| 14/ II T                                                               | <b>A</b> · · · |             |                                      | PREPARED BY:  | DATE:    |
|------------------------------------------------------------------------|----------------|-------------|--------------------------------------|---------------|----------|
| Walker Ingram Associates<br>Office S4                                  |                |             | МА                                   | Jun 2020      |          |
| Office S4<br>Flexspace<br>Wakefield<br>West Yorkshire<br>WALKER INGRAM |                |             | CHECKED BY:                          | DATE:         |          |
|                                                                        |                |             | ww                                   | Jun 2020      |          |
| WEST FORKS                                                             | lire           |             | ASSOCIATES                           | APPROVED BY:  | DATE:    |
|                                                                        |                |             | CONSULTING ENGINEERS                 |               |          |
| t 01924 7                                                              | 92 312         |             | PROJECT TITLE: Dearne & Dove Works M | lineshaft Cap |          |
| info@wa                                                                | alkeringram.co | o.uk        | PROJECT REF: 100.058                 |               |          |
| 🕐 www.wa                                                               | alkeringram.co | o.uk        | CLIENT NAME: Longlovs (Barnslov) Ltd |               |          |
|                                                                        |                |             | CELENT NAME. LOngleys (Damsley) Eta  |               |          |
| CONTENT                                                                | re.            |             |                                      |               |          |
| CONTENT                                                                | 5              |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
| STATUS                                                                 |                |             |                                      |               |          |
| STATUS                                                                 |                |             |                                      |               |          |
| APPROVAL                                                               | -              |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
| REVISIONS                                                              |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
| DEE                                                                    | DATE           | DESCRIP     |                                      | CHECKED       |          |
|                                                                        |                | DESCRIP     |                                      |               | AFFRUVED |
| 0                                                                      | lup 20         | First Issue |                                      | ww            |          |
|                                                                        |                |             | 5                                    |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
|                                                                        |                |             |                                      |               |          |
| 1                                                                      | 1              | 1           |                                      |               |          |

|                                    | Project<br>Dearne | e & Dove Wo               | Job Ref.<br>100.058 |                           |          |      |
|------------------------------------|-------------------|---------------------------|---------------------|---------------------------|----------|------|
| WALKER INGRAM                      | Section           | Minesł                    | Sheet no./rev.<br>2 |                           |          |      |
| ASSOCIATES<br>CONSULTING ENGINEERS | Calc. by<br>MA    | <sub>Date</sub><br>Jun 20 | Chk'd by<br>WW      | <sub>Date</sub><br>Jun 20 | App'd by | Date |

# 1) INTRODUCTION

The following calculations are for the design of a reinforced concrete mineshaft cap. Walker Ingram Associates have been advised that the shaft recorded on site is 2.75m in diameter and rockhead is approximately 0.9m below existing ground level.

The site is currently being cleared to make way for a possible future development, the details of which are unknown at the time of designing the cap.it is proposed to design the cap for the greater of load model 1 from EC1 or 33kN/m<sup>2</sup>.

In addition to being asessed for the conditions indicated above, the reinforcement provided will be no less than that indicated by the Coal Authority's standard details.

|                                    | Project<br>Dearne & Dove Works – Mineshaft Cap |                           |                |                           | Job Ref.<br>100.058 |      |
|------------------------------------|------------------------------------------------|---------------------------|----------------|---------------------------|---------------------|------|
| WALKER INGRAM                      | Section                                        | Mines                     | naft CAP       |                           | Sheet no./rev.      | 3    |
| ASSOCIATES<br>CONSULTING ENGINEERS | Calc. by<br>MA                                 | <sub>Date</sub><br>Jun 20 | Chk'd by<br>WW | <sub>Date</sub><br>Jun 20 | App'd by            | Date |

# 2) DESIGN CODES & REFERENCES

Eurocode: Basis of structural design (EN 1990)

*Eurocode 1: Actions on structures* (EN 1991)

Part 1-1: Densities, self-weight, imposed loads for buildings (EN 1991-1-1)

*Eurocode 2: Design of concrete structures* (EN 1992) Part 1-1: General rules, and rules for buildings (EN 1992-1-1)

| 1 ^                                | Project       |                        |          |               |                 | Job Ref              |  |
|------------------------------------|---------------|------------------------|----------|---------------|-----------------|----------------------|--|
|                                    |               | Dearne 8               | Dove V   | Vorks - Mines | haft Cap        | 100.058              |  |
|                                    | Section       |                        |          |               |                 | Sheet No./rev.       |  |
|                                    | Mineshaft Cap |                        |          |               |                 | 4                    |  |
| ASSOCIATES                         | Calc By       | Date                   |          | Chc'd By      | Date            | Appr'd by Date       |  |
| CONSULTING ENGINEERS               | М             | Α                      | lun-20   | WW            | Jun-20          |                      |  |
| RC Mineshaft Can Design            | ן<br>ו        |                        |          |               |                 |                      |  |
| Slab has                           | annrox        | 1 42                   | 5 m c    | nver          | Shaft Diamet    | er/width 2 75 m      |  |
|                                    | appion        |                        |          | 5761          |                 |                      |  |
| Assumin                            | n             | 0                      | m        | surfacing     | Density         | 25 kN/m <sup>3</sup> |  |
|                                    | 9             | 2                      | <br>m    | fill          | Density         | 19 kN/m <sup>3</sup> |  |
|                                    |               | 0.5                    | m        | Cap           | Density         | 25 kN/m <sup>3</sup> |  |
| I oad is spread 1 <sup>.</sup> tan | 30            | <sup>o