			
							- 18 - 18 										
							- - - - 19 -							- - - - - - -			
														_			
									_								
Denth	Ground Wat Casing Wate	-	١٨	Vater			iselling / Hard		Diameter	Depths	Hole D Diameter		General Remarks	nit to 4.0	Om.		
Depth Struck (m) D	epth (m) Level	Minute	s sea	iled (m	r) Fr	rom (m)	To (m)	Time (hr)	(mm)	Depth (m) 5.70	(mm)	Depth (m) 5.70	1. Hand dug inspection	ι ριι ιο 1.2	UIII.		

5.70 12.04

Client: Barnsley Metropolitan Borough Council

BOREHOLE RECORD

Borehole OH07

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Log last updated 02/06/2021

Driller: LP Logged By: RJ Sheet 1 of 2

Method: Rotary Open Hole Drilling Checked By: BL Dates: 14/04/2021 - 15/04/2021

Metho	d: Rotary O	pen H	ole I	Drill	ing			Checked By: BL	Dates:	14/04/2021	1 - 15/04/2	021
	SAMPLE	DETA	ILS) ater					
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater	STRATA RECORD Description	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10				_			Dark brown sandy clayey TOPSOIL. Frequent rootlets noted.	(0.30)		XXXX	
						-		Stiff, thinly laminated, light brown to light grey, slightly sandy	0.30		<i>((/)</i> X(//)	
В	0.50 - 0.90							gravelly CLAY. Gravel is angular to subangular, fine to coarse	(0.50)			
D ES	0.50 0.50							of mudstone, sandstone and coal.	_			
D	4.00							Stiff, dark mottled grey, slightly sandy gravelly CLAY. Gravel is	0.80			
D	1.00 1.20						· 1 (1.20) Dry	angular to subangular, fine to coarse of mudstone, sandstone and coal.	(0.40)			
SPT (S)	1.20 - 1.65	N=5					(1.20) Diy	CLAY. Drillers description logged from flush returns.	F 1.20			
		(1,1/1,1,1 ,2)				[F			
						[E			
						[0		F			
							· 2		F			
									F			
									F			
D SPT (S)	2.70 2.70 - 3.15	N-0				[(2.70) Dry		(3.00)			
3PT (3)	2.70 - 3.15	N=6 (1,1/1,1,2				-	- 3					
		,2)				-	. 3		F			
						-			E			
						[E			
						-			F			
						[· 4		E			
D	4.20								4.20			
SPT (S)	4.20 4.20 - 4.65	N=6					(4.20) Dry 4.20 - 10.20	Black COAL. Drillers description logged from flush returns.	T 4.20			
		(1,1/1,1,2 ,2)					90 % Water		F			
							14/04/2021 1700 (4.20) Dry		F			
							(4.20) Dry 15/04/2021 0800 5 (4.20) Dry		(1.50)			
							. 5 (4.20) Dry		E,			
									F			
									F			
D SPT (S)	5.70 5.70 - 6.15	N=10				1	(4.20) Dry	Brown CLAY. Drillers description logged from flush returns.	5.70			
3F1 (3)	5.70 - 0.15	(2,2/2,2,3					- 6					
		,3)				1	O		E			
									(1.50)			
									E			
							- 7					
D	7.20						(4.20) Dry		7.20			
SPT (S)	7.20 - 7.65	N=10 (2,2/2,2,3					(, 2.)	Grey MUDSTONE. Drillers description logged from flush returns.	ļ			
		,3)							<u> </u>			
									-			
							- 8					
									-			
									F			
									<u> </u>			
D SPT (S)	8.70 8.70 - 9.12	N=50+					(4.20) Dry		F			
		(8,11/12, 12,15,11					· 9					
		for 45mm)							ļ.			
		4011111)							F			
									F			
									F			
Ì						H		Continued on next sheet				171111111
	Ground Wat		_	•		Chi	selling / Hard Strata	Casing Depths Hole Diameter General Remarks	•			
Depth Struck (m)	Casing Wate Depth (m) Level		s sea	Vater iled (m	r) Fr	om (m)	To (m) Tin	ne (hr) Diameter (mm) Depth (m) Diameter (mm) Depth (m) Depth (m) 1. Hand dug inspection	n pit to 1.2	0m.		
	- ' '							150 4.20 150 4.20 122 15.00				
		1	1		1		1 1					

BOREHOLE RECORD

Borehole OH07

Scale 1:50

Site: A635 Barnsley Road, Goldthorpe Contract No: D10371

Client: Barnsley Metropolitan Borough Council Driller: LP Logged By: RJ Sheet 2 of 2

Method	: Rotary O	pen Ho	ole I	Drill	ing			Checked	By: BL	Dates:	14/04/202	1 - 15/04/2	021
	SAMPLE	DETA	ILS				ater						
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater	STRATA REC Descriptio	CORD on	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D SPT (S)	10.20 10.20 - 10.32	N=50+ (10,15 for 25mm/50 for 25mm)					- 10 (4.20) Dry 10.20 - 15.00 80 % Water	Grey MUDSTONE. Drillers descripti returns.	on logged from flush				
D SPT (S)	11.70 11.70 - 11.74	N=50+ (25 for 25mm/50 for 15mm)					(4.20) Dry			- (7.80) 			
D SPT (S)	13.20 13.20 - 13.30	N=50+ (25 for 45mm/50 for 53mm)					13 (4.20) Dry			- - - - - - - - - - - - -			
D SPT (S)	14.70 14.70 - 14.80	N=50+ (25 for 55mm/50 for 40mm)					- 14 - (4.20) Dry - 1515/04/2021 1600 - (4.20) Dry	End of Borehole at	15.00 m	15.00			
							- 16 - 1			- - - - - - - - - - - - - - - - - - -			
							- 17 			- - - - - - - - - - -			
							- - - 19			- - - - - - - - - - - - -			
Depth	Ground Wat Casing Wate	er (m)	\\	Vater		CH	iselling / Hard Strata	Casing Depths Hole Diameter	General Remarks	nit to 1 20)m		

		nd Water				elling / Hard	Strata	Casing	Depths	Hole Di	ameter	General Remarks
Depth Struck (i	Casing Depth (m)	Water Level	Minutes	Water sealed (m)	From (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand dug inspection pit to 1.20m.
								150	4.20	150	4.20	
1										122	15.00	
1												
Log las	updated 02	/06/2021										

Client: Barnsley Metropolitan Borough Council

BOREHOLE RECORD

Borehole OH08

Scale 1:50

Site: A635 Barnsley Road, Goldthorpe Contract No: D10371

> Driller: LP Logged By: RJ Sheet 1 of 2

Method	: Rotary O					<u> </u>					Chec	cked By: I	BL		Dates:	28/04/202	1		
	SAMPLE						ter												_
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater			S	TRATA I Descr	RECORI iption	D		Depth (m)	Level (m AOD)	Legend	We Back	
D ES	0.10 0.10							Da	ark brown s	andy clay	ey TOPS	OIL. Free	quent rootlets	noted.	(0.30)				
В	0.50 - 0.90						-	Sti	iff, thinly la	minated, l	ight brow	n to light	grey, slightly ngular, fine to	sandy coarse	0.30				
D ES	0.50 0.50							of	mudstone,	sandstor	ne and co	al.	ngalai, iiilo to	coarco	(0.90)				
D	1.00						- 1								-				
SPT (S)	1.20 - 1.65	N=10 (1,2/2,2,3					(0.00) I 1.20 - 4	Ory 20 Bro	own CLAY.	Drillers d	lescriptio	n logged t	from flush retu	urns.	1.20				
		,3)					100 % Wa	ter							-				
															-				
							- 2								(1.50)				
															E			E]
SPT (S)	2.70 - 3.15	N=6					1 (00.0)	n,							2.70				
3F1 (3)	2.70 - 3.13	(1,2/1,2,1 ,2)						Gr	ey MUDST turns.	ONE. Dri	llers desc	cription lo	gged from flu	sh	F 2.70				
							- 3 -								_				
															E				
															-				
							- 4								E]
SPT (S)	4.20 - 4.65	N=16 (4,3/3,4,4					(4.20) [4.20 - 11	Ory 70							Ė				
		,5)					90 % Wa	ter							-				
															-				
							- 5 -								_				
															-				
SPT (S)	5.70 - 6.15	N=13					- - (5.70) [Dry							-]
o (o)	0.70 0.70	(2,2/3,2,4 ,4)						,							-				
							- 6 -								-				
															E				
															E				
							- 7								-				
SPT (S)	7.20 - 7.65	N=14 (3,1/2,2,5					(5.70) [Dry							(9.07)				
		,5)					-								F				
															E				
							- 8								F				
															-				
SPT (S)	8.70 - 9.05	N=40					(5.70)	Ory							E				
		(6,8/4,21, 15)					- 9												
															Ė				
							<u>.</u>								E				
															É				
	0	(:::	L		Ļ		January 112					n next shee						/////	
Depth ()	Ground Wat Casing Wate	r Minuto	s v	Nater aled (m	F	Ch rom (m)	To (m)	rata Time (hr)	Diameter	Depths Depth (m)	Diameter	Depth (m)	General Ren 1. Hand dug		n pit to 1.20	Om.			
Struck (m)	epth (m) Level	1	sea	led (m)	()	()	()	(mm) 139	5.70	(mm) 139	5.70]	•	•				

Client: Barnsley Metropolitan Borough Council

BOREHOLE RECORD

Borehole OH08

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Driller: LP Logged By: RJ Sheet 2 of 2

Metho	d: Rotar	y Op	en Ho	ole	Drill	ing						Chec	ked By: E	3L	Dates:	28/04/202	1	
	thod: Rotary Open Hole Drilling SAMPLE DETAILS							_ pi										
Туре	Depti From-To	- 1	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater			S	TRATA F Descri		D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
SPT (S)	10.20 - 10	0.34	N=50+ (25 for 70mm/50 for 65mm)				-	(5.70	Gr ret	ey MUDST urns.	ONE. Dri	illers desc	ription lo	gged from flush				
SPT (S)	11.70 - 11		N=50+ (25 for 45mm/50 for 27mm)				-	11 (5.70 28/04/2021 (5.70)	0) Dry 1530) Dry		En	nd of Boreho	le at 11.77 i	m	- - - - - - - - - - - - - - - - - - -			
								13							-			
								14							- - - - - - - - - -			
							-	15							- - - - - - - - -			
								17										
								18							- - - - - - - - -			
							-	19							- - - - - - -			
	Ground	l Wate	r (m)	_		┰	Chi	selling / Hard	Strata	Casing	Depths	Hole Di	ameter	General Remarks			I	
Depth Struck (m)	Casing	Water Level	Minute	s V	Vater iled (m	F	om (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)		1. Hand dug inspection	pit to 1.2	0m.		
Outdok (III)	Debtii (m)	revei		sea	neu (III	'/	-	1		(mm) 139	5.70	(mm) 139	5.70					

Client: Barnsley Metropolitan Borough Council

BOREHOLE RECORD

Borehole OH09

Scale 1:50

Site: A635 Barnsley Road, Goldthorpe Contract No: D10371

> Driller: LP Logged By: RJ Sheet 1 of 2

Method	I: Rotary O	pen H	ole	Drilli	ing							Chec	ked By: E	3L	Dates:	12/04/202	1 - 26/04/2	021
	SAMPLE	DETA	ILS				ater											
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater				S	TRATA I Descr		D	Depth (m)	Level (m AOD)	Legend	Well/ Backfill
D ES	0.10 0.10								Dark	brown s	andy cla	yey TOPS	OIL. Fred	quent rootlets noted	(0.30)			
B D ES	0.50 - 0.90 0.50 0.50					-			grave	elly CLA	. Gravel	light brow is angula ne and co	r to subar	grey, slightly sandy ngular, fine to coarse	0.30			
D	1.00						1		plast	icity. Gra	vel is an	, slightly s gular to so and coal.	ubangular	avelly CLAY of high r, fine to coarse of	0.80			
D SPT (S)	1.20 1.20 - 1.65	N=6 (1,1/1,1,2 ,2)				-	12/04/2021 (0.00) 16/04/2021 (0.00) (0.00) 1.20 - 100 % V) Dry 0800) Dry) Dry - 4.20						from flush returns.	1.20			
D SPT (S)	2.70 2.70 - 3.15	N=6 (1,1/1,1,2 ,2)				-	(2.70)) Dry							- (3.00) 			
D SPT (S)	4.20 4.20 - 4.65	N=13 (2,2/3,4,3 ,3)				-	4 (4.20 4.20 - 90 % V	0) Dry 10.20 Water	Grey retur		ONE. Dr	illers desc	cription lo	gged from flush	4.20			
D SPT (S)	5.70 5.70 - 6.15	N=16 (4,4/5,4,3 ,4)				-	16/04/2021 (5.70) 26/04/2021 6 (5.70) (5.70)) Dry 0900										
SPT (S)	7.20 - 7.60	N=50+ (5,9/12,1 3,20,5 for 23mm)				-	7 (5.70	Dry							- - - - - - (6.06)			
SPT (S)	8.70 - 8.80	N=50+ (25/50 for 28mm)				-	8 (5.70 9)) Dry										
						\vdash									-			
	Ground Wat		_		Т	Chi	selling / Hard	Strata	1	Casing	Depths	Continued or Hole D	n next sheet iameter	General Remarks				
Depth Struck (m) [Casing Wate Depth (m) Leve		s sea	Vater led (m) Fr	om (m)	To (m)	Tim	ne (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand dug inspect	on pit to 1.2	0m.	_	
(/				(-					139	5.70	139	5.70	1				l

Client: Barnsley Metropolitan Borough Council

Log last updated 02/06/2021

BOREHOLE RECORD

Borehole OH10

Sheet 1 of 2

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Driller: LP

Logged By: RJ

Method: Rotary Open Hole Drilling Checked By: BL Dates: 12/04/2021 - 26/04/2021

/lethod	: Rotary O				ling							Chec	cked By: E	3L		Dates:	12/04/202	1 - 26/04/2	021
	SAMPLE	DETA	ILS				g) ater				•			_					
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI	(Casing) Groundwater				S	Descr	RECORI iption	Б		Depth (m)	(m AOD)	Legend	Well/ Backfil
D ES	0.10 0.10		Ė		1		-		Dark bi	rown sa	andy clay	ey TOPS	OIL. Fred	quent rootle	ets noted.	(0.30)			
B D ES	0.50 - 0.90 0.50 0.50						- - - -		gravelly	y CLAY	. Gravel	light brow is angula ne and co	r to subar	grey, slight ngular, fine	ly sandy to coarse	0.30			
D	1.00						-	\subseteq	10010										
SPT (S)	1.20 - 1.58	N=9 (1,2/2,2,2					12/04/20 21	1700			<i>ndwater se</i> Drillers d		n logged f	from flush r	eturns	1.20			
		,3)					(0.00 26/04/2021 (0.00 (0.00	0900 0) Dry 0) Dry - 4.20		02,	J					- - -			
							100 %	Water											
							• • •									-		 	
SPT (S)	2.70 - 3.15	N=4 (2,1/1,1,1					. (0.0	0) Dry								Ė		<u> </u>	
		,1)					- 3												
							•												
							- -									F			
							- 4									E		===	
SPT (S)	4.20 - 4.65	N=9 (1,1/1,2,3 ,3)					4.20 -	0) Dry 11.70								(6.00)			
		,3)					90 %	vvater								E			
							- - - 5									E			
							- 5 - -												
							-												
SPT (S)	5.70 - 6.15	N=11 (2,2/2,3,3 ,3)					(5.7)	0) Dry											
		,0)					-6												
																E			
							• •									-		<u> </u>	
							-7									-		<u> </u>	
SPT (S)	7.20 - 7.65	N=26 (2,1/2,2,1 0,12)					(7.2	0) Dry	Grey M		ONE. Dri	illers desc	cription lo	gged from	flush	7.20			
		0,12)					-		Totaliis	•						-			
							- 8									_			
																E			
							-									E			
SPT (S)	8.70 - 8.95	N=50+ (8,17 for 55mm/37					(7.2)	0) Dry								-			
		,50)					- 9												
							• •									_ _ _ (4.61)			
																- (4.01)			
												Continued o	n next sheet	t		+			(/////
1	Ground Wat					Ch	iselling / Hard	Strata		Casing	Depths	Hole D	iameter	General R					
ruck (m) D		I	sea	Nater aled (n	n) Fi	om (m)	To (m)	Tim	me (hr)	iameter (mm)	Depth (m)	Diameter (mm)		1. Hand dı	ug inspectio	on pit to 1.2	0m.		
1.00	7.20 1.20			1.20						139	7.20	139	7.20]					

Client: Barnsley Metropolitan Borough Council

BOREHOLE RECORD

Borehole OH10

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Driller: LP Logged By: RJ Sheet 2 of 2

Method: Rotary Open Hole Drilling Checked By: BL Dates: 12/04/2021 - 26/04/2021

Method	: Rotary O	pen H	ole l	Drill	ing					Checked By: E	BL	Dates:	12/04/202	1 - 26/04/2	021
	SAMPLE	DETA	ILS					ater		•					
Туре	Depth From-To (m)	N (cu)	TCR %	SCR %	RQD %	FI		(Casing) Groundwater	[ATA RECORI Description		Depth (m)	Level (m AOD)	Legend	Well/ Backfill
							- 10		Grey MUDSTONE. Driller returns.	s description lo	gged from flush				
SPT (S)	10.20 - 10.30	N=50+ (25 for						(7.20) Dry	returns.			_			
		(25 for 48mm/50 for					-					_			
		for 53mm)					ŀ					F			
							- 11					E			
							! ''					_			
												_			
ODT (O)							-	(7.00) D				F			
SPT (S)	11.70 - 11.81	N=50+ (25/50 for					26/0	(7.20) Dry 04/2021 1600 (7.20) Dry	End o	f Borehole at 11.81	m	11.81			
		35mm)					12	(7.20) Dry				E			
												_			
							-					_			
												F			
							- 13					E			
							'3					_			
												-			
												-			
												F			
							14					E			
												_			
							-					_			
												F			
							- 15					E			
							13					_			
												_			
												-			
												F			
							16					E			
												-			
												_			
												F			
							- 17					-			
							[''					E			
												-			
							-					-			
							ŀ					F			
							18					E			
												L			
							-					L			
												F			
							[10					E			
							- 19					F_			
							}					F			
							<u> </u>					F			
							<u> </u>								
	Ground Wat	er (m)			Η-	Ch	 niselling	/ Hard Strata	a Casing Depths	Hole Diameter	General Remarks	I	1		
Depth Struck (m)	Casing Wate		s	Vater	Fr	om (m)			Diameter Double (m)	iameter Depth (m)	Hand dug inspection	n pit to 1.20	0m.		

L	Ground water (m)				Chiselling / Hard Strata			Casing Depths		Hole Diameter		General Remarks	
	Depth Struck (m)	Casing Depth (m)	Water Level	Minutes	Water sealed (m)	From (m)	To (m)	Time (hr)	Diameter (mm)	Depth (m)	Diameter (mm)	Depth (m)	1. Hand dug inspection pit to 1.20m.
ı	1.00	7.20	1.20	20	1.20				139	7.20	139	7.20	
ı			0		0						122	11.81	
ı													
ı													
ı													
ı													
ı													
Log last updated 02/06/2021													

BOREHOLE RECORD

Borehole OH11

Scale 1:50

Contract No: D10371 Site: A635 Barnsley Road, Goldthorpe

Client: Barnsley Metropolitan Borough Council

Driller: LP Logged By: RJ Sheet 1 of 4

Method: Rotary Open Hole Drilling Checked By: BL Dates: 23/04/2021 - 28/04/2021

Dates: 23/04/2021 - 28/04/2021		
epth Level m) (m AOD)	Legend Well. Backf	
.50)		
.50		
.70		
.50)		
.20		
.60)	**************************************	
.80	.	
	<u></u>	
	<u></u>	
.70)	_	
	::H	
	::H	
	::H	
.50		
	:::F	
	:::F	
.60)		
.10		
.10)		
20		
90)		
40		
10		
40)		
o 1.20m.		
.90) .10 .40)	1.	

	COUNELM BEOTECHNICAL & ENVIRONMENTAL			TRIAL PIT RECORD		TP I			
Contra	ct No.: D1037	71		Site: A635 Barnsley Road, Goldthorpe	Scale 1:25				
	Barnsley Metr			Logged By: RJ Checked By: BL	Sheet 1 of Dates:	1 22/04/2021			
S	AMPLE DETA	ILS	Į.	'		Level			
Туре	Depth From-To (m)	Insitu Testing	Groundwater	STRATA RECORD Description	Depth (m)	(m AOD) PID (ppm)	Legend	Backfill	
D ES B D ES D ES	0.20 0.20 0.50 0.50 0.50 0.50 1.00 1.00		1	MADE GROUND: Dark brown sandy clayey topsoil with a low cobble content. Frequent rootlets noted. Cobbles are angular of brick. MADE GROUND: Dark brown to black, sandy gravelly clay with a low cobble content. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone, brick and coal. Cobbles are angular to subrounded of sandstone, mudstone and siltstone. MADE GROUND: Light bluish grey, sandy clayey gravel with a low cobble content. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal. Cobbles are angular to subrounded of sandstone, mudstone and siltstone.	- (0.30) - 0.30 - 0.30 - 1.30 - 1.30 - 1.30 - 1.30 - 1.30 - 1.30 - 1.30 - 1.30 - 1.30				
D ES	3.00 3.00		3	End of Trial Pit at 3.00 m	3.00				
and C.	oit terminated a			Ground Water (m) Excavation Details billity of Face A Depth Strike 1.40 Depth Strike 1.40 Stability: Face A and C unstable at 3.00m Weather: Dry Remarks: Machine Excavated Trial Pit	D	Orient A C	ation	345°	

	DUI GEOTECHNICA	VELN L& ENVIRONMEN	TAL	TRIAL PIT R	TP No. TP02					
Contra	ct No.: D103	71		Site: A635 Barnsley Road, Goldthorpe)	Scale 1:25				
Client:	Barnsley Metr	opolitan B	orough Co	puncil	Sheet 1 of 1					
Method:	: Machine Ex	cavated T	rial Pit		Dates: 22/04/2021					
S/	AMPLE DETA	ILS	vater	STDATA DE	CORD	Depth	Level			
Туре	SAMPLE DETAILS Depth Insitu From-To (m) Testing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			STRATA RECORD Description			(m AOD) PID (ppm)	Legend	Backfill	
D ES	0.20 0.20		- - - -	MADE GROUND: Dark brown sandy conoted.	ayey topsoil. Frequent rootlets					
			_	MADE COOLIND, Dordy brown to blook	a an also amassa lles a lassosidale a lasso	0.40				
B D ES	0.50 0.50 0.50		- - - -	MADE GROUND: Dark brown to black cobble content. Gravel is angular to su mudstone, sandstone, siltstone, brick a subrounded of sandstone, mudstone a	bangular, fine to coarse of nd coal. Cobbles are angular to	(0.50)				
			_			-				
D ES	1.00 1.00		- - - - 1 -	MADE GROUND: Light bluish grey, slig low cobble content. Gravel is angular to mudstone, sandstone, siltstone and co	0.90					
				subrounded of sandstone, mudstone a	nd siltstone.	_ _ _ _				
В	1.50		- - - -							
						_ _ _ _				
D W	2.00 2.10		2	End of Trial Pit a	t 2 20 m	2.20				
			- - - - - - - - - - - - - - - - - - -			- - - - - - - - - - - - - - - - - - -				
						- - - - - - - - - -				
						- - - - - -				
						- - - - - -				
			- - - - - -			- - - - -				
						- - - -				
						+		<u> </u>		
Remarks		it 2 20m d	ie to insta	Ground Water (m) bility of Face A Depth Strike Remarks	Excavation Details	-	Orient	ation		
and C.	nt terriiiriated a	n 2.20111 QI	ue io irista	bility of Face A Depth Strike Remarks 2.10	Dimensions: 1.10m x 3.00m Stability: Face A and C unstable at 2.20m Weather: Dry Remarks: Machine Excavated Trial Pit	D	A C	В	351°	

DUNELM BESTECHNICAL & ENVIRONMENTAL				TRIAL PIT RECORD		TP No. TP04					
Contra	ct No.: D1037	71		Site: A635 Barnsley Road, Goldthorpe		So	cale 1:25				
	Barnsley Metr : Machine Ex	-		Council Logged By: RJ Checked By: BL	Sheet 1 of Dates:	1 23/04/2021					
S	AMPLE DETAI	ILS	ater		1	Level					
Туре	Depth From-To (m)	Insitu Testing	Groundwater	STRATA RECORD Description	Depth (m)	(m AOD) PID (ppm)	Legend	Backfill			
			+	MADE GROUND: Dark brown sandy clayey topsoil. Frequent rootlets noted.	+	+					
D ES	0.20 0.20				(0.40)						
	0.50			MADE GROUND: Light brown to light mottled grey, sandy gravelly	0.40						
B D ES	0.50 0.50 0.50			clay. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal.	E						
			E		E						
					-						
D ES	1.00 1.00		<u> </u>								
			F		- (1.50) -						
			-		-						
В	1.50		F		F						
			-		Ė						
			Ė		<u> </u>						
D	2.00			MADE GROUND: Light brown to light bluish grey, slightly sandy gravelly clay with a low cobble content. Gravel is angular to	1.90						
ES	2.00	0 -	Ė	subangular, fine to coarse of mudstone, sandstone, siltstone and coal. Cobbles are angular to subrounded of sandstone, mudstone and	Ė						
			Ė	Cobbies are angular to subrounded of sandstone, mudstone and siltstone.	Ė						
					Ė						
В	2.50		F		F						
			Ė		- (1.70)						
			Ė		Ė,						
D ES	3.00 3.00		3		-						
W	3.00		E		E						
			-		-						
В	3.50				E						
_			E	MADE GROUND: Light bluish grey, slightly clayey sandy gravel with a	3.60						
			-	low cobble content. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal. Cobbles are angular to	(0.30)						
D ES	3.90 3.90		Ė	subrounded of sandstone, mudstone and siltstone.	3.90			[.][.][.]			
			4	End of Trial Pit at 3.90 m	上						
			Ė	End of marrical o.so	Ė						
			E		E						
			F		-						
			E		E						
					Ė						
			- - - 5								
								<u> </u>			
Remarks				Ground Water (m) Excavation Details		Orienta	ation				
1. Trial pand C.	it terminated a	at 3.90m o	due to insta	ability of Face A Depth Strike Remarks Dimensions: 1.10m x 3.00m 3.50 Stability: Face A and C	┦ ┌─						
				unstable at 3.90m Weather: Dry	D	A C	В	350°			
				Remarks: Machine Excavated Trial Pit	┤						

	BEOTECHNICA	NELV AL & ENVIRONMENT	TAL			TP No. TP05						
Contra	ct No.: D103		Site : A635 E	Barnsley R	oad, Goldthorpe		Scale 1:25					
Client:	Barnsley Met	ropolitan B	orough Co	uncil			Logged By: RJ	Sheet 1 of	1			
Method	: Machine Ex	xcavated T	rial Pit				Checked By: BL	Dates:	22/04/2021			
S	AMPLE DETA	ILS	vater	STRATA RECORD					Level			
Туре	Depth From-To (m)	Insitu Testing	Groundwater			Description		Depth (m)	(m AOD) PID (ppm)	Legend	Backfill	
				MADE GROU	JND: Dark	brown sandy cla	ayey topsoil. Frequent rootlets	- (0.00)				
D ES	0.20 0.20		_ _ _					- (0.30) -				
			_	MADE GROU	JND: Firm	, light brown to li	ght mottled grey, sandy	0.30				
В	0.50		_ _ _	gravelly clay. mudstone, sa	Gravel is andstone,	angular to subar siltstone and coa	igular, fine to coarse of I.	E				
D ES	0.50 0.50		- - -	,	,			Ė				
								E				
			- - -					Ė				
D	1.00	-	_ 1					(1.40)				
ES	1.00		- - -					E				
		-						-				
HVP	1.40	HVP: 111kPa	- - -					Ė				
В	1.50	IIIVI . IIIKI A	_					F				
			- - -					Ė				
		-	_ _	MADE GROU	JND: Light	t brown to light b	uish grey, slightly sandy	1.70				
			- - -	gravelly clay	with a low	cobble content.	Gravel is angular to	E				
D	2.00	2.00		subangular, fine to coarse of mudstone, sandstone, siltstone and coal Cobbles are angular to subrounded of sandstone, mudstone and								
ES	2.00			siltstone.				Ė				
								- (1.10)				
w	2.40		- - -					E				
В	2.50							E				
			- - -		E							
			_					2.80				
			- - -	MADE GROU	JND: Light	2.80						
D	3.00	.00		mudstone, sa	by cobble content. Gravel is angular to subangular, fine to coarse of nudstone, sandstone, siltstone and coal. Cobbles are angular to							
ES	3.00		_ _ _	subrounded	E							
			_ _					-				
			_ _ _									
В	3.50		_					(1.30)				
								E				
		-	_ _					E				
			_					E				
D ES	4.00 4.00		_ 4									
ES	4.00		_ _ _			End of Trial Pit at	4.10 m	4.10			/.//.///	
			_ _ _					Ė				
			_					E				
			- -					E				
			_ _					F				
			- - -					E				
		-	_ _					-				
			5 5					F				
D					0		Francisco Detella		Orient	_4:		
Remark		at / 10m d	ie to instal	bility of Face A		und Water (m)	Excavation Details		Orient	ation		
and C.	nt terrimated a	at 4. IUIII Ol	io iiisiai	omity of Face A	Depth Strike	Remarks	Dimensions: 1.10m x 3.00m Stability: Face A and C		٨			
					5		unstable at 4.10m	-	Α	В	345°	
							Weather: Dry	\dashv \sqcup	С			
I					1		Remarks: Machine Excavated Trial Pit	1				

	DUL	VELT L & ENVIRONMEN	ITAL	TRIAL PIT RECORD					TP No. TP07					
Contra	ct No.: D103	71		Site : A635 B	arnsley Ro	oad, Goldthorpe			S	cale 1:25				
Client:	Barnsley Metr	opolitan E	Borough Co	uncil			Logged By: RJ	Sheet 1 of	1					
1	: Machine Ex	-					Checked By: BL	Dates:	Dates: 22/04/2021					
SAMPLE DETAILS		ater				-		Level						
Туре	Depth From-To (m)	Insitu Testing	Groundwater			STRATA RECORD Description		Depth (m)	(m AOD) PID (ppm)	Legend	Backfill			
D ES	0.20 0.20		-	MADE GROU noted.	JND: Dark	brown sandy cl	ayey topsoil. Frequent rootlets	(0.40)						
B D ES	0.50 0.50 0.50		- - - - - - - -	Soft, light bro high plasticity sandstone an	. Gravel is	s subangular to s	ightly sandy gravelly CLAY of subrounded, fine to coarse of	0.40						
D ES HVP	1.00 1.00 1.00	HVP: 76kPa	- - - - - - - -					(1.65)						
В	1.50		- - - - - - - - - -					- - - - - - - -						
D	2.00		2 	Extremely we Partially weat sandy clayey	hered with	bedded, light gre n reddish brown	ey to dark brown MUDSTONE staining. Recovered as slightly	2.05						
В	2.50							- - - - - - - - -						
D	3.00		3					- - - - - - -						
В	3.50		- - - - - - -					(3.05)						
D W	4.00 4.00		4 4 					- - - - - - -						
В	4.50							- - - - - - -						
D	5.00		_ 5					<u> </u>						
						End of Trial Pit at	5.10 m	5.10						
Remarks	8				Grou	und Water (m)	Excavation Details		Orient	ation				
					Depth Strike 3.00	Remarks Groundwater seepage.	Dimensions: 1.10m x 3.00m Stability: Stable to 5.10m Weather: Dry Remarks: Machine Excavated Trial Pit	D	A C	В	350°			

OUNELM BEOTECHNICAL & ENVIRONMENTAL				TRIAL PIT RECORD		TP I		
Contra	ct No.: D103	71		Site: A635 Barnsley Road, Goldthorpe	Scale 1:25			
Client:	Barnsley Metr	opolitan Bo	orough Co	Duncil Logged By: RJ	Sheet 1 of	1		
Method	: Machine Ex	cavated Tr	ial Pit	Checked By: BL	Dates:	23/04/2021		
S	AMPLE DETA	ILS	Groundwater	STRATA RECORD	Depth	Level (m AOD)		
Туре	Depth From-To (m)	Insitu Testing		Description	(m)	PID (ppm)	Legend	Backfill
D ES	0.20 0.20		-	MADE GROUND: Dark brown sandy clayey topsoil. Frequent rootlets noted. MADE GROUND: Soft, light brown to light mottled grey, sandy gravelly	- - (0.30) - - 0.30			
B D ES	0.50 0.50 0.50		- - - - -	clay. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal.				
D ES	1.00 1.00		- - - - - - 1		- (0.55)			
HVP	1.00	HVP: 79kPa	HVP: 79kPa	MADE GROUND: Firm, light brown to light bluish grey, slightly sandy gravelly clay with a low cobble content. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal. Cobbles are angular to subrounded of sandstone, mudstone and	1.10			
В	1.50		- - - -	siltstone.	1.60			
			- - - - -	MADE GROUND: Light bluish grey, slightly sandy clayey gravel with a low cobble content. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal. Cobbles are a subangular of mudstone and siltstone.	(0.50)			
D ES W	2.00 2.00 2.00		2	End of Trial Pit at 2.10 m	2.10			
Remarks			3	Ground Water (m) Excavation Details		Orient	ation	
Remarks		Ground Water (m) Excavation Details		Orient	ation			
1. Irial p and C.	oil lerminated a	at ∠. IUM du	e io insta	bility of Face A Depth Strike 2.00 Remarks Dimensions: 1.10m x 3.00m Stability: Face A and C unstable at 2.10m Weather: Dry Remarks: Machine Excavated Trial Pit	D	A C	В	261°

	DUR	VELIV L& ENVIRONMENTA	NL	TRIAL PIT RECORD		TP N			
Contra	ct No.: D1037	71		Site: A635 Barnsley Road, Goldthorpe		Sc	ale 1:25		
Client:	Barnsley Metr	opolitan Bo	orough Co	buncil Logged By: RJ	Sheet 1 of	1			
Method	: Machine Ex	cavated Tr	ial Pit	Checked By: BL	Dates: 23/04/2021				
S	AMPLE DETAI	LS	water	STRATA RECORD	Depth	Level (m AOD)			
Туре	Depth From-To (m)	Insitu Testing	Groundwater	Description	(m)	PID (ppm)	Legend	Backfill	
D ES	0.10 0.10			MADE GROUND: Dark brown sandy clayey topsoil. Frequent rootlets noted. MADE GROUND: Soft, light brown to light mottled grey, slightly sandy gravelly clay of intermediate plasticity. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal.	0.20				
B D ES	0.50 0.50 0.50		- = - - - -		(0.60)				
D ES	1.00 1.00		- - 1	MADE GROUND: Firm, light brown to light bluish grey, slightly sandy gravelly clay. Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal.	- (0.80)				
В	1.50		- - - - -	MADE GROUND: Light bluish grey, clayey slightly sandy gravel with	1.60				
D ES	2.00 2.00		- 2	cobble content . Gravel is angular to subangular, fine to coarse of mudstone, sandstone, siltstone and coal. Cobbles are a subangular of mudstone and siltstone.	- - - - - - - - - -				
B W	2.50 2.60		_		(1.30)				
			•	End of Trial Pit at 2.90 m	2.90				
			- 3 - 3 4 						
Remarks	<u>. </u>	<u> </u>		Ground Water (m) Excavation Details		Orienta	ation		
1. Trial pand C.	it terminated a	t 2.90m du	e to insta	bility of Face A Depth Strike 2.50 Dimensions: 1.10m x 2.50m Stability: Face A and C unstable at 2.90m Weather: Dry Remarks: Machine Excavated Trial Pit	D	A C	В	338°	

APPENDIX C

Photographs

D10371_TP1A

A635 Barnsley Road, Goldthorpe Project

Project No. Carried out for Barnsley Metropolitan Borough Council Plate

1

D10371_TP2

D10371_TP4

Project A635 Barnsley Road, Goldthorpe

Project No. Carried out for Barnsley Metropolitan Borough Council

D10371_TP7

Project A635 Barnsley Road, Goldthorpe
Project No. D10371

Project No. D103
Carried out for Barn

Barnsley Metropolitan Borough Council

D10371_TP8

D10371_TP9

Project A635 Barnsley Road, Goldthorpe

Project No. D1037 Carried out for Barns

Barnsley Metropolitan Borough Council

APPENDIX D

Geotechnical Laboratory Results

Laboratory Report Front Sheet

Site name Job number

Barnsley Metropolitan Borough Council D10371

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Client details:

Reference: D10371 Name: Dunelm

Address: Foundation House,

St John's Road, Meadowfield, County Durham, DH7 8TZ

Telephone: 0191 3783151

Email: blaycock@solmek.com

FAO: B Laycock

Date commenced: 29/04/2021

Date reported: ••/0•/2021

Observations and interpretations are outside of the UKAS Accreditiation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced in full, without the prior written approval of the laboratory.

Samples will be held at the laboratory for a period of 4 weeks after the report date. After the all samples will be disposed of. Should further testing be required then the office should be informed before the above date.

Signature:		Approved S	Signitories:
		7	K Watkin (Lab Manager)
Kuz	Hein		T Finnimore (Senior Technician)
7 000	20.05		J Brischuk (Senior Technician)

Site name Job number

Barnsley Metropolitan Borough Council D10371

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole	De	pth	Typo	147	Oven tema	wa	Pa	Pr	wL	wP	IP	IL	Plasticity	Droparation mathed
Hole	Тор	Base	Type	W	Oven temp.	wa	Pa	Pr	WL	WP	IP	IL	class	Preparation method
	m	m		%	ос	%	%	%	%	%	%			
OH1	0.10		D	25	105									
OH1	0.50		D	27	105									
OH1	1.00		D	17	105		86	14	37-s	20	17		CI	Tested after >425μm removed by hand
OH10	0.10		D	24	105									
OH10	0.50		D	24	105									
OH10	1.00		D	31	105									
OH10	1.20		SPT (D)	22	105									
OH10	2.70		SPT (D)	11	105									
OH10	4.20		SPT (D)	19	105									
OH10	5.70		SPT (D)	20	105									
OH10	7.20		SPT (D)	16	105									
OH10	8.70		SPT (D)	7.2	105									
OH10	10.20		SPT (D)	9.0	105									
OH10	11.70		SPT (D)	6.6	105									
OH2	0.10		D	28	105									
OH2	0.50		D	22	105									
OH2	1.00		D	19	105		85	15	41-s	24	17		CI	Tested after >425μm removed by hand
OH4	1.00		D	23	105		90	10	43-s	23	20		CI	Tested after >425μm removed by hand
OH6	0.10		D	24	105									
ОН6	0.50		D	23	105		89	11	50-s	24	26		СН	Tested after >425µm removed by hand

Key	Description		Category	BS Test Code	
w	Moisture content			BS 1377:1990 Part 2 Cl	ause 3.2
wa	Equivalent moistu sieve	re content passing 425μm		BS 1377:1990 Part 2 Cl	ause 3.2
wL	Liquid limit	Single point	-S	BS 1377:1990 Part 2 Cl	ause 4.4
WL	Liquiu iiiiit	Four point	-f	BS 1377:1990 Part 2 Cl	ause 4.3
wP	Plastic limit			BS 1377:1990 Part 2 Cl	ause 5.2
Pa	Percentage passin	g 425um sieve			
Pr	Percentage retaine	ed 425um sieve			
IP	Plasticity index			BS 1377:1990 Part 2 Cl	ause 5.4
IL	Liquidity index			BS 1377:1990 Part 2 Cl	ause 5.4
	Suffix indicating te Accredited"	st is "Not UKAS	* D103	71 Geotech Report	Page 2 of 2

KW
05/05/2021 13:33

Site name Job number

Barnsley Metropolitan Borough Council D10371

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

	De	pth	-				D-	D	T		ID		Plasticity	S
Hole	Тор	Base	Type	w	Oven temp.	wa	Pa	Pr	wL	wP	IP	IL	class	Preparation method
	m	m		%	ос	%	%	%	%	%	%			
OH6	1.00		D	16	105									
ОН6	1.20		SPT (D)	23	105									
ОН6	2.70		SPT (D)	18	105									
ОН6	4.20		SPT (D)	13	105									
ОН6	5.70		SPT (D)	14	105									
ОН6	7.20		SPT (D)	7.9	105									
ОН6	8.70		SPT (D)	4.4	105									
ОН6	10.20		SPT (D)	7.1	105									
ОН6	11.70		SPT (D)	15	105									
OH7	0.10		D	25	105									
OH7	0.50		D	22	105									
OH7	1.00		D	22	105									
OH7	1.20		SPT (D)	15	105									
OH7	2.70		SPT (D)	27	105									
OH7	4.20		SPT (D)	11	105									
OH7	5.70		SPT (D)	13	105									
OH7	7.20		SPT (D)	14	105									
OH7	8.70		SPT (D)	10	105									
OH7	10.20		SPT (D)	6.6	105									
OH7	11.70		SPT (D)	11	105									

Key	Description		Category	BS Test Code	
w	Moisture content			BS 1377:1990 Part 2 Cl	ause 3.2
wa	Equivalent moistui sieve	e content passing 425μm		BS 1377:1990 Part 2 Cl	ause 3.2
wL	Liguid limit	Single point	-S	BS 1377:1990 Part 2 Cl	ause 4.4
WL	Liquid IIIIII	Four point	-f	BS 1377:1990 Part 2 Cl	ause 4.3
wP	Plastic limit			BS 1377:1990 Part 2 Cl	ause 5.2
Pa	Percentage passing	g 425um sieve			
Pr	Percentage retaine	ed 425um sieve			
IP	Plasticity index			BS 1377:1990 Part 2 Cl	ause 5.4
IL	Liquidity index			BS 1377:1990 Part 2 Cl	ause 5.4
	Suffix indicating te Accredited"	st is "Not UKAS	* D103	71 Geotech Report	Page 3 of 2

Approved by	KW
Approval date	05/05/2021 13:33
Date report generated	02/06/2021 15:01
Report Number	SLMK_21021230

Site name Job number

Barnsley Metropolitan Borough Council D10371

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

	De	pth						D		n	IP	**	Plasticity	Daniel de la constitue de
Hole	Тор	Base	Туре	W	Oven temp.	wa	Pa	Pr	wL	wP		IL	class	Preparation method
	m	m		%	ос	%	%	%	%	%	%			
OH7	13.20		SPT (D)	5.6	105									
OH7	14.70		SPT (D)	5.7	105									
ОН8	0.10		D	29	105									
ОН8	0.50		D	19	105									
ОН8	1.00		D	18	105									
ОН8	1.20		SPT (D)	7.5	105									
ОН8	2.70		SPT (D)	9.4	105									
ОН8	4.20		SPT (D)	22	105									
OH8	5.70		SPT (D)	17	105									
OH8	7.20		SPT (D)	10	105									
ОН8	8.70		SPT (D)	21	105									
ОН8	10.20		SPT (D)	7.5	105									
ОН8	11.70		SPT (D)	9.4	105									
ОН9	0.10		D	24	105									
ОН9	0.50		D	30	105									
ОН9	1.00		D	21	105		93	7	50-s	23	27		СН	Tested after >425µm removed by hand
ОН9	1.20		SPT (D)	22	105									
ОН9	2.70		SPT (D)	17	105									
ОН9	4.20		SPT (D)	10	105									
ОН9	5.70		SPT (D)	21	105									

Key	Description		Category	BS Test Code	
W	Moisture content			BS 1377:1990 Part 2 Cla	ause 3.2
wa	Equivalent moistu sieve	re content passing 425μm		BS 1377:1990 Part 2 Cla	ause 3.2
wL	Liquid limit	Single point	-S	BS 1377:1990 Part 2 Cla	ause 4.4
WL	Liquiu iiiiit	Four point	-f	BS 1377:1990 Part 2 Cla	ause 4.3
wP	Plastic limit			BS 1377:1990 Part 2 Cla	ause 5.2
Pa	Percentage passin	g 425um sieve			
Pr	Percentage retaine	ed 425um sieve			
IP	Plasticity index			BS 1377:1990 Part 2 Cla	ause 5.4
IL	Liquidity index			BS 1377:1990 Part 2 Cla	ause 5.4
	Suffix indicating te Accredited"	st is "Not UKAS	* D103	71 Geotech Report	Page 4 of 26

Approved by	кw
Approval date	26/05/2021 16:12
Date report generated	
Report Number	

Site name Job number

Barnsley Metropolitan Borough Council D10371

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Uala	De	pth	T	l	0		Da.	D.,	T		ID	11	Plasticity	Duran a matical and a state and
Hole	Тор	Base	Type	w	Oven temp.	wa	Pa	Pr	wL	wP	IP	IL	class	Preparation method
	m	m		%	ос	%	%	%	%	%	%			
OH9	7.20		SPT (D)	8.1	105									
ОН9	8.70		SPT (D)	4.6	105									
ОН9	10.20		SPT (D)	13	105									
TP01	1.50		В	26	105									
TP02	1.50		В	12	105									
TP04	2.50		В	19	105									
TP05	2.50		В	21	105									
TP07	1.00		D	20	105		99	1	51-s	23	28		СН	Tested after >425µm removed by hand
TP07	1.50		В	19	105									
TP07	3.00		D	12	105									
TP09	0.50		D	20	105		96	4	45-s	24	21		CI	Tested after >425µm removed by hand
TP09	2.50		В	18	105									

Key	Description		Category	BS Test Code	
w	Moisture content			BS 1377:1990 Part 2 Cl	ause 3.2
wa	Equivalent moistur sieve	e content passing 425μm		BS 1377:1990 Part 2 Cl	ause 3.2
wL	Liguid limit	Single point	-S	BS 1377:1990 Part 2 Cl	ause 4.4
WL	Liquid IIIIII	Four point	-f	BS 1377:1990 Part 2 Cl	ause 4.3
wP	Plastic limit			BS 1377:1990 Part 2 Cl	ause 5.2
Pa	Percentage passing	g 425um sieve			
Pr	Percentage retaine	ed 425um sieve			
IP	Plasticity index			BS 1377:1990 Part 2 Cl	ause 5.4
IL	Liquidity index			BS 1377:1990 Part 2 Cl	ause 5.4
	Suffix indicating te Accredited"	st is "Not UKAS	* D103	71 Geotech Report	Page 5 of 2

Approved by	KW
Approval date	26/05/2021 16:19
Date report generated	
Report Number	

PARTICLE SIZE DISTRIBUTION

Site name Job number

Barnsley Metropolitan Borough Council D10371

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole		TP01	Lab sample ID	SLMK2021042830
Depth (Top)	m	1.50	Test Method	BS 1377 - 2 : 1990 Clauses 9.2 and 9.5
Depth (Base)	m		Soil Description	Brown, Slightly Silty, Slightly Gravelly,
Sample type		В		Clayey, SAND.

Siev	/ing	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	44
90	100	0.0515	44
75	100	0.0365	43
63	100	0.0259	41
50	100	0.0184	39
37.5	100	0.0096	35
28	100	0.0049	32
20	100	0.0024	29
14	99	0.0014	27
10	98		
6.3	92		
5	89		
3.35	84		
2	79		
1.18	76		
0.6	73	Particle density	(assumed)
0.425	70	2.65	Mg/m3
0.3	66		
0.212	61		
0.15	55		
0.063	44		

Dry Mass of sample, g	1144

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	20.6
Sand	35.0
Silt	16.3
Clay	28.1

Grading Analysis		
D100	mm	
D60	mm	0.204
D30	mm	0.00338
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

oelow

Accreditation status

Hydrometer is the usual Sedimentation method carried out by Solmek and is part of the Solmek UKAS accreditation schedule.

Approved by	KW
Approval date	17/05/2021 12:58

PARTICLE SIZE DISTRIBUTION

Site name Job number

Barnsley Metropolitan Borough Council D10371

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole	TP02	Lab sample ID	SLMK2021042831
Depth (Top)	1.50	Test Method	BS 1377 - 2 : 1990 Clauses 9.2 and 9.5
Depth (Base) r	n	Soil Description	Brown, slightly sandy, slightly silty, slightly
Sample type	В		clayey GRAVEL

Siev	/ing	Sedim	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
125	100	0.0630	45
90	100	0.0507	45
75	100	0.0359	44
63	100	0.0255	43
50	100	0.0181	42
37.5	100	0.0094	39
28	84	0.0048	32
20	76	0.0024	26
14	75	0.0014	25
10	71		
6.3	66		
5	65		
3.35	62		
2	57		
1.18	53		
0.6	49	Particle density	(assumed)
0.425	48	2.65	Mg/m3
0.3	47		
0.212	47		
0.15	46		
0.063	45		

Dry Mass of sample, g	1729

Sample Proportions	% dry mass
Very coarse	0.0
Gravel	43.2
Sand	11.6
Silt	19.6
Clay	25.6

Grading Analysis		
D100	mm	
D60	mm	2.82
D30	mm	0.00384
D10	mm	
Uniformity Coefficient		
Curvature Coefficient		

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with BS1377 test

Accreditation status

Hydrometer is the usual Sedimentation method carried out by Solmek and is part of the Solmek UKAS accreditation schedule.

Approved by	T.Thompson		
Approval date	12/05/2021 11:18		

PARTICLE SIZE DISTRIBUTION

Site name Job number

Barnsley Metropolitan Borough Council D10371

Solmek 12-16 Yarm Road, Stockton on Tees, TS18 3NA 01642 607083 lab@solmek.com

Hole		TP09	Lab sample ID	SLMK2021042838
Depth (Top)	m	2.50	Test Method	BS 1377 - 2 : 1990 Clauses 9.2 and 9.5
Depth (Base)	m		Soil Description	Brown, Slightly Clayey, Slightly Silty, Sandy,
Sample type		В		GRAVEL. COBBLES PRESENT.

Siev	/ing	Sedimentation		
Particle Size mm	% Passing	Particle Size mm	% Passing	
125	100	0.0630	10	
90	100	0.0504	10	
75	76	0.0358	9	
63	76	0.0254	9	
50	73	0.0181	8	
37.5	61	0.0095	7	
28	50	0.0049	6	
20	40	0.0025	5	
14	39	0.0014	4	
10	36			
6.3	31			
5	30			
3.35	26			
2	21			
1.18	18			
0.6	15	Particle density	(assumed)	
0.425	14	2.65	Mg/m3	
0.3	13		·	
0.212	12			
0.15	11			
0.063	10			

Sample Proportions	% dry mass		
Very coarse	24.3		
Gravel	54.3		
Sand	11.7		
Silt	4.9		
Clay	4.8		

Grading Analysis		
D100	mm	
D60	mm	36.1
D30	mm	4.96
D10	mm	0.0719
Uniformity Coefficient		500
Curvature Coefficient		9.5

Remarks

Preparation and testing in accordance with test method unless noted below

Sample tested was deviating in accordance with $\ensuremath{\mathsf{BS1377}}$ test standard.

Accreditation status

Hydrometer is the usual Sedimentation method carried out by Solmek and is part of the Solmek UKAS accreditation schedule.

Approved by	T.Thompson
Approval date	12/05/2021 12:25

		Dry Density /	Moisture Content Rel	ationship	Job Ref	D10371
		Light Compaction			Borehole / Pit No	TP04
Site Name		Barnsle	y Metropolitan Borough Cou	ncil	Sample No	
Soil Descript	tion Brown	, gravelly CLAY			Depth	2.50 m
Specimen R	ef.	1	Specimen Depth	m	Sample Type	В
Test Method		BS1377:P	art 4:1990, clause 3.4, 2.5kg ra	mmer	Keylab ID	SLMK2021042832
2.00				Compaction	n Test Reference/No.	% Air Voids
Dry Density, Mg/m3 1.80					— — – 5 9	% Air Voids % Air Voids % Air Voids
1.70	•					
1.60 +		8	12	16	20	24
			Moisture Co			
	Mould Type				CBR	
	Samples Used	d on 27 5 mm Cia	0/	S	ingle sample tested	
l —		d on 37.5 mm Sieve			10	
I	Material Retained on 20.0 mm Sieve % 11 Particle Density - Assumed Mg/m³ 2.75					
	Natural Moisture		// wig/iii		19	
	Maximum Dry D		Mg/m³		1.87	
	Optimum Moist	ure Content	%		14	
Operator	Checked	Approved	Remarks			Fig
MS	KS	KW				Sheet 1 of 1

			Dry Density /	Moisture Content Re	ationship	Job Ref	D10371
				Light Compaction			TP05
Site Name			Barnsle	y Metropolitan Borough Cou	ncil	Sample No	
Soil Descrip	otion	Brown, s	slightly gravelly Cl	_AY		Depth	2.50 m
Specimen F	Ref.		1	Specimen Depth	m	Sample Type	В
Test Metho	d		BS1377:P	art 4:1990, clause 3.4, 2.5kg ra		Keylab ID	SLMK2021042833
1.90				, \ \	Compaction	n Test Reference/No.	
1 90						—— -5 9	% Air Voids % Air Voids % Air Voids
Dry Density, Mg/m3							
1.60 -		•					
1.50	-		8	12	16	20	24
				Moisture Co	ntent, %		
	Mould Ty					CBR	
-	Samples Material F		on 37.5 mm Sieve	%	S	ingle sample tested 7	
			on 20.0 mm Sieve			5	
	Particle D			Mg/m³		2.65	
-	Natural M			% Ma/m³		21	
	Maximur Optimun		re Content	Mg/m³		1.79	
Operator	Che	ecked	Approved	Remarks			Fig
MS	KW		KW				Sheet 1 of 1

		Dry Density /	Moisture Content Rel	ationship	Job Ref	D10371
			Light Compaction		Borehole / Pit No	TP07
Site Name		Barnsle	y Metropolitan Borough Cou	ncil	Sample No	
Soil Description	Brown, 0	CLAY			Depth	1.50 m
Specimen Ref.		1	Specimen Depth	m	Sample Type	В
Test Method		BS1377:P:	art 4:1990, clause 3.4, 2.5kg ra	mmer	Keylab ID	SLMK2021042835
1.90			`\	Compaction	n Test Reference/No.	
1.80					<u> </u>	% Air Voids % Air Voids % Air Voids
Dry Density, Mg/m3 1.20	•					
1.60						
1.50 4		8	12	16		20
			Moisture Co	nient, %		
	uld Type				CBR	
	mples Used	07.5		S	ingle sample tested	
		on 37.5 mm Sieve			0	
		on 20.0 mm Sieve	% Mg/m³		2.65	
	rticle Density - A tural Moisture C		Mig/m ^o %		2.65	
	ximum Dry De		Mg/m³		1.78	
	timum Moistur				15	
Operator	Checked	Approved	Remarks			Fig
MS K	W .	KW				Sheet 1 of 1

	Califor	California Bearing Ratio(CBR)			Job Ref	D10371
	Callion	Ma Dearing i	Kalio (CDi	Borehole/Pit No.	. TP04	
Site Name	Barnsley Metropolita	n Borough Council		Sample No.		
Soil Description					Depth m	2.50
Specimen Reference	1	Specimen Depth	T	n	m Sample Type	В
Specimen Description	Brown, gravelly CLA	•			KeyLAB ID	SLMK2021042832
Test Method	BS1377 : Part 4 : 19	90, clause 7			CBR Test Numb	per 1
Specimen Preparatio Condition Details	cimen Preparation Condition REMOULDED Details Recompacted with specified standard effort using 2.5kg				Soaking details Period of soaking Time to surface	Not soaked days days
Material re	tained on 20mm sieve	removed	21	%	Amount of swell re Dry density after s	
Initial Spec	Dry	lk density / density isture content	2.00 1.62 23.2	2 Mg/m3	Surcharge applied	l 2 kg 1 kPa
		Force v Pe	enetration Plots	s		
0.20 VA 0.15 0.10 VA 0.15						Top data*Top valuesTop correctionBase dataBase values
0.05	1 2	3	4 5	5 6	6 7	Base Correction
Results		1	ration mm		Majoturo	
Results	Curve correctio applied	on O. Saura	CBR Values, % imm Highe		Moisture Content %	
TOP BASI			0.8 0.8 0.8 0.8	0.8	23.1 25.9	
General remarks	· · · · · · · · · · · · · · · · · · ·	Test specific ren	marks	Aŗ	oproved	Fig No.
Tested ta Natura	al Moisture Content				KW	Sheet No 1

			Cali	forni	: Pos	-ina [- / CB	D)			Job Re	ef		D10371	
			Gain	ЮГШ	ia Bea	ring r	latic) (CD	K)			Boreho	ole/Pit No.		TP04	
Site I	Name	Barns	ley Metropo	olitan B	3orough (Council						Sampl	e No.			
Soil [Description											Depth	m		2.50	
	cimen rence		2		Specim Depth	nen				m	1	Sampl	е Туре		В	-
Spec	cimen cription	Brown	n, gravelly C	CLAY								KeyLA	B ID	SLM	K202104	12832
	Method	BS137	77 : Part 4 :	1990,	, clause 7	7						CBR T	est Number		1	
Specin	men Prepara Conditio Details	on l	REMOULDI Recompact rammer		h specifie	ed stand	lard ef	ffort usin	ıg 2.	5kg	Pe Tii	eriod o	details f soaking surface		C	days days
	Materia	retained (on 20mm si	ieve re	moved			21		%			of swell reco			mm Mg/m3
	Initial S _f	oecimen d		Dry de	density ensity ure conte	ent		1.92 1.80 6.5	0	Mg/m3 Mg/m3 %	Sı	urcharç	ge applied			kg kPa
	10.00				For	ce v Per	netrat	ion Plot	s							
	9.00						-					X X	***			
	8.00						 	معر	×		<u>^</u>			<u> </u>		
	7.00					محر		J. J. J.							Γop data	
ed kN	6.00	-+	\rightarrow				\vdash		\vdash						Γop valu	
Applie	5.00						+		\vdash						Γop corr	
Force Appli	4.00	$-\!\!\!\!+$	-				\bot		_						Base dat	
<u>. </u>	3.00						\perp									
		K	/			_					_				Base coi	rrection
	1.00															
	0.00						<u> </u>		_		_			_		
	0	1	2		3	Penetra	4 ation	mm 5)	6			7	8		
F	Results		Cur			C	BR Va	alues, %	Ö]		oisture Content			
			corre appl		2.5mm	5n	mm	Highe	est	Average	!		%			
		OP ASE			36.0 39.0	_	7.0 9.0	37.0 39.0		38.0]		6.9 7.4			
,								33.0	<u>'</u> —	^			1.4	I=		
	General rema			\Box	Test spec	cific rem	ıarks			Арр	rove			Fig No.	1	
Т	Tested at 7%	Moisture (Content									KW		Sheet No	2	
Lab Sh	neet Referenc	:e :												•		

			Californ	io Boari			· / CBI	-		Ī	Job Ref	D10371
	I	'	Californ	la Deam	ng n	เสเเบ) (CDI	₹)		Ī	Borehole/Pit No.	TP04
Site Na	lame	Barnsley Me	etropolitan I	Borough Co	ouncil					7	Sample No.	
Soil De	escription							_		I	Depth m	2.50
Specin Refere		3	3	Specime Depth	n				m	1	Sample Type	В
Specin Descri		Brown, grav	velly CLAY	,						Ī	KeyLAB ID	SLMK2021042832
	Vethod	BS1377 : Pa	art 4 : 1990	, clause 7				_		1	CBR Test Number	1
Specime	nen Preparation Condition Details	REMO	OULDED mpacted wit ner	th specified	standa	ard ef	fort usinç	g 2.	5kg	-	Soaking details Period of soaking Time to surface Amount of swell reco	Not soaked days days orded mm
	Material ref	tained on 20r	mm sieve re	emoved			21		%	ı	Dry density after soa	aking Mg/m3
	Initial Spec	cimen details	Dry d	density density ture content	t		2.00 1.82 9.8	2	Mg/m3 Mg/m3 %	;	Surcharge applied	2 kg 1 kPa
				Force	v Pen	ietrati	ion Plots	5				
8	8.00]
-	7.00					_		_	\longrightarrow	_	40	4
								ار ا	_	-	**	
·	6.00					ير	سمعر	سے ہدا	***	_ *		─ ──── Top data
Z 5	5.00				سيو مح		The state of the s	_	\rightarrow	_		* Top values
þe	4.00 *		<u> </u>			_		i		_		—— Top correction
Force Appli	4.00											── Base data
For	3.00	1		;		\vdash	-	—	\rightarrow			• Base values
;	2.00					_			\longrightarrow	_		Base Correction
	1.00					_						_
(0.00	1	2	3	Penetra	4 ation r	5 mm	j	6		7	8
Re	esults	ſ	2	·			alues, %			\neg	Moisture	
	33uito		Curve correction applied	2.5mm		nm	Highes		Average	Э	Content %	
	TOP			31.0		7.0	31.0		30.0	7	10.3	
	BASE	Ξ [30.0	30	0.0	30.0			╛	10.3	
Ge	eneral remarks			Test specif	fic rem	arks			Арр І	pro	ved	Fig No.
Те	ested at 10% M	loistrure Con	ntent								KW	Sheet No 3
Lab She	eet Reference :		-									

Site Name Barnsley Metropolitan Borough Council Sample No.				Californ	io Boar	ina B	·atic	- / CBI	<u> </u>		Ī	Job Re	ef		D10	0371
Soil Description Depth m 2.50				Camon	ila Deari	ny n	สแบ	(CDr	()			Boreho	ole/Pit No.		TF	204
Reference Reference Brown, gravelly CLAY Beginnen Doscription Test Method BS1377 : Part 4 : 1990, clause 7 Specimen Proparation Condition Details Recompacted with specified standard effort using 2.5kg Paried of soaking Material retained on 20mm sieve removed 21 % Dry density 1.83 Mg/m3 Initial Specimen details Bulk density 2.10 Mg/m3 Moisture content 1.57 Force v Penetration Plots Force v Penetration Plots 3.50 Force v Penetration Plots Top Correction 0.50 Penetration mm Results Curve Curve Correction 13.0 11.0 13.0 14.0 Moisture Content Moisture Moisture Content Moisture Moistu	Site Name		Barnsley N	/letropolitan	Borough Co	ouncil					T	Sampl	e No.			
Reference Brown, gravelly CLAY KeyLAB ID SLMK2021042832 Test Method BS1377 : Part 4 : 1990, clause 7 CBR Test Number 1 Specimen Preparation Condition REMOULDED Condition Recompacted with specified standard effort using 2.5kg Period of soaking days rammer Material retained on 20mm sieve removed 21 % Dry density after soaking Mg/m3 Initial Specimen details Bulk density 2.10 Mg/m3 Surcharge applied 2 kg Dry density 1.83 Mg/m3 1 kPa Force v Penetration Plots Force v Penetration Plots Top All 1.50 Results Curve CBR Test Number 1 Not soaked Period of soaking days Amount of swell recorded mm Mg/m3 Surcharge applied 2 kg Surcharge applied 3 kPa Surcharge applied 3 kPa Surcharge applied 2 kg Surcharge applied 3 kPa Surcharge applied 4 kpa Surcharge applied 5 kpa Surcharge applied 5 kpa Surcharge applied 6 kpa Surcharge applied 7 kpa Surcharge applied 7 kpa Surcharge applied 8 kpa Surcharge applied 9 kpa Surcharge 4 kpa Surc	Soil Descrip	otion							_		L	Depth	m		2.	50
Specimen Brown, gravelly CLAY KeyLAB ID SLMK2021042832				4		n				m	T	Sampl	е Туре			В
Specimen Preparation Condition REMOULDED Details Recompacted with specified standard effort using 2.5kg Period of soaking Time to surface days Amount of swell recorded Material retained on 20mm sieve removed 21 % Dry density after soaking Dry density 1.83 Mg/m3 Initial Specimen details Bulk density 1.83 Mg/m3 Moisture content 14.5 % Force v Penetration Plots Top data Top data Top data Top correction Base Correction REMOULDED Recompacted with specified standard effort using 2.5kg Period of soaking Time to surface days Amount of swell recorded mm Mg/m3 Surcharge applied 2 kg 1 kPa Top data Top data Top adues Top correction Base data		1	Brown, gra	velly CLAY							T	KeyLA	B ID		SLMK20	21042832
Condition REMOULDED Recompacted with specified standard effort using 2.5kg Recompacted with specified standard effort using 2.5kg Time to surface Amount of swell recorded Material retained on 20mm sieve removed Initial Specimen details Bulk density Dry density 1.83 Mg/m3 Moisture content 14.5 % Force v Penetration Plots 3.50 Force v Penetration Plots 3.50 Force v Penetration Plots 1.50 Moisture Content 1.50 Moisture Correction Base data			BS1377 : F	² art 4 : 1990), clause 7				_		I	CBR T	est Numbe	er		1
Initial Specimen details Bulk density Dry density 1.83 Mg/m3 Surcharge applied 2 kg Moisture content 14.5 % Force v Penetration Plots Top data Top values Top values Top correction Base data Top correction Base values Base Correction Dry density 1.80 Mg/m3 Moisture content Top data Moisture content Top correction Base values Base Correction Moisture Mg/m3 Moisture Mg/m3 Moisture Mg/m3 Moisture Mg/m3 Moisture Mg/m3 Moisture Mg/m3 Top data Moisture Moisture Moisture Moisture Contraction Moisture Moisture Content Moisture Moisture Moisture Moisture Content Moisture Moisture Moisture Moisture Moisture Content Moisture Moi	Co	Condition	REM Reco	ompacted wi	th specified	l standa	ard efl	fort using	j 2 .!	5kg	P Ti	eriod o	f soaking surface	rdo		days days
Dry density 1.83 Mg/m3 1 KPa	М	laterial re	tained on 20	0mm sieve r	emoved			21		%						mm Mg/m3
3.50 3.00 2.50 ———————————————————————————————————	ln	iitial Spec	imen details	Dry d	density	t		1.83		Mg/m3	Si	urcharç	ge applied			
No	2.50				Force	v Pen	etrati	on Plots	•							
2.00 2.00 Top correction Base data									_		•	4-4-				
2.00 ——————————————————————————————————	2.50	•				محرو		2		***	_*	**	***	-		data
1.00 0.50 0.00 0 1 2 3 4 5 6 7 8 Penetration mm Results Curve correction applied 2.5mm 5mm Highest Average mapple 4 13.0 11.0 13.0 14.0 15.1 TOP 13.0 11.0 13.0 14.0 15.1	2.00	ф ж						***						- -	•	
0.50 0.00 0.00 0.00 1 2 3 4 5 6 7 8 Penetration mm Results Curve correction applied 2.5mm 5mm Highest Average	OH 1.50			A THE STATE OF THE				-						- - -		
0.00 0 1 2 3 4 5 6 7 8 Penetration mm Results Curve Correction applied 2.5mm 5mm Highest Average TOP 13.0 11.0 13.0 14.0 15.1														-	—— Base	Correction
Penetration mm	0.00								_							
Correction applied 2.5mm 5mm Highest Average Content % TOP 13.0 11.0 13.0 14.0 15.1	'	0	1	2			-			б			7	8		
TOP 13.0 11.0 13.0 14.0 15.1	Results	i		correction	2 5mm					Average						
				applied	13.0	11	1.0	13.0			1		15.1			
General remarks Test specific remarks Approved Fig No.	Genera	ıl re <u>marks</u>	s		Test speci	ific rem	arks			Арр	rove	 ed		F	ig No.	1
Tested at 15% Moisture Content KW Sheet No 4				ntent												

	Californ		Patia / CRP '		Job Ref	D10371
	Camorn	nia Bearing F	(atio (CDR)	1	Borehole/Pit No.	TP04
Site Name	Barnsley Metropolitan	Borough Council			Sample No.	
Soil Description					Depth m	2.50
Specimen Reference	5	Specimen Depth		m	Sample Type	В
Specimen Description	Brown, gravelly CLAY				KeyLAB ID	SLMK2021042832
Test Method	BS1377 : Part 4 : 1990), clause 7			CBR Test Number	1
Specimen Preparatio Condition Details	REMOULDED	ith specified stand	lard effort using 2.	.5kg	Soaking details Period of soaking Time to surface	Not soaked days days
Material re	etained on 20mm sieve r	removed	21	%	Amount of swell record Dry density after soaki	
Initial Spec	Dry d	density density ture content	2.11 1.80 17.5	Mg/m3 Mg/m3 %	Surcharge applied	2 kg 1 kPa
4.00		Force v Per	netration Plots			
1.40 1.20 1.00 1.00 0.80 0.40 0.20 0.00 0	1 2	3 Penetra	4 5 aation mm	6	7 8	— Top data* Top values — Top correction — Base data• Base values — Base Correction
Results	Curve correction		BR Values, %		Moisture Content	
TOP BASI	applied	2.5mm 5n 6.8 6	mm Highest 6.1 6.8 6.3 6.5	Average 6.7	% 17.9 17.7	
		I	I		·	E. N.
Tested at 18% M Lab Sheet Reference :	Noisture Content	Test specific rem	ıarks	Appro	KW	Fig No. 1 Sheet No 5

	Californ	eia Baaring (Catio / CRD	`	Job Ref	D10371	
Site Name Barnsley Metropolitan Borough Council Sample No.							
Site Name Barnsley Metropolitan Borough Council Sample No.							
Site Name Barnsley Metropolitan Borough Council Sample No.							
	1			m	Sample Type	В	
Specimen	Brown, slightly gravell	•			KeyLAB ID	SLMK2021042833	
	BS1377 : Part 4 : 1990	ე, clause 7			CBR Test Number	1	
Condition	REMOULDED Recompacted wi	ith specified stand	lard effort using	2.5kg	Period of soaking Time to surface	days days	
Material re	tained on 20mm sieve	removed	12	%			
Initial Spec	Dry o	density	1.63	Mg/m3	Surcharge applied		
		Force v Per	netration Plots				
0.50				A A A A A A A A A A A A A A A A A A A	A A A A A A A A A A A A A A A A A A A	∗ Top values Top correction Base data Base values	
	1 2			6	7 8		
Results			BR Values, %				
	applied	2.5mm 5r	1.5 1.5	Average	% 21.8		
General remarks	š	Test specific ren	narks	Appr	roved	Fig No.	
Tested at Natura		Tested at Natura	al Moisture (22%))	KW	Sheet No 6	

	Califor	i- Pearin	~ Datis	- / CDD		Job Ref	D10371
	Califor	rnia Bearing	g Kauc	O (CBR)		Borehole/Pit No.	TP05
Site Name	Barnsley Metropolita	n Borough Cour	ncil			Sample No.	
Soil Description						Depth m	2.50
Specimen Reference	2	Specimen Depth			m	Sample Type	В
Specimen Description	Brown, slightly grave		•			KeyLAB ID	SLMK2021042833
est Method	BS1377 : Part 4 : 19	90, clause 7				CBR Test Number	1
ecimen Preparatio Condition Details	REMOULDED	with specified st	andard e	ffort using 2	5kg	Soaking details Period of soaking Time to surface Amount of swell reco	Not soaked days days
Material re	tained on 20mm sieve	removed		12	%	Dry density after soal	
Initial Spec	Dry	lk density / density isture content		1.89 1.76 7.3	Mg/m3 Mg/m3 %	Surcharge applied	2 kg 1 kPa
12.00		Force v	Penetrat	tion Plots			_
10.00						4.0	

8.00 *			2	A HANNER			—×— Top data
Applied 6.00 \$							* Top values Top correction Base data
6.00 *							Base values
2.00			_				- Susc correction
0.00	1 2	3 Per	4 netration	5 mm	6	7	8
Results	Curve			alues, %		Moisture	
	correction applied	on O. France	5mm	Highest	Average	Content %	
TOP BASI		43.0 46.0	40.0 43.0	43.0 46.0	44.0	7.3 7.1	
General remarks		Test specific	remarks		Аррг	oved	Fig No.
Tested at 7% Mo	oisture Content	Tested at 7%		e Content		KW	Sheet No 7

				Colife	o woi	o Boori	na 🗗) oti o	· / CBB			,	Job R	ef		D1	0371
				Came)IIII	a Beari	ng K	Katic	CDK	.)		F	Boreh	ole/Pit No.		ТІ	P05
Site	Name		Barnsley	Metropoli	tan B	Borough Co	ouncil					Ş	Samp	le No.			
Soil	Descrip	tion										ı	Depth	m		2	.50
	cimen rence			3		Specime Depth	n				m	,	Samp	le Type			В
Spec	cimen cription		Brown, sl	ightly gra	velly							ŀ	KeyLA	AB ID		SLMK20	21042833
	Method	t	BS1377 :	Part 4 : 1	1990,	clause 7						(CBR 1	Гest Numbe	r		1
oecii	Co	eparatio ondition etails	REI Red	MOULDE compacte		h specified	standa	ard ef	fort using	2.5k	g	Pe	eriod c	details of soaking surface		Not soa	ked days days
	Ma	aterial re	tained on 2	20mm sie	ve re	moved			12	%				of swell rec			mm Mg/m3
	Ini	itial Spec	imen deta	D	Ory de	density ensity ure content	:		1.96 1.75 11.9		g/m3 g/m3	Su	ırchar	ge applied		2	kg kPa
	0.00					Force	v Pen	etrati	ion Plots								
	9.00																
	8.00			-+		_						سو	-0-		1		
	7.00							ļ			_				-		
	6.00							No.	الممرم				<u></u>	***	_	* Тор	data
Ζ	:	*					****	ļ		نسبد						* ∙Top	values
pplied	5.00	9						***							T -	— Тор	correction
Force Appli	4.00	*						+							-	- Base	e data
Д	3.00				\dashv			_							┨	• Base	e values
	2.00															—— Base	e Correctio
	1.00		<u>// </u>	\perp		\perp											
	0.00																
		0	1	2	- 19	3 P	Penetra	4 ation	5 mm		6			7	8		
F	Results			Curv			CE	BR Va	lues, %]		Moisture			
				correct applie		2.5mm	5m	nm	Highest	t ,	Average		(Content %			
		TOP	_		コ	29.0	26		29.0		32.0	1		11.8			
		BASI	≣			36.0	34	1.0	36.0			1		10.7			
([General	remarks			$\overline{}$	Test specit	ic rem	arks			Арр	rove			Fig	No.	1
	Tested a	at 12% M	loisture Co	ontent		Tested at 1	12% M	oistur	e Content				KW		She	eet No	8

			Calif	forni	ia Roar	ina P	atic) (CBR	`		Job Ref	D10371
			Calli	<u> </u>	ia Deal	y K	auc) (CBR	,		Borehole/Pit No.	TP05
ite Name		Barnsley	Metropo	litan E	Borough Co	ouncil					Sample No.	
oil Descrip	tion										Depth m	2.50
pecimen eference			4		Specime Depth	∍n			n	n	Sample Type	В
pecimen escription		Brown, sl	ightly gra	avelly	CLAY						KeyLAB ID	SLMK2021042833
est Method	d	BS1377 :	Part 4 :	1990,	, clause 7						CBR Test Number	1
	eparation endition	REI	MOULDE		h anaaifiaa	d atanda	ard of	fort voing) Eka		Soaking details Period of soaking	Not soaked days
De	stalis		nmer	ea will	n specilied	i Standa	aru er	fort using 2	г.эку	7	Time to surface Amount of swell reco	days
M	aterial ret	ained on 2	20mm sie	eve re	emoved			12	%		Dry density after soak	
In	tial Spec	imen deta	ı	Dry de	density ensity ure conten	t		2.04 1.79 14.2	Mg/m3 Mg/m3 %	\$	Surcharge applied	2 kg 1 kPa
					Force	e v Pen	etrati	ion Plots				
6.00			\Box				Γ					
5.00			\perp							-		
,						سعسعر	سم	سنسو		,—*		—×— Top data
4.00					7		**	****	^			* Top values
3.00	*											—— Top correctior
200												—— Base data • Base values
2.00	1											——— Base Correction
1.00												
0.00	0	1	2	<u> </u>	3 I	Penetra	4 ation	5 mm	6	;	7 8	3
Results			Cur	ve		CE	3R_Va	alues, %			Moisture	
			correc	ction	2.5mm	5m		Highest	Averag	е	Content %	
	TOP BASE	<u> </u>		一	24.0 28.0	20 24		24.0 28.0	26.0		14.2 14.4	
General	remarks				Test speci	<u> </u>			Ap	prov		Fig No.
		oisture Co	ontent					e Content			KW	Sheet No 9

	Cal	iforni	ia Boarii	na Pati	o(CBR)	\	Job Ref	D10371
	Cai	1101111	a Dealli	ny Kati	O (CBR		Borehole/Pit No.	TP05
Site Name	Barnsley Metrop	olitan B	3orough Co	uncil			Sample No.	
Soil Description							Depth m	2.50
Specimen Reference	5		Specimer Depth	1		m	Sample Type	В
Specimen Description	Brown, slightly g	gravelly	-				KeyLAB ID	SLMK2021042833
Test Method	BS1377 : Part 4	: 1990,	, clause 7				CBR Test Number	er 1
cecimen Preparati Condition Details	REMOULE		h specified	standard e	ffort using 2	.5kg	Soaking details Period of soaking Time to surface	Not soaked days days
Material re	etained on 20mm	sieve re	emoved		12	%	Amount of swell red Dry density after so	
Initial Spe	cimen details	Dry de	density ensity ure content		2.08 1.79 16.3	Mg/m3 Mg/m3 %	Surcharge applied	2 kg 1 kPa
			Force	v Penetrat	tion Plots			
3.50 3.00 2.50							*************************************	—×— Top data*Top values
2.00 Pallida Vision 1.50 1.50 1.50 0.50 0.50 0.00								Top correction Base data Base values Base Correctio
0	1 2	2	3 P	4 enetration	5 mm	6	7	8
Results	corr	urve ection plied	2.5mm		alues, %	Average	Moisture Content %	
TOF BAS	,	\dashv	14.0 14.0	12.0 13.0	14.0 14.0	14.0	16.5 17.0	
General remark			Test specifi		•	Appl	roved	Fig No.
	Moisture Content		Tested at 1		re Content	1	KW	Sheet No 10

		Californ	ia Roari	na Rs	atio (CBF	> \		Job Ref	D10371
	·	Camorn	ia Dearii		atio (CDI	、)		Borehole/Pit No.	TP07
ite Name	Barnsley Me	etropolitan f	Borough Co	uncil				Sample No.	
oil Description								Depth m	1.50
pecimen leference	1		Specimer Depth	n			m	Sample Type	В
pecimen Jescription	Brown, CLA	λΥ						KeyLAB ID	SLMK2021042835
est Method	BS1377 : P	art 4 : 1990	, clause 7					CBR Test Number	1
ecimen Preparation Condition Details	REMO	OULDED				0.51		Soaking details Period of soaking	Not soaked
Details	ramm		in specified	standar	d effort using	ј 2.5Kg		Time to surface	days days
Material re	etained on 20	mm sieve re	emoved		0	%		Amount of swell reco	
Initial Spe	cimen details	Dry d	density lensity ture content		2.06 1.72 19.6	Mg/m Mg/m %		Surcharge applied	2 kg 1 kPa
			Force	v Pene	tration Plots				
2.50							1		1
2.00									
*					*		1		Tan daka
Z 1.50									— × Top data ∗-Top values
		т.							—— Top correction
2000 Applied A				-			_		—— Base data • Base values
									Base Correction
0.50									1
0.00	1	2	3 P	4 enetrati	_		6	7	8
Results	[Curve			R Values, %			Moisture	
		correction applied	2.5mm	5mn		st Avei	age	Content %	
TOF BAS	ŀ		9.3 8.3	8.9 8.7		9.	0	18.5 18.7	
General remark	L		Test specifi				Annr	roved	Fig No.
Tested at Natur					Moisture Con		PPI	KW	Sheet No.
Sheet Reference	_								11

			Californ	io Boari	~~ P	atic	· / CRE	<u> </u>		Ī	Job Re	ef		010371
		l	Callioni	nia Beari	ng ĸ	สนเบ 	(CBR	.)			Boreho	ole/Pit No.		TP07
Site	Name	Barnsley N	Metropolitan I	Borough Co	uncil					I	Sample	e No.		
Soil	Description									I	Depth	m		1.50
	cimen erence		2	Specimer Depth	n				m	T	Sample	е Туре		В
Spec	cimen cription	Brown, CL	∟AY							1	KeyLAI	B ID	SLMK	2021042835
	Method	BS1377 :	Part 4 : 1990), clause 7				_		1	CBR T	est Number		1
3pecir	men Preparat i Condition Details	n REM	MOULDED compacted wit	th specified	standa	ard ef	fort using	2.5	ŀkg	P	Time to s	f soaking	Not so	oaked days days mm
	Material ı	etained on 2	20mm sieve re	emoved			0	ó	%			sity after soaki		Mg/m3
	Initial Spe	ecimen detail	Dry d	density density ture content	t		1.77 1.67 5.8	N	Mg/m3 Mg/m3 %	S	Surcharg	ge applied	2	3
	0.00			Force	v Pen	etrati	ion Plots							
	9.00							_						
	8.00	+	+	+			$\overline{}$	_	$\overline{}$	_	سعر			
	7.00		$-\!\!\!\!\!+\!\!\!\!\!\!-$			_				_				
	6.00							<u>*</u>		_			_ ⊤o	p data
Ž								_		_	_		*- -∙To	p values
oplied	5.00		+		*				\neg				то	p correction
Force Appli	4.00					\vdash	$\overline{}$			_			—— Ва	se data
R	3.00					_	\longrightarrow						⊙ Ba	se values
					ا						ļ		—— Ва	se Correction
	1.00							_		_ _				
	0.00		2	3		4	5	_	6	_		7 8	 -	
	·	•			Penetrat	-							,	
F	Results		Curve correction		CB	3R Va	alues, %	_ _		7		loisture Content		
			applied	2.5mm	5m	m	Highest	t	Average	,	Ľ	%		
	TO BA			31.0 32.0	32. 32.		32.0 32.0	\exists	32.0			5.8 5.5		
					<u> </u>		32.0			┙		5.5	r,	
	General remarl			Test specif					Аррі	rov			Fig No.	1
T	Tested at 6% N	loisture Conf	tent	Tested at 6	3% Moi	sture	Content				KW		Sheet No	12
_ab Sh	heet Reference):		<u></u>									<u> </u>	

			1	1	Cali	iforn	ia R	·^ari	na R	atic	· / CB	, O	1		Job	Ref)103 ⁻	71
				`	Jan		ط a ا	<u> </u>			, (CD	· N ,			Bore	ehole/Pit N	0.		TP0	7
Correction applied 2.5mm 5mm Highest Average Content of the second of the se									nple No.											
		lion													Dep	th m			1.50)
Refer	rence			3	}				n				r	m	Sam	nple Type			В	
Spec	imen		Brow	/n, CLA	λY							_			Key	LAB ID		SLMK	2021	042835
		i	BS18	377 : Pa	art 4	: 1990	, clau	se 7						\Box	CBF	R Test Nun	nber		1	
ecin			n																	
							th sne	oified	ctand:	ard ef	fort usir	~a 2	Eka				a	Not so	oake	d days
	.	lano				leu w	.n spc	:CIII c u	Slariuc	ira en	iOft uən	19 ∠.	Бку				y			days
	NΔ×	'tal ra	·-!nac	' · · · · 20	· (ingo r	·0\/	a.			0		2/							mm Ma/m3
	Ma	iteriai rei	aineo	⊥on 2ui	mm s	ieve re	emove	∋d			U		%		Dry as	ensity aπeι	soakıı	ıg		Mg/m3
	Inif	tial Spec	imen	details	i										Surch	arge applie	ed	2		kg
																		1	J	kPa
						Moisu	ure o	mteni			10	4	%							
	- 00						F	Force	v Pen	etrati	on Plot	ts								
	9.00		\Box		T											\top				
	8.00		+		\dashv			<u> </u>		igspace		igspace		lacksquare		مم	\dashv			
						i	1						ممه	-						
	7.00		-								سمر	-			****		\neg			
	6.00	<u> </u>						<u> </u>	<u></u>	<u></u>	~ 	*		L			_		p da	ata
						i	ا	سمر	مراد سهدسا.	+ **								* ∙To	p va	lues
olled	5.00		#		===			- - 11		\vdash		\vdash					\dashv	—то	р сс	orrection
е Арк	4.00		4		_		·	<u> </u>		ot		L		L			_	— Ва	ise c	lata
Force													1					• Ba		
	3.00		+	#	\dashv	1		 		\vdash		\vdash		\vdash			\dashv			Correctio
	200		1							$oxed{oldsymbol{ol}}}}}}}}}}}}}}}}}}$		L		L				Du	Se c	ОПесно
	2.00	[/	1/																	
	1.00		+		\dashv			\vdash		\vdash		\vdash		\vdash			-			
	0.00		\perp				·													
)	1		2	<u>!</u>	;					5	6	3		7	8			
F	Results			Γ		un/e			CF	R Va	alues. 9	<u></u>		\neg	1 [Moisture	1			
					corre	ection	2.5	imm					Averaç	је		Content				
		TOP		ŀ			3!	5.0	31	.0	35.	0		\dashv	} }	10.1				
													36.0			10.1				
Ç	3eneral	remarks	;			_	Test	specif	ic rem	arks		_	Ar	opro	oved	_	Ī	Fig No.		
		at 10% M		Cont	tant						e Conte	-nt	<u> </u>	<u> </u>	K۷	Α,]			1
- ['	esteu a	il 1070 ivi	OlStui	e Con	eni	ļ	16310	30 at i	U 70 IVIC	JiStui	e Como	Яπ			17.4	v		Sheet No		13

		aliforn	io Poori	na Bati	o / CDD	`	Job Ref	D10371	
		amorn	ia Beari	ng Kau	Borehole/Pit No.	TP07			
Site Name	Barnsley Met	ropolitan [Borough Co	uncil	Sample No.				
Soil Description							Depth m	1.50	
Specimen Reference	4		Specimer Depth	า		m	Sample Type	В	
Specimen Description	Brown, CLAY	,		•			KeyLAB ID	SLMK2021042835	
Test Method	BS1377 : Par	t 4 : 1990	, clause 7				CBR Test Number	1	
Specimen Preparation Condition Details	REMOU Recom ramme	Soaking details Period of soaking Time to surface Amount of swell recor	Not soaked days days ded mm						
Material re	tained on 20m	m sieve re	emoved		0	%	Dry density after soak		
Initial Spe	cimen details	Dry d	density ensity ure content		1.98 1.76 12.7	Mg/m3 Mg/m3 %	Surcharge applied	2 kg 1 kPa	
7.00			Force	v Penetra	ation Plots				
7.00									
6.00		_				•			
5.00							*****		
*								—∗— Top data 	
Z 4.00		+-	سيد معر	*				* Top values	
4.00								Top correction Base data	
ව <u>ී</u> 3.00 -								• Base values	
2.00								Base Correction	
1.00									
0.00	1	2	3 P	4 enetration	5 mm	6	7 8	3	
Results		Curve		CBR \	/alues, %	_	Moisture		
		orrection applied	2.5mm	5mm	Highest	Average	Content %		
TOF	_		26.0	23.0	26.0	27.0	12.5		
BAS	E		28.0	27.0	28.0		12.2		
General remarks	3		Test specific remarks Appr					Fig No.	
Tested at 13% N	Noisture Conte	nt	Tested at 1	3% Moist	ure Content		KW	Sheet No 14	

	California Bearing Ratio (CBR)								Job Ref	D10371	
									Borehole/Pit No.	TP07	
Site Name	Barnsley Metropolitan Borough Council									Sample No.	
Soil Description		Depth m						1.50			
Specimen Reference	5		Specimer Depth	n				m		Sample Type	В
Specimen Description	Brown, CLAY	,								KeyLAB ID	SLMK2021042835
Test Method	BS1377 : Par	t 4 : 1990	, clause 7							CBR Test Number	1
Pecimen Preparation Condition Details Material retained on 20mm sieve removed 0 %								- -	Soaking details Period of soaking Time to surface Amount of swell reco Dry density after soal		
Initial Spec	Bulk o	density ensity ure content			2.06 1.79 15.2		Mg/m3 Mg/m3 %		Dry density after soar	2 kg 1 kPa	
			Force	v Pen	etrati	ion Plots	3				
5.00 4.00 4.00 2.00 2.00								***			Top data* Top values Top correction Base data Base values Base Correction
0.00	1	2	3 P	'enetra	4 ation	5 mm		6		7	3
Results		Curve		CI	BR Va	alues, %				Moisture	
TOP BASI		orrection applied	2.5mm 20.0 22.0	18	nm 3.0 1.0	Highes 20.0 22.0		Average 21.0	è	Content % 15.0 14.6	
General remarks			Test specific remarks Appr				App	oro	ved	Fig No.	
Tested at 16% Mb Sheet Reference :		nt	Tested at 1	6% M	oistur	e Conten	nt			KW	Sheet No 15

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL

Tel: 01638 606070 Email: info@chemtest.com

Amended Report

Report No.: 21-14540-3

Initial Date of Issue: 07-May-2021 Date of Re-Issue: 19-May-2021

Client Solmek Ltd

Client Address: 12 Yarm Road

Stockton-on-Tees

TS18 3NA

Contact(s): Kathryn Watkin

Project D10371 Barnsley Metropolitan Borough

Council

Quotation No.: Date Received: 30-Apr-2021

Order No.: LAB891 Date Instructed: 30-Apr-2021

No. of Samples: 8

Turnaround (Wkdays): 5 Results Due: 07-May-2021

Date Approved: 07-May-2021

Approved By:

Details: Glynn Harvey, Technical Manager

Results - Soil

Project: D10371 Barnsley Metropolitan Borough Council

Client: Solmek Ltd					21-14540	21-14540	21-14540	21-14540	21-14540	21-14540	21-14540	21-14540
Quotation No.:	(Chemte	st Sam	ple ID.:	1192771	1192772	1192773	1192774	1192775	1192776	1192777	1192778
		Sa	ample Lo	ocation:	OH1	OH10	OH10	OH2	OH6	OH7	OH9	TP7
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
			Top De	oth (m):	0.5	0.1	1.0	1.0	1.0	1.0	0.5	0.30
Determinand	Accred.	SOP	Units	LOD								
Moisture	N	2030	%	0.020	19	18	21	16	12	18	18	9.9
pH	U	2010		4.0	[A] 8.2	[A] 6.8	[A] 6.3	[A] 7.8	[A] 7.6	[A] 7.6	[A] 8.0	[A] 7.8
Sulphate (2:1 Water Soluble) as SO4	U	2120	mg/l	10	[A] 17	[A] < 10	[A] 65	[A] < 10	[A] < 10	[A] 17	[A] < 10	[A] < 10
Arsenic	U	2450	mg/kg	1.0	15							
Cadmium	U	2450	mg/kg	0.10	< 0.10							
Chromium	U	2450	mg/kg	1.0	21							
Copper	U	2450	mg/kg	0.50	24							
Mercury	U	2450	mg/kg	0.10	0.13							
Nickel	U	2450	mg/kg	0.50	17							
Lead	U	2450	mg/kg	0.50	33							
Selenium	U	2450	mg/kg	0.20	0.71							
Zinc	U	2450	mg/kg	0.50	54							
Naphthalene	U	2700	mg/kg	0.10	[A] < 0.10							
Acenaphthylene	U	2700	mg/kg	0.10	[A] < 0.10							
Acenaphthene	U	2700	mg/kg	0.10	[A] < 0.10							
Fluorene	U	2700	mg/kg	0.10	[A] < 0.10							
Phenanthrene	U	2700	mg/kg	0.10	[A] < 0.10							
Anthracene	U	2700	mg/kg	0.10	[A] < 0.10							
Fluoranthene	U	2700	mg/kg	0.10	[A] < 0.10							
Pyrene	U	2700	mg/kg	0.10	[A] < 0.10							
Benzo[a]anthracene	U	2700	mg/kg	0.10	[A] < 0.10							
Chrysene	U	2700	mg/kg	0.10	[A] < 0.10							
Benzo[b]fluoranthene	U	2700	mg/kg	0.10	[A] < 0.10							
Benzo[k]fluoranthene	U		mg/kg	0.10	[A] < 0.10							
Benzo[a]pyrene	U	2700	mg/kg	0.10	[A] < 0.10							
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	[A] < 0.10							
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	[A] < 0.10							
Benzo[g,h,i]perylene	U	2700	mg/kg	0.10	[A] < 0.10							
Total Of 16 PAH's	U	2700	mg/kg	2.0	[A] < 2.0							

Deviations

In accordance with UKAS Policy on Deviating Samples TPS 63. Chemtest have a procedure to ensure 'upon receipt of each sample a competent laboratory shall assess whether the sample is suitable with regard to the requested test(s)'. This policy and the respective holding times applied, can be supplied upon request. The reason a sample is declared as deviating is detailed below. Where applicable the analysis remains UKAS/MCERTs accredited but the results may be compromised.

Sample:	Sample Ref:	Sample ID:	Sample Location:	Sampled Date:	Deviation Code(s):	Containers Received:
1192771			OH1		А	Plastic Tub 1000g
1192772			OH10		А	Plastic Tub 1000g
1192773			OH10		А	Plastic Tub 1000g
1192774			OH2		А	Plastic Tub 1000g
1192775			OH6		А	Plastic Tub 1000g
1192776			OH7		А	Plastic Tub 1000g
1192777			OH9		А	Plastic Tub 1000g
1192778			TP7		А	Plastic Tub 1000g

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2450	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2700	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-FID	Acenaphthene; Acenaphthylene; Anthracene; Benzo[a]Anthracene; Benzo[a]Pyrene; Benzo[b]Fluoranthene; Benzo[ghi]Perylene; Benzo[k]Fluoranthene; Chrysene; Dibenz[ah]Anthracene; Fluoranthene; Fluorene; Indeno[123cd]Pyrene; Naphthalene; Phenanthrene; Pyrene	Dichloromethane extraction / GC-FID (GC-FID detection is non-selective and can be subject to interference from co-eluting compounds)

Report Information

Key **UKAS** accredited MCERTS and UKAS accredited M Unaccredited Ν This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for S this analysis This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited SN for this analysis Τ This analysis has been subcontracted to an unaccredited laboratory I/S Insufficient Sample U/S Unsuitable Sample N/E not evaluated "less than" "greater than" > SOP Standard operating procedure LOD Limit of detection

Comments or interpretations are beyond the scope of UKAS accreditation

The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request

None of the results in this report have been recovery corrected

All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis

All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt All water samples will be retained for 14 days from the date of receipt

Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customerservices@chemtest.com

APPENDIX E

Chemical Laboratory Results

Certificate of Analysis

Issued:

11-May-21

Certificate Number 21-08778

Client Dunelm Geotechnical & Environmental Ltd

Foundation House St. John's Road Meadowfield Durham DH7 8TZ

Our Reference 21-08778

Client Reference D10371

Order No PO23299/BL/D10371

Contract Title Barnsley Metropolitan Borough Council

Description 6 Soil samples.

Date Received 27-Apr-21

Date Started 27-Apr-21

Date Completed 11-May-21

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be

reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick Contracts Manager

Summary of Chemical Analysis Matrix Descriptions

Our Ref 21-08778 Client Ref D10371

Contract Title Barnsley Metropolitan Borough Council

Sample ID	Depth	Lab No	Completed	Matrix Description
OH03	0.2	1838280	11/05/2021	Dark brown gravelly SAND
OH03	0.4	1838281	11/05/2021	Brown sandy CLAY
OH03	0.7	1838282	11/05/2021	Brown sandy CLAY
OH04	0.2	1838283	11/05/2021	Dark brown GRAVEL (sample matrix outside MCERTS scope of accreditation)
OH04	0.45	1838284	11/05/2021	Brown gravelly SAND
OH04	0.7	1838285	11/05/2021	Brown sandy CLAY

Summary of Chemical Analysis Soil Samples

Our Ref 21-08778 Client Ref D10371

Contract Title Barnsley Metropolitan Borough Council

Lab No	1838280	1838281	1838282	1838283	1838284	1838285
.Sample ID	OH03	OH03	OH03	OH04	OH04	OH04
Depth	0.20	0.40	0.70	0.20	0.45	0.70
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	21/04/2021	21/04/2021	21/04/2021	21/04/2021	21/04/2021	21/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

		Julipi	ing rillie	11/3	11/3	11/3	11/3	11/3	11/3
Test	Method	LOD	Units						•
Preparation									
Moisture Content	DETSC 1004	0.1	%	0.99	16	13	1.2	7.1	18
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg			4.0			9.6
Cadmium	DETSC 2301#	0.1	mg/kg			0.1			0.2
Chromium	DETSC 2301#	0.15	mg/kg			25			19
Chromium, Hexavalent	DETSC 2204*	1	mg/kg			< 1.0			< 1.0
Copper	DETSC 2301#	0.2	mg/kg			30			25
Lead	DETSC 2301#	0.3	mg/kg			20			25
Mercury	DETSC 2325#	0.05	mg/kg			0.05			0.07
Nickel	DETSC 2301#	1	mg/kg			30			23
Selenium	DETSC 2301#	0.5	mg/kg			< 0.5			< 0.5
Zinc	DETSC 2301#	1	mg/kg			82			66
Inorganics									
рН	DETSC 2008#		рН			7.7			7.4
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l			31			22
PAHs			,						
Naphthalene	DETSC 3301	0.1	mg/kg			< 0.1			< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg			< 0.1			< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg			< 0.1			< 0.1
Fluorene	DETSC 3301	0.1	mg/kg			0.2			< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg			0.2			< 0.1
Anthracene	DETSC 3301	0.1	mg/kg			0.2			< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg			0.3			< 0.1
Pyrene	DETSC 3301	0.1	mg/kg			0.3			< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg			0.2			< 0.1
Chrysene	DETSC 3301	0.1	mg/kg			0.3			< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg			0.3			< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg			0.3			< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg			0.3			< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg			0.4			< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg			0.4			< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg			0.6			< 0.1
PAH Total	DETSC 3301	1.6	mg/kg			4.0			< 1.6

Holding time

inappropriate

Information in Support of the Analytical Results

Our Ref 21-08778 Client Ref D10371

Contract Barnsley Metropolitan Borough Council

Containers Received & Deviating Samples

		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1838280	OH03 0.20 SOIL	21/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838281	OH03 0.40 SOIL	21/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838282	OH03 0.70 SOIL	21/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838283	OH04 0.20 SOIL	21/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838284	OH04 0.45 SOIL	21/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838285	OH04 0.70 SOIL	21/04/21	GJ 250ml, GJ 60ml, PT 1L		

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425µm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

	_		LIMIT OT	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	pH	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2321	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
	•						
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Cadmium Available	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cadmium	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21 Aliphatic C16-C21	mg/kg	1.5		No	Yes	Yes
	•			As Received			
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes

Appendix A - Details of Analysis

			LIMIT OT	Sampie			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

Certificate Number 21-08798-1

Issued:

10-May-21

Client Dunelm Geotechnical & Environmental Ltd

Foundation House St. John's Road Meadowfield Durham DH78TZ

Our Reference 21-08798-1

Client Reference D10371

Order No PO23300/BL/D10371

Contract Title Barnsley Metropolitan Borough Council

Description 30 Soil samples, 3 Leachate samples.

Date Received 27-Apr-21

Date Started 27-Apr-21

Date Completed 10-May-21

Test Procedures Identified by prefix DETSn (details on request).

Notes This report supersedes 21-08798, extra testing added.

Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Adam Fenwick

Contracts Manager

Summary of Chemical Analysis Matrix Descriptions

Our Ref 21-08798-1 *Client Ref* D10371

Sample ID	Depth	Lab No	Completed	Matrix Description
TP01	0.2	1838415	04/05/2021	Brown sandy CLAY
TP01	0.5	1838416	04/05/2021	Brown sandy CLAY
TP01	1	1838417	04/05/2021	Brown sandy CLAY
TP01	3	1838418	04/05/2021	Grey gravelly, sandy CLAY
TP02	0.2	1838419	04/05/2021	Brown sandy CLAY
TP02	0.5	1838420	04/05/2021	Brown sandy CLAY
TP02	1	1838421	04/05/2021	Brown sandy, clayey GRAVEL (sample matrix outside MCERTS scope of accreditation)
TP04	0.2	1838422	04/05/2021	Brown sandy CLAY including some rootlets
TP04	0.5	1838423	04/05/2021	Brown sandy CLAY
TP04	1	1838424	04/05/2021	Brown sandy CLAY
TP04	2	1838425	04/05/2021	Brown gravelly, sandy CLAY
TP04	3	1838426	04/05/2021	Brown gravelly, sandy CLAY
TP04	3.9	1838427	04/05/2021	Brown gravelly, sandy CLAY
TP05	0.2	1838428	04/05/2021	Brown gravelly, sandy CLAY
TP05	0.5	1838429	04/05/2021	Brown sandy CLAY
TP05	1	1838430	04/05/2021	Brown sandy CLAY
TP05	2	1838431	04/05/2021	Brown sandy, clayey GRAVEL (sample matrix outside MCERTS scope of accreditation)
TP05	3	1838432	04/05/2021	Brown gravelly, sandy CLAY
TP05	4	1838433	04/05/2021	Dark brown sandy, clayey GRAVEL (sample matrix outside MCERTS scope of accreditation)
TP07	0.2	1838434	04/05/2021	Dark brown gravelly, very sandy CLAY
TP07	0.5	1838435	04/05/2021	Brown sandy CLAY
TP07	1	1838436	04/05/2021	Brown sandy CLAY
TP08	0.2	1838437	04/05/2021	Dark brown sandy CLAY
TP08	0.5	1838438	04/05/2021	Brown sandy CLAY
TP08	1	1838439	04/05/2021	Brown sandy CLAY
TP08	2	1838440	04/05/2021	Brown sandy, clayey GRAVEL (sample matrix outside MCERTS scope of accreditation)
TP09	0.1	1838441	04/05/2021	Brown sandy CLAY including some rootlets
TP09	0.5	1838442	04/05/2021	Brown sandy CLAY
TP09	1	1838443	04/05/2021	Dark brown sandy CLAY
TP09	2	1838444	04/05/2021	Brown sandy, clayey GRAVEL (sample matrix outside MCERTS scope of accreditation)

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838415	1838416	1838417	1838418	1838419	1838420
.Sample ID	TP01	TP01	TP01	TP01	TP02	TP02
Depth	0.20	0.50	1.00	3.00	0.20	0.50
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	22/04/2021	22/04/2021	22/04/2021	22/04/2021	22/04/2021	22/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units	11,75			· ·		11/3
Preparation									
Moisture Content	DETSC 1004	0.1	%	18	17	19	19	18	17
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg			15		22	
Cadmium	DETSC 2301#	0.1	mg/kg			< 0.1		0.3	
Chromium	DETSC 2301#	0.15	mg/kg			24		33	
Chromium, Hexavalent	DETSC 2204*	1	mg/kg			< 1.0		< 1.0	
Copper	DETSC 2301#	0.2	mg/kg			37		45	
Lead	DETSC 2301#	0.3	mg/kg			20		55	
Mercury	DETSC 2325#	0.05	mg/kg			< 0.05		< 0.05	
Nickel	DETSC 2301#	1	mg/kg			17		44	
Selenium	DETSC 2301#	0.5	mg/kg			0.7		1.0	
Zinc	DETSC 2301#	1	mg/kg			62		160	
Inorganics									
Loss on Ignition at 440oC	DETSC 2003#	0.01	%				6.8		
рН	DETSC 2008#		рН			7.1		7.4	
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l			180		35	
Petroleum Hydrocarbons			<u> </u>						
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg			< 0.01			
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg			< 0.01			
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg			< 0.01			
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg			< 1.5			
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg			< 1.2			
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg			< 1.5			
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg			< 3.4			
Aliphatic C5-C35	DETSC 3072*	10	mg/kg			< 10			
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg			< 0.01			
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg			< 0.01			
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg			< 0.01			
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg			< 0.9			
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg			< 0.5			
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg			< 0.6			
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg			< 1.4			
Aromatic C5-C35	DETSC 3072*	10	mg/kg			< 10			
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg			< 10			

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838415	1838416	1838417	1838418	1838419	1838420
.Sample ID	TP01	TP01	TP01	TP01	TP02	TP02
Depth	0.20	0.50	1.00	3.00	0.20	0.50
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	22/04/2021	22/04/2021	22/04/2021	22/04/2021	22/04/2021	22/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units		
PAHs					
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6

Our Ref 21-08798-1 *Client Ref* D10371

Lab No	1838421	1838422	1838423	1838424	1838425	1838426
.Sample ID	TP02	TP04	TP04	TP04	TP04	TP04
Depth	1.00	0.20	0.50	1.00	2.00	3.00
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	22/04/2021	23/04/2021	23/04/2021	23/04/2021	23/04/2021	23/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Preparation									
Moisture Content	DETSC 1004	0.1	%	10	21	16	15	15	16
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg						16
Cadmium	DETSC 2301#	0.1	mg/kg						< 0.1
Chromium	DETSC 2301#	0.15	mg/kg						22
Chromium, Hexavalent	DETSC 2204*	1	mg/kg						< 1.0
Copper	DETSC 2301#	0.2	mg/kg						37
Lead	DETSC 2301#	0.3	mg/kg						31
Mercury	DETSC 2325#	0.05	mg/kg						0.06
Nickel	DETSC 2301#	1	mg/kg						45
Selenium	DETSC 2301#	0.5	mg/kg						1.8
Zinc	DETSC 2301#	1	mg/kg						290
Inorganics									
Loss on Ignition at 440oC	DETSC 2003#	0.01	%	4.2			7.8		
рН	DETSC 2008#		рН						7.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l						88
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg					< 0.01	
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg					< 0.01	
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg					< 0.01	
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg					< 1.5	
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg					< 1.2	
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg					< 1.5	
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg					< 3.4	
Aliphatic C5-C35	DETSC 3072*	10	mg/kg					< 10	
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg					< 0.01	
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg					< 0.01	
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg					< 0.01	
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg					< 0.9	
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg					< 0.5	
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg					< 0.6	
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg					< 1.4	
Aromatic C5-C35	DETSC 3072*	10	mg/kg					< 10	
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg					< 10	

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838421	1838422	1838423	1838424	1838425	1838426
.Sample ID	TP02	TP04	TP04	TP04	TP04	TP04
Depth	1.00	0.20	0.50	1.00	2.00	3.00
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	22/04/2021	23/04/2021	23/04/2021	23/04/2021	23/04/2021	23/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units	
PAHs				
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838427	1838428	1838429	1838430	1838431	1838432
.Sample ID	TP04	TP05	TP05	TP05	TP05	TP05
Depth	3.90	0.20	0.50	1.00	2.00	3.00
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	23/04/2021	22/04/2021	22/04/2021	22/04/2021	22/04/2021	22/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units		·				
Preparation									
Moisture Content	DETSC 1004	0.1	%	16	15	18	20	16	19
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg			13			11
Cadmium	DETSC 2301#	0.1	mg/kg			< 0.1			< 0.1
Chromium	DETSC 2301#	0.15	mg/kg			25			24
Chromium, Hexavalent	DETSC 2204*	1	mg/kg			< 1.0			< 1.0
Copper	DETSC 2301#	0.2	mg/kg			31			49
Lead	DETSC 2301#	0.3	mg/kg			26			27
Mercury	DETSC 2325#	0.05	mg/kg			0.12			< 0.05
Nickel	DETSC 2301#	1	mg/kg			37			50
Selenium	DETSC 2301#	0.5	mg/kg			1.5			0.9
Zinc	DETSC 2301#	1	mg/kg			130			110
Inorganics									
Loss on Ignition at 440oC	DETSC 2003#	0.01	%						
рН	DETSC 2008#		рН	6.9		7.3			6.9
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	100		43			120
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg					< 0.01	
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg					< 0.01	
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg					< 0.01	
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg					< 1.5	
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg					< 1.2	
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg					< 1.5	
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg					< 3.4	
Aliphatic C5-C35	DETSC 3072*	10	mg/kg					< 10	
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg					< 0.01	
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg					< 0.01	
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg					< 0.01	
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg					< 0.9	
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg					< 0.5	
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg					< 0.6	
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg					< 1.4	
Aromatic C5-C35	DETSC 3072*	10	mg/kg					< 10	
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg					< 10	

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838427	1838428	1838429	1838430	1838431	1838432
.Sample ID	TP04	TP05	TP05	TP05	TP05	TP05
Depth	3.90	0.20	0.50	1.00	2.00	3.00
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	23/04/2021	22/04/2021	22/04/2021	22/04/2021	22/04/2021	22/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units		
PAHs					
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6	< 1.6

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838433	1838434	1838435	1838436	1838437	1838438
.Sample ID	TP05	TP07	TP07	TP07	TP08	TP08
Depth	4.00	0.20	0.50	1.00	0.20	0.50
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	22/04/2021	22/04/2021	22/04/2021	22/04/2021	23/04/2021	23/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Preparation									
Moisture Content	DETSC 1004	0.1	%	15	16	15	18	16	18
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg				4.5		
Cadmium	DETSC 2301#	0.1	mg/kg				< 0.1		
Chromium	DETSC 2301#	0.15	mg/kg				26		
Chromium, Hexavalent	DETSC 2204*	1	mg/kg				< 1.0		
Copper	DETSC 2301#	0.2	mg/kg				15		
Lead	DETSC 2301#	0.3	mg/kg				16		
Mercury	DETSC 2325#	0.05	mg/kg				< 0.05		
Nickel	DETSC 2301#	1	mg/kg				19		
Selenium	DETSC 2301#	0.5	mg/kg				0.6		
Zinc	DETSC 2301#	1	mg/kg				74		
Inorganics									
Loss on Ignition at 440oC	DETSC 2003#	0.01	%						
рН	DETSC 2008#		рН	7.5			7.8		7.6
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	150			60		62
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg						
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg						
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg						
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg						
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg						
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg						
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg						
Aliphatic C5-C35	DETSC 3072*	10	mg/kg						
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg						
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg						
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg						
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg						
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg						
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg						
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg						
Aromatic C5-C35	DETSC 3072*	10	mg/kg						
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg						

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838433	1838434	1838435	1838436	1838437	1838438
.Sample ID	TP05	TP07	TP07	TP07	TP08	TP08
Depth	4.00	0.20	0.50	1.00	0.20	0.50
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	22/04/2021	22/04/2021	22/04/2021	22/04/2021	23/04/2021	23/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units	
PAHs				
Naphthalene	DETSC 3301	0.1	mg/kg	< 0.1
Acenaphthylene	DETSC 3301	0.1	mg/kg	< 0.1
Acenaphthene	DETSC 3301	0.1	mg/kg	< 0.1
Fluorene	DETSC 3301	0.1	mg/kg	< 0.1
Phenanthrene	DETSC 3301	0.1	mg/kg	< 0.1
Anthracene	DETSC 3301	0.1	mg/kg	< 0.1
Fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1
Pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	< 0.1
Chrysene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	< 0.1
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	< 0.1
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	< 0.1
PAH Total	DETSC 3301	1.6	mg/kg	< 1.6

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838439	1838440	1838441	1838442	1838443	1838444
.Sample ID	TP08	TP08	TP09	TP09 TP09		TP09
Depth	1.00	2.00	0.10	0.50	1.00	2.00
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	23/04/2021	23/04/2021	23/04/2021	23/04/2021	23/04/2021	23/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units						
Preparation									
Moisture Content	DETSC 1004	0.1	%	19	19	16	15	19	12
Metals									
Arsenic	DETSC 2301#	0.2	mg/kg						
Cadmium	DETSC 2301#	0.1	mg/kg						
Chromium	DETSC 2301#	0.15	mg/kg						
Chromium, Hexavalent	DETSC 2204*	1	mg/kg						
Copper	DETSC 2301#	0.2	mg/kg						
Lead	DETSC 2301#	0.3	mg/kg						
Mercury	DETSC 2325#	0.05	mg/kg						
Nickel	DETSC 2301#	1	mg/kg						
Selenium	DETSC 2301#	0.5	mg/kg						
Zinc	DETSC 2301#	1	mg/kg						
Inorganics									
Loss on Ignition at 440oC	DETSC 2003#	0.01	%		21			11	
рН	DETSC 2008#		рН				7.2		
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l				42		
Petroleum Hydrocarbons									
Aliphatic C5-C6	DETSC 3321*	0.01	mg/kg	< 0.01					< 0.01
Aliphatic C6-C8	DETSC 3321*	0.01	mg/kg	< 0.01					< 0.01
Aliphatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01					< 0.01
Aliphatic C10-C12	DETSC 3072#	1.5	mg/kg	< 1.5					< 1.5
Aliphatic C12-C16	DETSC 3072#	1.2	mg/kg	< 1.2					< 1.2
Aliphatic C16-C21	DETSC 3072#	1.5	mg/kg	< 1.5					< 1.5
Aliphatic C21-C35	DETSC 3072#	3.4	mg/kg	< 3.4					< 3.4
Aliphatic C5-C35	DETSC 3072*	10	mg/kg	< 10					< 10
Aromatic C5-C7	DETSC 3321*	0.01	mg/kg	< 0.01					< 0.01
Aromatic C7-C8	DETSC 3321*	0.01	mg/kg	< 0.01					< 0.01
Aromatic C8-C10	DETSC 3321*	0.01	mg/kg	< 0.01					< 0.01
Aromatic C10-C12	DETSC 3072#	0.9	mg/kg	< 0.9					< 0.9
Aromatic C12-C16	DETSC 3072#	0.5	mg/kg	< 0.5					< 0.5
Aromatic C16-C21	DETSC 3072#	0.6	mg/kg	< 0.6					< 0.6
Aromatic C21-C35	DETSC 3072#	1.4	mg/kg	< 1.4					< 1.4
Aromatic C5-C35	DETSC 3072*	10	mg/kg	< 10					< 10
TPH Ali/Aro Total C5-C35	DETSC 3072*	10	mg/kg	< 10					< 10

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838439	1838440	1838441	1838442	1838443	1838444
.Sample ID	TP08	TP08	TP09	TP09	TP09	TP09
Depth	1.00	2.00	0.10	0.50	1.00	2.00
Other ID						
Sample Type	ES	ES	ES	ES	ES	ES
Sampling Date	23/04/2021	23/04/2021	23/04/2021	23/04/2021	23/04/2021	23/04/2021
Sampling Time	n/s	n/s	n/s	n/s	n/s	n/s

Test	Method	LOD	Units	
PAHs				
Naphthalene	DETSC 3301	0.1	mg/kg	
Acenaphthylene	DETSC 3301	0.1	mg/kg	
Acenaphthene	DETSC 3301	0.1	mg/kg	
Fluorene	DETSC 3301	0.1	mg/kg	
Phenanthrene	DETSC 3301	0.1	mg/kg	
Anthracene	DETSC 3301	0.1	mg/kg	
Fluoranthene	DETSC 3301	0.1	mg/kg	
Pyrene	DETSC 3301	0.1	mg/kg	
Benzo(a)anthracene	DETSC 3301	0.1	mg/kg	
Chrysene	DETSC 3301	0.1	mg/kg	
Benzo(b)fluoranthene	DETSC 3301	0.1	mg/kg	
Benzo(k)fluoranthene	DETSC 3301	0.1	mg/kg	
Benzo(a)pyrene	DETSC 3301	0.1	mg/kg	
Indeno(1,2,3-c,d)pyrene	DETSC 3301	0.1	mg/kg	
Dibenzo(a,h)anthracene	DETSC 3301	0.1	mg/kg	
Benzo(g,h,i)perylene	DETSC 3301	0.1	mg/kg	
PAH Total	DETSC 3301	1.6	mg/kg	

Summary of Chemical Analysis Leachate Samples

Our Ref 21-08798-1 Client Ref D10371

Lab No	1838445	1838446	1838447
.Sample ID	TP04	TP05	TP08
Depth	2.00	2.00	2.00
Other ID			
Sample Type	ES	ES	ES
Sampling Date	23/04/2021	22/04/2021	23/04/2021
Sampling Time	n/s	n/s	n/s

Test	Method	LOD	Units			
Preparation						
BS EN 12457 10:1	DETSC 1009*			Υ	Υ	Υ
Metals						
Arsenic, Dissolved	DETSC 2306	0.16	ug/l	0.32	< 0.16	0.21
Boron, Dissolved	DETSC 2306*	12	ug/l	< 12	< 12	< 12
Cadmium, Dissolved	DETSC 2306	0.03	ug/l	< 0.03	< 0.03	< 0.03
Chromium, Dissolved	DETSC 2306	0.25	ug/l	1.8	< 0.25	< 0.25
Copper, Dissolved	DETSC 2306	0.4	ug/l	3.4	0.9	1.6
Lead, Dissolved	DETSC 2306	0.09	ug/l	0.55	< 0.09	0.12
Mercury, Dissolved	DETSC 2306	0.01	ug/l	0.02	< 0.01	< 0.01
Nickel, Dissolved	DETSC 2306	0.5	ug/l	18	1.0	< 0.5
Selenium, Dissolved	DETSC 2306	0.25	ug/l	1.3	0.54	0.34
Zinc, Dissolved	DETSC 2306	1.3	ug/l	16	3.3	4.0
Inorganics						
рН	DETSC 2008		рН	5.6	5.5	5.6
Sulphate as SO4	DETSC 2055	0.1	mg/l	2.1	2.3	4.0

Information in Support of the Analytical Results

Our Ref 21-08798-1 Client Ref D10371

Contract Barnsley Metropolitan Borough Council

Containers Received & Deviating Samples

				Holding time	Inappropriate
		Date		exceeded for	container for
Lab No	Sample ID	Sampled	Containers Received	tests	tests
1838415	TP01 0.20 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838416	TP01 0.50 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838417	TP01 1.00 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838418	TP01 3.00 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838419	TP02 0.20 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838420	TP02 0.50 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838421	TP02 1.00 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838422	TP04 0.20 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838423	TP04 0.50 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838424	TP04 1.00 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838425	TP04 2.00 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838426	TP04 3.00 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838427	TP04 3.90 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838428	TP05 0.20 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838429	TP05 0.50 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838430	TP05 1.00 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838431	TP05 2.00 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838432	TP05 3.00 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838433	TP05 4.00 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838434	TP07 0.20 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838435	TP07 0.50 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838436	TP07 1.00 SOIL	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838437	TP08 0.20 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838438	TP08 0.50 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838439	TP08 1.00 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838440	TP08 2.00 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838441	TP09 0.10 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838442	TP09 0.50 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838443	TP09 1.00 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838444	TP09 2.00 SOIL	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838445	TP04 2.00 LEACHATE	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838446	TP05 2.00 LEACHATE	22/04/21	GJ 250ml, GJ 60ml, PT 1L		
1838447	TP08 2.00 LEACHATE	23/04/21	GJ 250ml, GJ 60ml, PT 1L		
	D DI 1: 11 TT I				

Key: G-Glass P-Plastic J-Jar T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Information in Support of the Analytical Results

Our Ref 21-08798-1 Client Ref D10371

Contract Barnsley Metropolitan Borough Council

Soil Analysis Notes

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis.

The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 2002	Organic matter	%	0.1	Air Dried	No	Yes	Yes
DETSC 2003	Loss on ignition	%	0.01	Air Dried	No	Yes	Yes
DETSC 2008	pH	pH Units	1	Air Dried	No	Yes	Yes
DETSC 2024	Sulphide	mg/kg	10	Air Dried	No	Yes	Yes
DETSC 2076	Sulphate Aqueous Extract as SO4	mg/l	10	Air Dried	No	Yes	Yes
DETSC 2084	Total Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2084	Total Organic Carbon	%	0.5	Air Dried	No	Yes	Yes
DETSC 2119	Ammoniacal Nitrogen as N	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide free	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Cyanide total	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC 2130	Phenol - Monohydric	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC 2130	Thiocyanate	mg/kg	0.6	Air Dried	No	Yes	Yes
DETSC 2321	Total Sulphate as SO4	%	0.01	Air Dried	No	Yes	Yes
DETSC 2325	Mercury	mg/kg	0.05	Air Dried	No	Yes	Yes
DETSC 3049	Sulphur (free)	mg/kg	0.75	Air Dried	No	Yes	Yes
DETSC2123	Boron (water soluble)	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Arsenic	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Barium	mg/kg	1.5	Air Dried	No	Yes	Yes
DETSC2301	Beryllium	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301 DETSC2301	Cadmium Available	mg/kg	0.2	Air Dried	No		Yes
						Yes	
DETSC2301	Cabalt	mg/kg	0.1	Air Dried	No	Yes	Yes
DETSC2301	Cobalt	mg/kg	0.7	Air Dried	No	Yes	Yes
DETSC2301	Chromium	mg/kg	0.15	Air Dried	No	Yes	Yes
DETSC2301	Copper	mg/kg	0.2	Air Dried	No	Yes	Yes
DETSC2301	Manganese	mg/kg	20	Air Dried	No	Yes	Yes
DETSC2301	Molybdenum	mg/kg	0.4	Air Dried	No	Yes	Yes
DETSC2301	Nickel	mg/kg	1	Air Dried	No	Yes	Yes
DETSC2301	Lead	mg/kg	0.3	Air Dried	No	Yes	Yes
DETSC2301	Selenium	mg/kg	0.5	Air Dried	No	Yes	Yes
DETSC2301	Zinc	mg/kg	1	Air Dried	No	Yes	Yes
DETSC 3072	Ali/Aro C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	1.2	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	1.5	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aliphatic C21-C35	mg/kg	3.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	0.9	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C12	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C10-C35	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	0.5	As Received	No	Yes	Yes
DETSC 3072	Aromatic C12-C16	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	0.6	As Received	No	Yes	Yes
DETSC 3072	Aromatic C16-C21	mg/kg	10	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETSC 3072	Aromatic C21-C35	mg/kg	1.4	As Received	No	Yes	Yes
DETS 062	Benzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Ethylbenzene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Toluene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	m+p Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETS 062	o Xylene	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3311	C10-C24 Diesel Range Organics (DRO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	C24-C40 Lube Oil Range Organics (LORO)	mg/kg	10	As Received	No	Yes	Yes
DETSC 3311	EPH (C10-C40)	mg/kg	10	As Received	No	Yes	Yes

Limit of

Sample

Appendix A - Details of Analysis

			Limit of	Sample			
Method	Parameter	Units	Detection	Preparation	Sub-Contracted	UKAS	MCERTS
DETSC 3303	Acenaphthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Acenaphthylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(a)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(b)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(k)fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Benzo(g,h,i)perylene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Dibenzo(a,h)anthracene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Fluoranthene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Indeno(1,2,3-c,d)pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Naphthalene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Phenanthrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3303	Pyrene	mg/kg	0.03	As Received	No	Yes	Yes
DETSC 3401	PCB 28 + PCB 31	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 52	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 101	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 118	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 153	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 138	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB 180	mg/kg	0.01	As Received	No	Yes	Yes
DETSC 3401	PCB Total	mg/kg	0.01	As Received	No	Yes	Yes

Method details are shown only for those determinands listed in Annex A of the MCERTS standard. Anything not included on this list falls outside the scope of MCERTS. No Recovery Factors are used in the determination of results. Results reported assume 100% recovery. Full method statements are available on request.

End of Report

APPENDIX F

Dunelm Notes On Limitations

Dunelm Conditions of Offer and Notes on Limitations of Investigation

Site investigation is a process of sampling. The scope and size of an investigation may be considered proportional to levels of confidence regarding the ground and groundwater conditions. The exploratory holes undertaken investigate only a small volume of the ground in relation to the overall size of the site, and can only provide a general indication of site conditions. The opinions provided and recommendations given in this report are based on the ground conditions as encountered within each of the exploratory holes. There may be different ground conditions elsewhere on the site which have not been identified by this investigation and which therefore have not been taken into account in this report. Reports are generally subject to the comments of the local authority and Environment Agency. The comments made on groundwater conditions are based on observations made at the time that site work was carried out. It should be noted that mobile contamination, soil gas levels and groundwater levels may vary owing to seasonal, tidal and/or weather related effects. Unrecorded ancient mining may occur anywhere where seams that have been worked and influence the rock and soil above. Dissolution cavities can occur where gypsum or chalk is present. Rotary drilling is the recommended technique to prove the integrity of the rock.

Where the scope of the investigation is limited via access to information, time constraints, equipment limitations, testing, interpretation or by the client or his agents budgetary constraints, elements not set out in the proposal and excluded from the report are deemed to be omitted from the scope of the investigation.

The firm cannot be held liable and do not warrant, or otherwise guarantee the validity of information provided by third parties and subsequently used in our reports. The firm are not responsible for the action negligent or otherwise of subcontractors or third parties.

Desk studies are generally prepared in accordance with RICS guidelines. Environmental site investigations are generally undertaken as 'exploratory investigations' in accordance with the definitions provided in paragraph 5.2.7 of *BS 10175*:2011 +A2:2017 in order to confirm the conceptual assumptions, and in accordance with BS5930:2015. You are advised to familiarize yourself with the typical scope of such an investigation. No pumping of water will be undertaken unless a licence or facilities/equipment have been arranged by others.

Where the type, number or/and depth of exploratory hole is specified by others, the firm cannot and will not be responsible for any subsequent shortfall or inadequacy in data, and any consequent shortfall in interpretation of environmental and geotechnical aspects which may be required at a later date in order to facilitate the design of permanent or temporary works.

APPENDIX E - HISTORIC MAPS

Historical Mapping Legends

Ordnance Survey Plan 1:10,000

-	Ot - 0 - 0	W 04	47,50			
ELLINO P	Chalk P	it, Clay Pit Ty	925	77.0	Grave	el Pit
	Sand P	t	(_)	Disus or Qu	ed Pit arry
	Refuse Slag He		<u> </u>)	Lake, or Po	Loch
ca a	. Dunes		200	0	Bould	ers
* * :	Conifer	ous	44	4	Non-0 Trees	Coniferous
φ φ	Orchard	00-	Scrub	1	Ynv	Coppice
ជា ជា ជា	Bracken	MIII.	Heath		٠.,	Rough Grassland
<u></u>	- Marsh	V///	Reeds		34	Saltings
		Direct	tion of Flow	of Wate	er:	
100 1	Building	20.00	1/2		2000	€ a Shingle
533	Glasshous	*	11	-	<u></u>	Sand
			Pylon		Flee	tricity
/////	Sloping Ma	isonry				smission
ccccci	Chapter of the		Pole	-	Line	
Cutting	L	Embankm	ent		Line	ard Gauge
Cutting		Embankm			Stand Multip Stand	lard Gauge le Track lard Gauge
Cutting		Embankm	ent Fo	et lge	Stand Multip Stand Single	lard Gauge lie Track lard Gauge Track
Cutting	.U	Embankm	ent Fo	et lge	Stand Multip Stand Single	lard Gauge le Track lard Gauge
Cutting	.U	Embankm	ent Fo	ot lge	Stand Multip Stand Single Siding or Mir	lard Gauge le Track lard Gauge Track g, Tramway
Cutting Road Under	.U Over	Embankm	Foo Brid	ot lge	Stand Multip Stand Single Siding or Mir	lard Gauge le Track lard Gauge Track g. Tramway neral Line
Road Under		Embankm-	Foing Brid	ot lge	Stand Multip Stand Single Siding or Mir Narro	lard Gauge le Track lard Gauge Track g. Tramway neral Line
Road Under	Geo	Embankmon Leve Cross	Fooling Brid	ty Boro	Stand Multip Stand Single Siding or Mir Narro	lard Gauge le Track lard Gauge Track g. Tramway neral Line w Gauge
Road Under	Geo	Embankm- Leve Cross agraphical Comministrative Cocuministrative Cocuminis	Fooling Brid	ty Boro	Stand Multip Stand Single Siding or Mir Narro	lard Gauge le Track lard Gauge Track g. Tramway neral Line w Gauge
Road Under	Geo	Embankment Cross Graphical Comministrative County of City nicipal Borough or District rough, Burgh	For Brid	ty Boro	Stand Multip Stand Single Siding or Mir Narro	lard Gauge lie Track lard Gauge Track g. Tramway neral Line w Gauge
Road Under	Geo	Embankmon Leve Cross ographical Comministrative Colourity of City of	For Brid	ty Boro	Stand Multip Stand Single Siding or Mir Narro	lard Gauge le Track lard Gauge a Track g. Tramway neral Line w Gauge
Road Under	Geo	Embankmon Leve Cross ographical Comministrative Colourity of City of	ent I Forming Brid unty unty punty, County Council or County C of colecident w then coincident Pol Sta PO	by Boro	Stand Multip Stand Single Siding or Mir Narro Narro nugh District, ency boundaries	lard Gauge le Track lard Gauge e Track g. Tramway neral Line w Gauge
Road Under	Geo	Embankment Leve Cross ographical Coministrative Country of City micipal Borough or District rough, Burgh on early when so if Parish was alternately we st or Stone	unty unty council or Council or County County Council or County County Council or County County County Council or County	ty Boro Rural I Polit Post Publ	Stand Multip Stand Single Siding or Mir Narro Narro sugh District, ency boundaries ce Stati t Office lic Conv	lard Gauge le Track lard Gauge e Track g. Tramway neral Line w Gauge
Road Under	Ged	Embankment Leve Cross ographical Coministrative Country of City micipal Borough or District rough, Burgh on early when so if Parish was alternately we st or Stone	unty unty council or Council or County C d colecident when calacident Pol Sta PO PC PH	ty Boro Rural I Polit Post Publ Publ	Stand Multip Stand Single Siding or Mir Narro Narro sugh District, ency boundaries ce Stati t Office lic Con- lic Hour-	lard Gauge le Track lard Gauge e Track g. Tramway neral Line w Gauge
Road Under	Geo	Embankment Leve Cross ographical Coministrative Country of City micipal Borough or District rough, Burgh on early when so if Parish was alternately we st or Stone	unty unty council or Council or County County Council or County County Council or County County County Council or County	ty Boro Rural I Polit Post Publ Publ	Stand Multip Stand Single Siding or Mir Narro Narro sugh District, ency boundaries ce Stati t Office lic Con- lic House sal Box	lard Gauge le Track lard Gauge e Track g. Tramway neral Line w Gauge
Road Under BP, BS Ch CH FE Sta FB	Ged	Embankment Leve Cross ographical Coministrative Country of City micipal Borough or District rough, Burgh on early when so if Parish was alternately we st or Stone	unty punty, Count gh, Urban or Council or County C of colecident w hen celecident Pol Sta PO PC PH SB	ty Boro Rural Li Politica at bee Politica Publica Sign Sprit	Stand Multip Stand Single Siding or Mir Narro Narro sugh District, ency bounds toffice to Office tic Con- tic House all Box ang	lard Gauge le Track lard Gauge e Track g. Tramway neral Line w Gauge
Road Under	Geo	Embankment Leve Cross ographical Coministrative Country of City micipal Borough or District rough, Burgh on early when so if Parish was alternately we st or Stone	unty sunty, County or County Cot colecident when celecident when PO PC PH SB Spr	ty Boro Rural II Political Political Public Signator Tele	Stand Multip Stand Single Siding or Mir Narro Narro Jugh District, ency bounds toffice to Office to Grade to Gr	ard Gauge le Track lard Gauge Track g. Tramway neral Line w Gauge
Road Under BP, BS Ch CH FE Sta FB Fn GP	Geo	Embankment Leve Cross ographical Coministrative Country of City micipal Borough or District rough, Burgh on early when so if Parish was alternately we st or Stone	point Format Point	ty Boro Rural II Political Political Public Signator Tele	Stand Multip Stand Single Siding or Mir Narro ugh District, ency bounds toffice toffice toffice phone phone	lard Gauge lie Track lard Gauge Track g. Tramway neral Line w Gauge

1:10,000 Raster Mapping

(EEE)	Gravel Pit	622II	Refuse tip or slag heap
27-7	Rock		Rock (scattered)
	Boulders	·.· ·	Boulders (scattered)
2500	Shingle	Man	Mud
(Sard)	Sand	(III)	Sand Pit
mm	Slopes	HITTITT	Top of cliff
	General detail		Underground detail
	Overhead detail	**********	Narrow gauge railway
-	Multi-track railway	_	Single track railway
			Civil, parish or
$-\cdot -\cdot$	(England only)		community boundary
<u> </u>	District, Unitary, Metropolitan, London Borough boundary		Constituency boundary
۵۵ ±	Area of wooded vegetation	00 00	Non-coniferous trees
۵۵	Non-coniferous trees (scattered)	** **	Coniferous trees
	Coniferous trees (scattered)	Ω	Positioned tree
00	Orchard	4 4	Coppice or Osiers
$\omega_{\mathbf{q}}$	Rough Grassland	-100-	Heath
On	Scrub	Ma.	Marsh, Salt Marsh or Reeds
40	Water feature	÷	Flow arrows
MHW(S)	Mean high water (springs)	MLW(S)	Mean low water (springs)
	Telephone line (where shown)		Electricity transmission line (with poles)
#M 123.45 m	Bench mark (where shown)	Δ	Triangulation station
×	Point feature (e.g. Guide Post or Mile Stone)	⊠	Pylon, flare stack or lighting tower
++	Site of (antiquity)		Glasshouse
	General Building		Important

Envirocheck

LANDMARK INFORMATION GROUP

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Yorkshire	1:10,560	1854 - 1855	2
Yorkshire	1:10,560	1893	3
Yorkshire	1:10,560	1894	4
Yorkshire	1:10,560	1905 - 1906	5
Yorkshire	1:10,560	1931 - 1932	6
Yorkshire	1:10,560	1938	7
Yorkshire	1:10,560	1948 - 1950	8
Ordnance Survey Plan	1:10,000	1955 - 1956	9
Ordnance Survey Plan	1:10,000	1966 - 1967	10
Ordnance Survey Plan	1:10,000	1976	11
Ordnance Survey Plan	1:10,000	1980 - 1988	12
Ordnance Survey Plan	1:10,000	1989	13
Ordnance Survey Plan	1:10,000	1991	14
10K Raster Mapping	1:10,000	2000	15
10K Raster Mapping	1:10,000	2006	16
VectorMap Local	1:10,000	2019	17

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1 Customer Ref: 151089 National Grid Reference: 444290, 404020 Slice:

Site Area (Ha): Search Buffer (m): 1000

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSLEY

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 1 of 17

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and **Supply of Unpublished Survey Information** 1:2.500 and 1:1.250

DFn

EIP

FAP

GP

LC

MS

NTL

Drinking Fountain

Fire Alarm Pillar

Level Crossing

Normal Tidal Limit

Foot Bridge

Guide Post

Electricity Pillar or Post

Hydrant or Hydraulic

Mile Post or Mooring Post

\$8,58

SP. SL.

Tk

TCB

TCP

Wd Pp

Signal Box or Bridge

Signal Post or Light

Telephone Call Box

Telephone Call Post

Water Point, Water Tap

Spring

Trough

Wind Pump

Tank or Track

Envirocheck

LANDMARK INFORMATION GROUP

Historical Mapping & Photography included:

Mapping Type	Scale	Date	Pg
Yorkshire	1:2,500	1892	2
Yorkshire	1:2,500	1906	3
Yorkshire	1:2,500	1930	4
Ordnance Survey Plan	1:2,500	1962	5
Additional SIMs	1:2,500	1962	6
Additional SIMs	1:2,500	1978 - 1988	7
Ordnance Survey Plan	1:2,500	1984	8
Additional SIMs	1:2,500	1988	9
Large-Scale National Grid Data	1:2,500	1993	10
Large-Scale National Grid Data	1:1,250	1993	11
Large-Scale National Grid Data	1:2,500	1995	12
Historical Aerial Photography	1:2,500	1999	13

Historical Map - Segment A13

Order Details

Order Number: 207258952 1 1 151089 Customer Ref: National Grid Reference: 444290, 404020 Slice:

Site Area (Ha): 0.01 Search Buffer (m): 100

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSLEY

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 1 of 13

LANDMARK INFORMATION GROUP*

Yorkshire

Published 1854 - 1855 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1
Customer Ref: 151089
National Grid Reference: 444290, 404020

); ^-----(||-);

Site Area (Ha): 0.01 Search Buffer (m): 1000

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSI FY

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck.

A Landmark Information Group Service v50.0 12-Jun-2019 Page 2 of 17

LANDMARK INFORMATION GROUP*

Yorkshire

Published 1892

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number: 207258952_1_1
Customer Ref: 151089
National Grid Reference: 444290, 404020

Site Area (Ha): 0.01 Search Buffer (m): 100

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSLEY

Landmark

Fel: 0844 844 9952 Fax: 0844 844 9951 Web: www.enviroched

A Landmark Information Group Service v50.0 12-Jun-2019 Page 2 of 13

LANDMARK INFORMATION GROUP*

Yorkshire

Published 1894

Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1 Customer Ref: 151089

National Grid Reference: 444290, 404020

Α

Site Area (Ha): 0.01 Search Buffer (m): 1000

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSLEY

Landmark

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.enviroche

A Landmark Information Group Service v50.0 12-Jun-2019 Page 4 of 17

LANDMARK INFORMATION GROUP*

Yorkshire

Published 1905 - 1906 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1
Customer Ref: 151089
National Grid Reference: 444290, 404020
Slice: A

Site Area (Ha): Search Buffer (m):

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

1000

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 12-Jun-2019 Page 5 of 17

LANDMARK INFORMATION GROUP*

Yorkshire

Published 1930

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

Historical Map - Segment A13

Order Details

Order Number: 207258952_1_1 Customer Ref: 151089

National Grid Reference: 444290, 404020

Α

Site Area (Ha): 0.01 Search Buffer (m): 100

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

Landmark

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 4 of 13

LANDMARK INFORMATION GROUP*

Yorkshire

Published 1931 - 1932 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1
Customer Ref: 151089
National Grid Reference: 444290, 404020

:: A === (| | =):

Site Area (Ha): 0.01 Search Buffer (m): 1000

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSI FY

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 12-Jun-2019 Page 6 of 17

LANDMARK INFORMATION GROUP*

Yorkshire

Published 1938

Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1 Customer Ref: 151089

National Grid Reference: 444290, 404020

Α

Site Area (Ha): 0.01 Search Buffer (m): 1000

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSLEY

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.enviroched

A Landmark Information Group Service v50.0 12-Jun-2019 Page 7 of 17

LANDMARK INFORMATION GROUP*

Yorkshire

Published 1948 - 1950 Source map scale - 1:10,560

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1
Customer Ref: 151089
National Grid Reference: 444290, 404020

Slice: A

Site Area (Ha): 0.01 Search Buffer (m): 1000

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 12-Jun-2019 Page 8 of 17

LANDMARK INFORMATION GROUP*

Ordnance Survey Plan Published 1955 - 1956 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

I	SE40	NW	- 1	SE4	ONE	ı
l	1955 1:10,5	560	-1	1956		ı
l	1.10,0	,,,,	-1		,000	1
_	_	_		_	_	_
1						
1	SE40	sw	L	SE4	OSE	ı
' 	SE40 1956	sw		1956	5	1
l		-	, I I		5	ı
- -	1956	-	 	1956	5	

Historical Map - Slice A

Order Details

207258952_1_1 Order Number: Customer Ref: 151089 National Grid Reference: 444290, 404020 Slice:

Site Area (Ha): Search Buffer (m):

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 9 of 17

LANDMARK INFORMATION GROUP*

Ordnance Survey Plan

Published 1962

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

Map Name(s) and Date(s)

- 1		ı	_	_	_	ı
1	SE4304 1962	ı	- 19	E440 962		ı
- 1	1:2,500	ı	1:	2,50	0	I
		l	_	_	_	ŀ
- 1	SE4303 1962	ı	- 19	E440 962		ı
- 1	1:2,500	I	1:	2,50	0	I
- 1		Ī				ı

Historical Map - Segment A13

Order Details

Order Number: 207258952_1_1 Customer Ref: 151089 National Grid Reference: 444290, 404020 Slice: Site Area (Ha): 0.01

Search Buffer (m):

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSLEY

100

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 5 of 13

LANDMARK INFORMATION GROUP*

Ordnance Survey Plan Published 1966 - 1967 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

_	_	_		_	_	_
I	SE40	NW	I	SE4	0NE	ı
I	1967 1:10,5	560	I	1966	.560	ı
I			1		,000	ı
-	_			_	_	_
I	SE40	sw	1	SE4	0SE	ı
1	1967		-	1966	6	- 1
	1:10,5	560	•	1:10	,560	
1			- 1			ı

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1 Customer Ref: 151089 National Grid Reference: 444290, 404020 Slice:

Site Area (Ha): Search Buffer (m):

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 10 of 17

LANDMARK INFORMATION GROUP*

Ordnance Survey Plan Published 1980 - 1988 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

-				_	_	_
- 1	SE4	ONW	I	SE40	NE	ı
- 1	1983 1:10		I	1983 1:10,		I
- 1			I			ı
_						
				_	_	_
Ī	SE4	 osw	ī	SE40	SE	_,
Ī	1980)	i i	1988		_
1)	I I			_
1	1980)	 	1988		-

Historical Map - Slice A

Order Details

207258952_1_1 Order Number: Customer Ref: 151089 National Grid Reference: 444290, 404020 Slice:

Site Area (Ha): Search Buffer (m):

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 12 of 17

LANDMARK INFORMATION GROUP*

Ordnance Survey Plan Published 1989 Source map scale - 1:10,000

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas; these maps were used to update the 1:10,560 maps. The published date given therefore is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas. In the late 1940's, a Provisional Edition was produced, which updated the 1:10,560 mapping from a number of sources. The maps appear unfinished - with all military camps and other strategic sites removed. These maps were initially overprinted with the National Grid. In 1970, the first 1:10,000 maps were produced using the Transverse Mercator Projection. The revision process continued until recently, with new editions appearing every 10 years or so for urban areas.

Map Name(s) and Date(s)

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1
Customer Ref: 151089
National Grid Reference: 444290, 404020
Slice: A

Site Area (Ha): 0.01 Search Buffer (m): 1000

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSI FY

Tel: 0844 844 9952 Fax: 0844 844 9951 Web: www.envirocheck

A Landmark Information Group Service v50.0 12-Jun-2019 Page 13 of 17

LANDMARK INFORMATION GROUP*

Large-Scale National Grid Data

Source map scale - 1:2,500

'Large Scale National Grid Data' superseded SIM cards (Ordnance Survey's 'Survey of Information on Microfilm') in 1992, and continued to be produced until 1999. These maps were the fore-runners of digital mapping and so provide detailed information on houses and roads, but tend to show less topographic features such as vegetation. These maps were produced at both 1:2,500 and 1:1,250 scales.

Historical Map - Segment A13

207258952_1_1 151089 National Grid Reference: 444290, 404020

0.01 100

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 10 of 13

LANDMARK INFORMATION GROUP*

Historical Aerial Photography Published 1999

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Historical Aerial Photography - Segment A13

Order Details

Order Number: 207258952_1_1
Customer Ref: 151089
National Grid Reference: 444290, 404020

0.01

Site Area (Ha): Search Buffer (m): 100

Site DetailsProposed roundabout off A635 Barnsley Road, Goldthorpe, BARNSLEY

Landmark

0844 844 9952 0844 844 9951

A Landmark Information Group Service v50.0 12-Jun-2019 Page 13 of 13

LANDMARK INFORMATION GROUP*

10k Raster Mapping Published 2000 Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

1	SE40	NW	I	SE40	NE	ı
1	2000	000	Τ	2000	000	ı
I	1.10,0	, 00	1	1.10,	,,,,	ı
_	_			_	_	_
					_	_
I	SE40	SW	1	SE40	SE	_,
I I	2000		1 1	2000		_
1 1 1			1			_

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1 **Customer Ref:** 151089 National Grid Reference: 444290, 404020 Slice:

Site Area (Ha): Search Buffer (m):

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

0844 844 9952 0844 844 9951

A Landmark Information Group Service v50.0 12-Jun-2019 Page 15 of 17

LANDMARK INFORMATION GROUP*

10k Raster Mapping Published 2006 Source map scale - 1:10,000

The historical maps shown were produced from the Ordnance Survey's 1:10,000 colour raster mapping. These maps are derived from Landplan which replaced the old 1:10,000 maps originally published in 1970. The data is highly detailed showing buildings, fences and field boundaries as well as all roads, tracks and paths. Road names are also included together with the relevant road number and classification. Boundary information depiction includes county, unitary authority, district, civil parish and constituency.

Map Name(s) and Date(s)

_	_	 	_	_	_
1.3	SE40l 2006 1:10,0	 	SE4 2006 1:10	3	1
1.3	SE409 2006 1:10,0	 	SE4 2006 1:10	3	- !

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1 **Customer Ref:** 151089 National Grid Reference: 444290, 404020 Slice:

Site Area (Ha): Search Buffer (m):

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

Landmark

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 16 of 17

LANDMARK INFORMATION GROUP*

VectorMap Local Published 2019 Source map scale - 1:10,000

VectorMap Local (Raster) is Ordnance Survey's highest detailed 'backdrop' mapping product. These maps are produced from OS's VectorMap Local, a simple vector dataset at a nominal scale of 1:10,000, covering the whole of Great Britain, that has been designed for creating graphical mapping. OS VectorMap Local is derived from large-scale information surveyed at 1:1250 scale (covering major towns and cities),1:2500 scale (smaller towns, villages and developed rural areas), and 1:10 000 scale (mountain, moorland and

Map Name(s) and Date(s)

1	SE40l	NW	I	SE40NE	ı
1	2019 Variat	ole	I	2019 Variable	I
I	v arras	010	I	Variable	ı
_	_				_
ī	SE40	 sw	ī	SE40SE	_
_ 	SE40	sw	ī	SE40SE	- !
Г	2019	· · ·	ī		-
 - -		· · ·	 - -	2019	-

Historical Map - Slice A

Order Details

Order Number: 207258952_1_1 Customer Ref: 151089 National Grid Reference: 444290, 404020 Slice:

Site Area (Ha): Search Buffer (m): 1000

Site Details

Proposed roundabout off A635 Barnsley Road, Goldthorpe,

0844 844 9952

A Landmark Information Group Service v50.0 12-Jun-2019 Page 17 of 17

APPENDIX F - EXPLORATORY LOGS

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, Son	uth Yorkshire		WS01
Job No	Date	Ground level	Co-Ordinates (National)	VVSUI
151089	27-09-21	(m AOD) 28.00	E 444,321.0 N 404,096.0	
Method/Plant Used Glo	bal Geo4 Window San	pling Rig		Sheet
				1 of 1

SAMPLE	ES & T	ESTS	H				STRATA	>	ent
Depth	Type No	Test Result	Water	Reduced Level		Depth (Thick- ness)		Geology	Instrument/
0.10	D				71 71 71 71 71 71 71 71 71 71 71 71 71 7		Brown clayey SAND. (Topsoil).		CACA CACA
0.40	D					(0.30)	Brown very clayey gravelly SAND. Gravel is fine to coarse subangular of siltstone.		
0.70	D			27.40	<u> </u>	0.60	Very stiff brown and grey very gravelly CLAY. Gravel is fine to coarse subangular of siltstone.		
1.00	SPT	N50				(0.83)			
	(5,6/	,10,15,18 for 50)mm)	26.58		- 1.43			
						-	Window sample hole refused at 1.43m bgl.		
						- -			
						- -			
						- - -			
						- -			
						- -			
						-			
						- -			
						-			

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21 Boring Progress and Water Observations GENERAL REMARKS Core/casing Depth | Dia. mm Water Dpth Depth Date Time CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley		WS02		
Job No	Date	Ground level	Co-Ordinates (National)	WV302
151089	27-09-21	(m AOD) 27.50	E 444,304.0 N 404,083.0	
Method/Plant Used Glo	bal Geo4 Window Sam	pling Rig	•	Sheet
				1 of 1

								of I	
SAMPLI	ES & T	ESTS	ı				STRATA	$\overline{\top}$	ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	Geology	Instrument/ Rackfill
0.20					1 7 1 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1	(0.30)	Brown clayey SAND. (Topsoil).		
0.20	D				<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	4	Proven very glovey gravelly SAND, Gravel is fine to george subgrapular	-	
0.40	D			27.00	. ·a ·	0.20)	Very stiff brown and grey very gravelly CLAY. Gravel is fine to coarse		
0.60	D					(0.87)	subangular of siltstone.		
1.00	SPT (6,8	N50 (11,15,24 for 7	0mm)	26.12		-			
				26.13		1.37	Window sample hole refused at 1.37m bgl.		KOQ2
-									
				ater Ob	servation	ons	GENERAL REMARKS		
Date	Tin	ne D	epth	Depti	re/casing	mm W	Vater Opth		

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21 Dia. mm Dpth CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
3				11022110
A635 Barnsley	Road, Goldthorpe, So	outh Yorkshire		WS03
Job No	Date	Ground level	Co-Ordinates (National)	VV3U3
151089	27-09-21	(m AOD) 27.50	E 444,285.0 N 404,098.0	
Method/Plant Used Glo	bal Geo4 Window Sar	npling Rig	•	Sheet
				1 of 1

												1	of I	
SAMPLI	ES & T	ESTS	r					STRAT	CA.				$\overline{\top}$	ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)			DESCRIPT	ION			Geology	Instrument/ Backfill
0.20	D			27.20	717 717 1 717 7 7 1 1 1	(0.30)		clayey SAND. (-		
0.60	D					- - - -	Very st subang	iff brown and gr ular of siltstone.	ey very gravel	ly CLAY. Gra	vel is	fine to coarse		
0.00						(1.10)								
1.00	SPT (4,5/	N50 7,12,21,10 for 2	2 0 mm)			-								
				26.11	0 -	1.40		w sample hole re						
						- - -								
Borii	ng Prog	ress an	d W	ater Ob	servatio	ons		CENE	DAI DEM	ADVC				
Date	Tin		epth	Co	re/casing	mm D	/ater Opth	GENE	ERAL REM	AKKS				

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21 Dia. mm Dpth CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, Sou	uth Yorkshire		WS04
Job No	Date	Ground level	Co-Ordinates (National)	W304
151089	27-09-21	(m AOD) 28.00	E 444,320.0 N 404,119.0	
Method/Plant Used Glo	oal Geo4 Window Sam	pling Rig		Sheet
				1 of 1

ness) Brown clayey SAND. (Topsoil). $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAMPL	ES & 1	E515	eı				STRATA		250
Brown clayey SAND. (Topsoil). $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Depth	Type No	Test Result	Water	Reduced Level		11088)	DESCRIPTION		Geology
Yellow brown very sandy GRAVEL. Gravel is fine to coarse subangular of siltstone. Yellow brown very sandy GRAVEL. Gravel is fine to coarse subangular of siltstone. Yellow brown very sandy GRAVEL. Gravel is fine to coarse subangular of siltstone. Yellow brown very sandy GRAVEL. Gravel is fine to coarse subangular of siltstone. Yellow brown very sandy GRAVEL. Gravel is fine to coarse subangular of siltstone.).10	D			27.70	1/ 1/1/ 1	(0.30)			Ø
1.00 D SPT N50 SPT N50 0.50 0.50 Very dense grey sandy GRAVEL. Gravel is fine to coarse subangular of siltstone. 0.50 $0.$	0.50	D					(0.60)	Yellow brown very sandy GRAVEL. Gravel is fine to coarse subangular of siltstone.	2	
Window sample hole refused at 1.41m bgl.	1.00 1.00	SPT		0mm)			(0.51)	Very dense grey sandy GRAVEL. Gravel is fine to coarse su	ıbangular	
					26.60	0 7.0	1.41	Window sample hole refused at 1.41m bgl.		
							-			
Boring Progress and Water Observations Date Time Depth Core/casing Water Depth Dia mm Depth Depth Dia mm Dep	Bori	ng Prog	ress an	d W				GENEDAL DEMADES		

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21 Date Depth Time Depth | Dia. mm Dpth CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

WINDOW SAMPLE LOG

WIL	ЭEГ
Tel:	01924 376622
wwv	v.abbevdalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, So	uth Yorkshire		WS05
Job No	Date	Ground level	Co-Ordinates (National)	VV3U3
151089	27-09-21	(m AOD) 27.50	E 444,352.0 N 404,102.0	
Method/Plant Used Glo	bal Geo4 Window San	npling Rig		Sheet
				1 of 1

SAMPLI	ES & T	ESTS	, H				STRATA		ent/
Depth	Type No	Test Result	Water	Reduced Level	1	Depth (Thick- ness)		Geology	Instrument/
0.20	D			27.20	717 717 7 7 7 17 7	(0.30)	Brown clayey SAND. (Topsoil).		
0.40	D			27.20		-	Grey mottled brown very clayey SAND.		
				26.60		0.60)			
1.00 1.00	D SPT	N50		20.00		(0.51)	Grey mottled brown gravelly CLAY. Gravel is fine to coarse subangular of mudstone and siltstone.		
	(3,4/	8,14,18,10 for 3	0mm)	26.10		1.41	Window sample hole refused at 1.41m bgl.		
						-	Window sample hole refused at 1.41m bgl.		
						-			
						-			
						-			
						-			
						-			
						- - -			
						- -			
						- -			

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21 GENERAL REMARKS Water Dpth Core/casing Depth | Dia. mm Time Depth Date CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, Son	uth Yorkshire		WS06
Job No	Date	Ground level	Co-Ordinates (National)	VVSUO
151089	27-09-21	(m AOD) 26.50	E 444,378.0 N 404,077.0	
Method/Plant Used Glo	bal Geo4 Window San	npling Rig	•	Sheet
				1 of 1

								1 o	f 1	
SAMPLE	ES & T	ESTS					STRATA			ent/
Depth	Type No	Test Result	Water	Reduced Level Leg	gend (Thie ness)	epth ck-	DESCRIPTION		Geology	Instrument/ Backfill
0.20	D			26.20	\(\frac{\lambda \frac{\lambda \frac{\candda \frac{\lambda \frac{\frac}\frac{\fracc}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fracc}\frac{\fracc}\frac{\frac{\frac{\frac{\frac{\frac{\fraccc}\frac{\fraccc}\frac	(a) Bi su (b) 0.30	rown slightly clayey slightly gravelly SAND. Gravel is fir ibrounded sandstone. ense grey mottled brown slightly clayey SAND.	ne	•	
	D									
1.00	D SPT	N32			 (1.4	10)				
1.30	D	(4,6/7,7,7,11	1)							
- -				24.80		1.70 V	ery weak grey mottled brown SILTSTONE. Recovered as avel. Gravel is fine to coarse subangular of siltstone.	s sandy		
1.90	D SPT	N50 12/15,17,18 for	r 60mm)	24.80	(0.6		ravel. Gravel is fine to coarse subangular of siltstone.	·		
-				24.14	× × × × -	2.36 W	Vindow sample hole refused at 2.36m bgl.			
- - - - -					- - - - - -					
· · · · · · · · · ·					-					
Borin	ng Prog	ress ar	nd W	ater Obser	vations					
Date	Tir		Depth		asing Dia. mm	Water Dpth	GENERAL REMARKS			
				Берш	<i>Σ</i> ια. ΠΙΙΠ	ърш	CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.			

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21

All dimensions in metres Scale 1:25 Client BMBC Contractor RP Drilling Logged By OS

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, So	outh Yorkshire		WS07
Job No	Date	Ground level	Co-Ordinates (National)	VV3U1
151089	27-09-21	(m AOD) 26.00	E 444,395.0 N 404,060.0	
Method/Plant Used Glo	bal Geo4 Window Sar	npling Rig		Sheet
				1 of 2

												1 (31 2	
SAMPLE	ES & T	ESTS	_					STR	ATA			·		ent/
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)				RIPTION			Geology	Instrument/
0.15	D			25.75	1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1	(0.25)	of sanc	dstone, brick				e subrounded		
						<u>-</u>	Mediu	m dense grey	mottled brow	n clayey SA	AND.			
						(0.75)								
0.70	D													
1.00	SPT	N27		25.00		1.00		ım dense grey	mottled brow	n very clay	ey SAND.			
1.30	D	(4,4/5,6,8,8)				(0.50)								
				24.50		1.50								
] - -	Firm g to coar	rey mottled b rse subangula	orown sandy sl ar of siltstone.	lightly grave	elly CLAY. (Gravel is fine		
1.80	D					-								
2.00	SPT	N21 (4,4/5,5,5,6)				(1.00)								22.2
2.20	D													22.2
				23.50	× × × × × ×	2.50	Very w	weak brown S coarse subar	SILTSTONE. I	Recovered a	as sandy grav	vel. Gravel is		
					× × × × × × × × × × × × × × × × × × ×	(0.60)								200
2.90	D				* * * * * * * * * * * *									
3.00	SPT	N29 (5,6/7,7,7,8)		22.90	× × × × × ×	3.10		veak grev SII	LTSTONE. Re	ecovered as	sandv gravel	l. Gravel is	├	
		(3,0//,/,/,8)			X X X X X X X X X X X X X X X X X X	-	fine to	coarse suban	ngular of siltsto	one.	3 8			
					× × ×									
3.70	D				X X X X X X X X X X X X X X X X X X	(1.30)								
Borir	g Prog	ress and	1 W	ater Oh		ons								(1
	69E	,	.1		re/casino		ater	GE	ENERAL R	EMARK	S			

PLATE.GDT 1/10/21	3.70	D		× × × × × ×	× × × × × × × × × × × × × × × × × × ×	0)			\$0\$0\$0\$0\$0\$
TEM	Boring	g Progress	s and Wa				GENERAL REMARKS		
ABEC	Date	Time	Depth	Core/ Depth	casing Dia. mm	Water Dpth	GENERAL REMARKS		
INDOW SAMPLE 151089.GPJ A				•		•	CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.		
ABEC W	All dimension Scale		Client	Bi	MBC		Contractor RP Drilling	Logged By OS	

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, So	uth Yorkshire		WS07
Job No	Date	Ground level	Co-Ordinates (National)	VV3U1
151089	27-09-21	(m AOD) 26.00	E 444,395.0 N 404,060.0	
Method/Plant Used Glo	bal Geo4 Window San	npling Rig	•	Sheet
				2 of 2

SAMPLE	ES & T	ESTS						STRATA			>	ent/
Depth	Type No	Test Result	Water	Reduced Level					RIPTION		Geology	Instrument/ Backfill
4.00	SPT	N50			× × × × × × × × × × × × × × × × × × ×			weak grey SILTSTONE. Recoarse subangular of siltstown sample hole refused at 4		Gravel is	9	
				ater Obs	servation re/casing	ons	Vater	GENERAL R	EMARKS			
Date	Tir	ne]	Depth	Depth	re/casing n Dia.	<u>mm D</u>	ater opth	CAT used to check for ser No groundwater encounter Backfilled with arisings.	vices prior to boring. red. Stable.			

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21

All dimensions in metres Scale 1:25 Client BMBC Contractor RP Drilling Cos

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

				T
Project				HOLE No
	B 1 6 111	4 ** 4 4 .		
A635 Barnsley	Road, Goldthorpe, So	uth Yorkshire		MCOO
Job No	Date	Ground level	Co-Ordinates (National)	WS08
151089	27-09-21	(m AOD) 26.50	E 444,358.0 N 404,059.0	
Method/Plant Used Glo	bal Geo4 Window San	npling Rig	•	Sheet
				1 of 1

										1 o	f 1
SAMPLE	ES & T	ESTS	r						STRATA		ent/
Depth	Type No	Test Result		Reduced Level	Legend	(Thic ness)	epth k-		DESCRIPTION		Geology Instrument/
	D				1 71 7 7	(0.30	0) 1	Dark mediu	brown slightly clayey slightly gravelly SAND. Gravel in subrounded of sandstone and fine subangular of co	is fine to oal.	
0.20	D			26.20	<u> </u>	(0.30	Brown	n slightly clayey SAND.		
0.40	D					(0.35					
- -				25.85	- · · - ·	- (0.65	Mediu	ım dense grey mottled orange/brown very clayey SAN	√D.	
	_					(0.35	5)				
$-\frac{0.90}{1.00}$	D SPT	N20		25.50			1.00	Stiff b	prown mottled orange slightly sandy slightly gravelly	CLAY.	
· · · · · · · · · · · · · · · · · · ·		(3,3/4,4,6,6	5)			- - - -		Grave	el is fine to medium subangular of siltstone.		
1.80	D					(1.10	0)				
2.00	SPT	N22		24.40		- 2	2.10				
2.50	D	(4,4/5,5,6,6	5)		× × × × × × × × × × × × × × × × × × ×			Very grave	weak brown SILTSTONE. Recovered as slightly clay l. Gravel is fine to coarse subangular of siltstone.	ey sandy	
2.30	Б				× × × × × × × × × × × × × × × × × × ×	(1.28	3)				
3.00	SPT (7,8	N50 /14,17,17,2 fc	or 5mm)		× × × × × × × × ×	-					
				23.12	× × × × × × × × ×	3	3.38	Winda	ow sample hole refused at 3.38m bgl.		
						_		1110	p.c. note version at 5150m ogn		
						- -					
Dorin	Dwa 2	rogg st	nd W	ater Obs	omzati.	Dnc.					
Date	ig Prog		na w Depth		re/casing		Wate Dpt	er	GENERAL REMARKS		
			•	Deptil	ı Did.	mil	ւրիւ	.11	CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.		

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21

All dimensions in metres Scale 1:25

CAT used to check for services prior to boring. No groundwater encountered. Stable.

Backfilled with arisings.

Contractor RP Drilling

Logged By OS

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, Son	ıth Yorkshire		WS09
Job No	Date	Ground level	Co-Ordinates (National)	W 309
151089	27-09-21	(m AOD) 26.50	E 444,326.0 N 404,061.0	
Method/Plant Used Glo	bal Geo4 Window Sam	pling Rig	•	Sheet
				1 of 1

											1 (of I	
SAMPLI	ES & T	ESTS						STRAT	 ΓΑ				,tue
Depth	Type No	Test Result	Water	Reduced Level	Legend	Dept (Thick- ness)			DESCRIPTI			Geology	Instrument/
0.10	D			26.25	1/ 1/1/	(0.25)	Dark medi	brown slightly cla um subangular to s	yey slightly gra subrounded of s	velly SAND. Grav andstone, brick an	rel is fine to d coal.		No.
					a	-	Light	brown clayey slig adstone.	thtly gravelly SA	AND. Gravel is fin	e subrounded		
0.60	D					(0.55)							
				25.70		0.8	0 Stiff	nottled grey and o	orange sandy CI	LAY.		 	
0.90	D				· · ·	}							22
1.00	SPT	N22			·								×
		(5,4/5,5,6,6	9)		·	-							×
					<u></u>	(1.00)							***
					·	-							8
1.50	D				<u></u>	†							62
					<u></u>								從
				24.70		1.8	0			11 07 : 22 2	1: 0	↓	数
1.90	D				-°	}	Stiff	mottled grey and c im subangular of :	orange sandy gra siltstone.	avelly CLAY. Grav	vel is fine to		於
2.00	SPT	N50				(0.54)							
2.00		3/16,22,12 for	40mm)			(0.54)							
	(7,0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		24.16		1	4						
				24.16	- *	2.3	Wind	ow sample hole re	efused at 2.34m	bgl.		+	W.
						-		•					
						-							
						-							
						-							
						-							
						-							
						-							
						-							
						-							
Dori:	ng Prop	ress ex	d W	oter Ob	 	one.							
Date	ng Prog		Depth	ater Obs	re/casing		Water Dpth	GENE	ERAL REMA	ARKS			
	1111	110 1	-cpui	Deptl	ı Dıa.	mm	D pth						

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21 CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, Son	uth Yorkshire		WS10
Job No	Date	Ground level	Co-Ordinates (National)	WY51U
151089	28-09-21	(m AOD) 27.00	E 444,352.0 N 404,075.0	
Method/Plant Used Glo	bal Geo4 Window Sam	pling Rig	•	Sheet
				1 of 1

								l 01	1 1	
SAMPLI	ES & T	ESTS	r				STRATA			ent/
Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick- ness)	DESCRIPTION		Geology	Instrument/
0.20	D			26.70	717 717 17 717 71 718 717	(0.30)	Dark brown slightly gravelly clayey SAND. Gravel is fine to me subrounded of sandstone.	edium		
				20.70	o		Medium dense mottled orange and grey very clayey slightly gra SAND. Gravel is fine to medium subrounded of sandstone.	velly		
0.90 1.00	D SPT	N20 (3,3/4,4,5,7)		25.30		-(1.40)				
1.80	D			20.50		-	Very dense mottled orange and grey very clayey slightly gravell SAND. Gravel is fine to medium subangular of siltstone.	у		
2.00	SPT	N50				-(0.59)				
	(8,	11/18,32 for 60i	mm)	24.72		2.29	Window sample hole refused at 2.29m bgl.			
						- - - - - - - - - - - -				
Borii	ng Prog	ress and	d W	ater Ob	servatio	ons	CENEDAL DEMARKS			
Date	Tir		epth		re/casing		ater GENERAL REMARKS			

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21 Dia. mm Dpth CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, Son	uth Yorkshire		WS11
Job No	Date	Ground level	Co-Ordinates (National)	VVSTT
151089	28-09-21	(m AOD) 26.50	E 444,286.0 N 404,067.0	
Method/Plant Used Glo	bal Geo4 Window Sam	pling Rig		Sheet
				1 of 1

SAMPLI	ES & T	ESTS	H					STRATA			ent/
Depth	Type No	Test Result	Water	Reduced Level Level	egend (Depth (Thick- ness)		DESCRIPTION		Geology	Instrument/
0.10	D			26.30	7 7 7	(0.20)	subro	brown slightly gravelly clayey SAND. Gravel is fine tounded of sandstone.			202
0.50	D			- c - :- - :-	~	(0.45)	Light medi	brown slightly clayey slightly gravelly SAND. Gravel um subrounded of sandstone and fine subangular of co	is fine to al.		SENENCE SENENC
						0.00	Medi SAN	um dense becoming very dense mottled grey and orang D.	ge clayey		
1.00	SPT	N21 (3,3/4,5,5,7)				(1.70)					
1.80	D										となるなど
2.00	SPT (7,10	N50 /16,19,15 for 5	(mm)	24.15		2.35					日からなが
					-	-	WINC	low sample hole refused at 2.35m bgl.			
					-						
	D. D.		1 337	. 01	-						
Borii Date	ng Prog Tin		1 Wa epth	Core/ Depth			ater pth	GENERAL REMARKS			
240			-P ***	Depth	Dia. i	mm D	pth	CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.			
All dimens		, [lient					Contractor DD D.:11:	ogged By OS		=

WINDOW SAMPLE LOG

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, Son	uth Yorkshire		WS12
Job No	Date	Ground level	Co-Ordinates (National)	VV312
151089	28-09-21	(m AOD) 27.00	E 444,269.0 N 404,079.0	
Method/Plant Used Glo	bal Geo4 Window San	npling Rig		Sheet
				1 of 1

								1 o	f 1	
SAMPLE	S & T	ESTS	r				STRATA			ent/
Depth	Type No	Test Resul	tl Mater	Reduced Level	egend (Thi	, ,	DESCRIPTION		Geology	Instrument/ Backfill
0.20	D			l	$\frac{L}{2^{1}L} \stackrel{1}{\sim} \frac{L}{2^{1}L}$	Da	k brown slightly gravelly clayey SAND. Gravel is fine to rounded of sandstone and fine subangular of coal.	medium		
- - -				c - . -	(0.4	Ora to r	ingey brown slightly clayey slightly gravelly SAND. Grav nedium subangular to subrounded of sandstone, coal and	vel is fine siltstone.		
- 0.55	D			26.25		0.75	and development and heavy along CAND			
0.80	D			- <u> </u> - <u> </u>			y dense orange mottled brown clayey SAND.			
1.00	SPT (6,8)	N50		- <u> - </u> - - - - - - - - - - - - - -	(0.6	50)				
-				25.65	<u>·</u> . · · .	1.35 Win	ndow sample hole refused at 1.35m bgl.			
-					-					
-					-					
- 					-					
-					-					
- -					-					
-					-					
-					-					
-					-					
-					-					
- -					-					
-					-					
- -			1 ***	. 61	.:		1			
Borin Date	g Prog Tin		nd Wa Depth	Core/Depth	rvations casing Dia. mm	Water Dpth	GENERAL REMARKS			
Borin Date			<u> </u>	Берш	Dia. Hilli	Dpm	CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.			

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21

Boring Progress and Water Observations

Date Time Depth Core/casing Depth Dia. mm Dpth

CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

All dimensions in metres Scale 1:25

BMBC

Contractor RP Drilling

CENERAL REMARKS

CAT used to check for services prior to boring. No groundwater encountered. Stable.

Backfilled with arisings.

Tel: 01924 376622 www.abbeydalebec.com

Project				HOLE No
A635 Barnsley	Road, Goldthorpe, So	uth Yorkshire		WC12
Job No	Date	Ground level	Co-Ordinates (National)	WS13
151089	28-09-21	(m AOD) 26.50	E 444,249.0 N 404,073.0	
Method/Plant Used Glo	bal Geo4 Window San	npling Rig	•	Sheet
				1 of 1

SAMPLI	ES & T	ESTS	H				STRATA	>	ent/
Depth	Type No	Test Result	Water	Reduced Level		Depth (Thick- ness)	DESCRIPTION	Geology	Instrument/
0.20	D			26.20	717 777 7 717 7	(0.30)	Dark brown slighlty clayey SAND.		2000
				20.20	6	-	Medium dense Mottled grey and orange clayey slightly gravelly SAND. Gravel is fine to coarse subrounded of sandstone and fine subangular of coal.		
0.70	D				- a	(0.80)			\$2550 \$250 \$250 \$250 \$250 \$250 \$250 \$250
1.00	SPT	N22		25.40		1.10			
		(4,4/5,5,6,6)				-	Medium dense becoming very dense mottled grey and orange very clayey gravelly SAND. Gravel is fine to coarse subrounded of sandstone and fine to coarse subangular of siltstone.		
						(1.23)			
1.80	D					[L			2000
2.00	SPT (7,8	N50 3/13,22,15 for 30)mm)						
				24.17	· · · · ·	2.33			
						_	Window sample hole refused at 2.33m bgl.		
						_			
						-			
						_			
						-			
						_			
						_			
						-			
						-			
Borii	ng Prog	gress and	d W	ater Ob	servatio	ons	CENEDAL DEMADES		

ABEC WINDOW SAMPLE 151089.GPJ ABEC TEMPLATE.GDT 1/10/21 GENERAL REMARKS Water Dpth Core/casing Depth | Dia. mm Date Time Depth CAT used to check for services prior to boring. No groundwater encountered. Stable. Backfilled with arisings.

4 Neville Street WAKEFIELD WF1 5EF Tel: 01924 376622 **OPENHOLE LOG**

PI.	N DE	CAII C					STRATA		·		ıt/
		IAILS	D 11 1		Depth			CR	IPTION	Geology	Instrument/ Backfill
Depth Date	Rate Min/rod	Flush %	Red'cd Level	Legend	(Thick-	F11					stru
			1	312.31	ness)	Flush	Det	an	Main	<u> 5</u>	H C
			27.70	0000	0.30				Brown clay [TOPSOIL]. Brownish yellow sandy GRAVEL.	1	
			26.25	00.0	1.75						
					[(2.25)				Brownish grey MUDSTONE.		
			24.00		(2.25)						
			24.00	x x x	4.00			ŀ	Greyish brown SILTSTONE.		
			23.50		4.50				Orangeish brown SANDSTONE.	 	
			22.00		E (2 8000)				Brownish grey MUDSTONE.		
			23.00		(2.5000						
			20.50		7.50			ŀ	Grey MUDSTONE.		
					ŧ l				GIEV MODSTONE.		
					(0.25)						
					(9.25)						
											1000
			11.25		16.75			-	Dark grey MUDSTONE.		
			10.80		17.20				Dark grey / black SHALE.		
			9.90		€ 18.10/				Grey MUDSTONE.	+	
			8.75		19.25			-	Black COAL.		
			7.80		20.20						
				/	£ (2.20)				Black / grey MUDSTONE (Seatearth).		
			5.50		(2.30)						
			5.50		22.50			ŀ	Grey MUDSTONE.		
									GICY MODSTONE.		
					(7.50)						
					[(/.30)						
			2.00		1000						
			-2.00		30.00			-	Bottom of rotary open hole at 30.00m		2402
					 				bgl.		
<u> </u>											
Š	Dril	ling Prog	ress and	Wate	r Obser	vations	CENTED	ΑТ	REMARKS		

ABEC OPENHOLE 151089.GPJ ABEC TEMPLATE.GDT 1/11/21

Date

Time

Water Strike | Standing GENERAL REMARKS

Hand pit dug. CAT used to scan for services prior to boring.

Logged By RS

All dimensions in metres Scale 1:200 Client BMBC Contractor Ace Drilling

WL

Casing

Depth

APPENDIX G - LABORATORY TESTING RESULTS

ANALYTICAL TEST REPORT

Contract no: 100946

Contract name: A635 Barnsley Road, Goldthorpe

Client reference: 151089

Clients name: Abbeydale BEC

Clients address: 4 Neville Street

Wakefield WF1 5EF

Samples received: 30 September 2021

Analysis started: 30 September 2021

Analysis completed: 06 October 2021

Report issued: 06 October 2021

Notes: Opinions and interpretations expressed herein are outside the UKAS accreditation scope.

Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.

All testing carried out at Unit 6 Parkhead, Stanley, DH9 7YB, except for subcontracted testing.

Methods, procedures and performance data are available on request.

Results reported herein relate only to the material supplied to the laboratory.

This report shall not be reproduced except in full, without prior written approval.

Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.

Key: U UKAS accredited test

M MCERTS & UKAS accredited test

\$ Test carried out by an approved subcontractor

I/S Insufficient sample to carry out test N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

Rachael Burton

Customer Support Squad Leader

Chemtech Environmental Limited

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30° C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
100946-1	WS1	0.10	Clayey Sand with Gravel & Roots	-	-	14.7
100946-2	WS6	0.20	Clayey Sand with Gravel & Roots	-	-	15.7
100946-3	WS11	0.50	Clayey Sand with Gravel & Roots	-	-	13.5
100946-4	WS12	0.20	Clayey Sand with Gravel & Roots	-	-	14.0

Chemtech Environmental Limited

SOILS

r			1000161	100016.0	100016.0	100016 1
Lab number Sample id			100946-1 WS1	100946-2 WS6	100946-3 WS11	100946-4 WS12
Depth (m)			0.10	0.20	0.50	0.20
Date sampled			27/09/2021	28/09/2021	28/09/2021	27/09/2021
Test	Method	Units				
Arsenic (total)	CE127 ^M	mg/kg As	11	4.5	11	9.3
Beryllium (total)	CE127 ^U	mg/kg Be	1.3	1.6	1.2	<1
Boron (water soluble)	CE063 ^M	mg/kg B	1.4	0.8	1.0	0.8
Cadmium (total)	CE127 ^M	mg/kg Cd	0.3	<0.2	0.4	2.4
Chromium (total)	CE127 ^M	mg/kg Cr	59	51	64	50
Chromium (III)	CE208	mg/kg CrIII	59	51	64	50
Chromium (VI)	CE146	mg/kg CrVI	<1	<1	<1	<1
Copper (total)	CE127 ^M	mg/kg Cu	23	17	24	75
Lead (total)	CE127 ^M	mg/kg Pb	37	22	42	153
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5	<0.5	<0.5	<0.5
Nickel (total)	CE127 ^M	mg/kg Ni	26	30	27	17
Selenium (total)	CE127 ^M	mg/kg Se	1.1	1.0	1.1	0.9
Vanadium (total)	CE127 ^M	mg/kg V	39	42	37	29
Zinc (total)	CE127 ^M	mg/kg Zn	83	97	96	156
рН	CE004 ^M	units	7.8	7.8	7.7	7.1
Sulphate (2:1 water soluble)	CE061 ^U	mg/l SO ₄	<10	11	12	34
Cyanide (free)	CE077	mg/kg CN	<1	<1	<1	<1
Cyanide (total)	CE077	mg/kg CN	<1	<1	<1	<1
Phenols (total)	CE078	mg/kg PhOH	<0.5	<0.5	<0.5	<0.5
Total Organic Carbon (TOC)	CE197	% w/w C	2.0	0.4	1.9	2.0
Estimate of OMC (calculated from TOC)	CE197	% w/w	3.4	0.8	3.3	3.4
РАН						
Naphthalene	CE087 ^M	mg/kg	0.02	0.02	<0.02	0.03
Acenaphthylene	CE087 ^M	mg/kg	<0.02	<0.02	<0.02	<0.02
Acenaphthene	CE087 ^M	mg/kg	<0.02	<0.02	<0.02	<0.02
Fluorene	CE087 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02
Phenanthrene	CE087 ^M	mg/kg	0.10	0.03	<0.02	0.08
Anthracene	CE087 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02
Fluoranthene	CE087 ^M	mg/kg	0.16	0.07	<0.02	0.16
Pyrene	CE087 ^M	mg/kg	0.14	0.06	<0.02	0.13
Benzo(a)anthracene	CE087 ^U	mg/kg	0.06	0.02	<0.02	0.06
Chrysene	CE087 ^M	mg/kg	0.06	0.03	<0.03	0.07
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.08	0.05	<0.02	0.11
Benzo(k)fluoranthene	CE087 ^M	mg/kg	0.03	<0.03	<0.03	0.04
Benzo(a)pyrene	CE087 ^U	mg/kg	0.05	0.03	<0.02	0.07
Indeno(123cd)pyrene	CE087 ^M	mg/kg	0.04	0.02	<0.02	0.05
Dibenz(ah)anthracene	CE087 ^M	mg/kg	<0.02	<0.02	<0.02	<0.02
Benzo(ghi)perylene	CE087 ^M	mg/kg	0.03	<0.02	<0.02	0.04
PAH (total of USEPA 16)	CE087	mg/kg	0.79	0.34	<0.34	0.84
Subcontracted analysis	1	1		1		
Asbestos (qualitative)	\$	_	NAD	NAD	NAD	NAD
ļ			l .			

Chemtech Environmental Limited METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE127	Arsenic (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg As
CE127	Beryllium (total)	Aqua regia digest, ICP-MS	Dry	U	1	mg/kg Be
CE063	Boron (water soluble)	Hot water extract, ICP-OES	Dry	М	0.5	mg/kg B
CE127	Cadmium (total)	Aqua regia digest, ICP-MS	Dry	М	0.2	mg/kg Cd
CE127	Chromium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cr
CE208	Chromium (III)	Calculation: Cr (total) - Cr (VI)	Dry		1	mg/kg CrIII
CE146	Chromium (VI)	Acid extraction, Colorimetry	Dry		1	mg/kg CrVI
CE127	Copper (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cu
CE127	Lead (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Pb
CE127	Mercury (total)	Aqua regia digest, ICP-MS	Dry	М	0.5	mg/kg Hg
CE127	Nickel (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ni
CE127	Selenium (total)	Aqua regia digest, ICP-MS	Dry	М	0.3	mg/kg Se
CE127	Vanadium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg V
CE127	Zinc (total)	Aqua regia digest, ICP-MS	Dry	М	5	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	As received	М	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	U	10	mg/l SO ₄
CE077	Cyanide (free)	Extraction, Continuous Flow Colorimetry	As received		1	mg/kg CN
CE077	Cyanide (total)	Extraction, Continuous Flow Colorimetry	As received		1	mg/kg CN
CE078	Phenols (total)	Extraction, Continuous Flow Colorimetry	As received		0.5	mg/kg PhOH
CE197	Total Organic Carbon (TOC)	Carbon Analyser	Dry		0.1	% w/w C
CE197	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry		0.1	% w/w
CE087	Naphthalene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Acenaphthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Fluorene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Phenanthrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(a)anthracene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Chrysene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Benzo(b)fluoranthene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(k)fluoranthene	Solvent extraction, GC-MS	As received	М	0.03	mg/kg
CE087	Benzo(a)pyrene	Solvent extraction, GC-MS	As received	U	0.02	mg/kg
CE087	Indeno(123cd)pyrene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Dibenz(ah)anthracene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	Benzo(ghi)perylene	Solvent extraction, GC-MS	As received	М	0.02	mg/kg
CE087	PAH (total of USEPA 16)	Solvent extraction, GC-MS	As received		0.34	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

Chemtech Environmental Limited

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

N No (not deviating sample)
Y Yes (deviating sample)
NSD Sampling date not provided

NST Sampling time not provided (waters only)

EHT Sample exceeded holding time(s)

IC Sample not received in appropriate containers HP Headspace present in sample container

NCF Sample not chemically fixed (where appropriate)

OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
100946-1	WS1	0.10	N	
100946-2	WS6	0.20	N	
100946-3	WS11	0.50	N	
100946-4	WS12	0.20	N	

LABORATORY REPORT

4043

Contract Number: PSL21/7780

Report Date: 29 October 2021

Client's Reference: 151089-3846

Client Name: Abbeydale BEC

4 Neville Street Wakefield WF1 5EF

For the attention of: Glyn Hogg

Contract Title: A635 Barnsley Road, Goldthorpe

Date Received: 29/9/2021 Date Commenced: 29/9/2021 Date Completed: 28/10/2021

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

A Watkins R Berriman S Royle (Director) (Quality Manager) (Laboratory Manager)

Att

L Knight S Eyre M Fennell
(Assistant Laboratory Manager) (Senior Technician) (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe,

Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642

e-mail: rberriman@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample				
WS1			0.40		Brown very sandy CLAY.				
WS1			0.70		Brown mottled grey sandy CLAY.				
WS2			0.20		Brown sandy very silty CLAY.				
WS2			0.40		Brown mottled grey sandy very silty CLAY.				
WS2			0.60		Brown mottled grey very gravelly sandy very silty CLAY.				
WS3			0.20		Brown sandy CLAY.				
WS3			0.60		Brown mottled grey sandy very silty CLAY.				
WS4			0.10		Brown very sandy CLAY.				
WS4			0.50		Brown very sandy CLAY.				
WS4			1.00		Brown mottled grey sandy very silty CLAY.				
WS5			0.20		Brown slightly gravelly sandy CLAY.				
WS5			0.40		Brown mottled grey sandy CLAY.				
WS5			1.00		Brown mottled grey sandy CLAY.				
WS6			0.80		Brown mottled grey sandy CLAY.				
WS6			1.30		Brown mottled grey sandy CLAY.				
WS6			1.90		Brown mottled grey very sandy CLAY.				
WS7			0.15		Brown sandy CLAY.				
WS7			0.70		Brown mottled grey sandy very silty CLAY.				
WS7			1.30		Brown mottled grey very silty CLAY.				

A635 Barnsley Road, Goldthorpe

Contract No:
PSL21/7780
Client Ref:
151089-3846

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample				
WS7			1.80		Brown mottled grey very silty CLAY.				
WS7			2.20		Brown mottled grey very silty CLAY.				
WS7			2.90		Reddish brown very silty CLAY.				
WS7			3.70		Grey very silty CLAY.				
WS8			0.20		Brown slightly gravelly sandy very silty CLAY.				
WS8			0.40		Brown mottled grey very sandy CLAY.				
WS8			0.90		Brown mottled grey very silty CLAY.				
WS8			1.80		Brown mottled grey slightly sandy CLAY.				
WS8			2.50		Brown mottled grey very silty CLAY.				
WS9			0.10		Brown very sandy CLAY.				
WS9			0.60		Brown sandy very silty CLAY.				
WS9			0.90		Brown mottled grey sandy very silty CLAY.				
WS9			1.50		Brown mottled grey sandy very silty CLAY.				
WS9			1.90		Brown mottled grey sandy very silty CLAY.				
WS10			0.20		Brown sandy CLAY.				
WS10			0.90		Brown mottled grey very gravelly very sandy very silty CLAY.				
WS10			1.80		Brown mottled grey sandy very silty CLAY.				
WS11			0.10		Brown sandy very silty CLAY.				
WS11			1.80		Brown mottled grey very silty CLAY.				

A635 Barnsley Road, Goldthorpe

Contract No:
PSL21/7780
Client Ref:
151089-3846

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS12			0.55		Brown sandy CLAY.
WS12			0.80		Brown mottled grey very silty CLAY.
WS13			0.20		Brown slightly gravelly sandy very silty CLAY.
WS13			0.70		Brown mottled grey very silty CLAY.
WS13			1.80		Brown mottled grey slightly gravelly very sandy very silty CLAY.

A635 Barnsley Road, Goldthorpe

Contract No:

PSL21/7780

Client Ref:

151089-3846

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm	Remarks
		<i>.</i> 1	m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS1			0.40		11							
WS1			0.70		14			40	20	20	100	Intermediate Plasticity CI
WS2			0.20		23							
WS2			0.40		16							
WS2			0.60		14			36	20	16	80	Intermediate Plasticity CI
WS3			0.20		21							
WS3			0.60		19			48	25	23	100	Intermediate Plasticity CI
WS4			0.10		13							
WS4			0.50		8							
WS4			1.00		13							
WS5			0.20		19							
WS5			0.40		19							
WS5			1.00		19							
WS6			0.80		11							
WS6			1.30		18							
WS6			1.90		15							
WS7			0.15		16							
WS7			0.70		15							
WS7			1.30		18							

SYMBOLS: NP: Non Plastic

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

Contract No:
PSL21/7780
Client Ref:
151089-3846

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:
PSL21/7780
Client Ref:
151089-3846

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Top	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Type	Depth	Depth	%	%	Mg/m^3	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS7			1.80		15			40	21	19	100	Intermediate Plasticity CI
WS7			2.20		17							
WS7			2.90		14							
WS7			3.70		12							
WS8			0.20		17							
WS8			0.40		19							
WS8			0.90		17							
WS8			1.80		16			50	26	24	100	High Plasticity CH
WS8			2.50		16							
WS9			0.10		20							
WS9			0.60		12							
WS9			0.90		13			39	20	19	100	Intermediate Plasticity CI
WS9			1.50		15							
WS9			1.90		13							
WS10			0.20		19							
WS10			0.90		13			35	19	16	80	Intermediate Plasticity CI
WS10			1.80		13							
WS11			0.10		20							
WS11			1.80		14							

SYMBOLS: NP: Non Plastic

Contract No: PSL21/7780

Client Ref:

151089-3846

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:
PSL21/7780
Client Ref:
151089-3846

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377: PART 2: 1990)

Hole Number	Sample Number	Sample Type	Top Depth	Base Depth	Moisture Content %	Linear Shrinkage %	Particle Density Mg/m ³	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing .425mm %	Remarks
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS12			0.55		15							
WS12			0.80		16							
WS13			0.20		19							
WS13			0.70		18							
WS13			1.80		13			33	17	16	95	Low Plasticity CL

SYMBOLS: NP: Non Plastic

^{*:} Liquid Limit and Plastic Limit Wet Sieved.

Contract No:
PSL21/7780
Client Ref:
151089-3846

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION.

Contract No:
PSL21/7780
Client Ref:
151089-3846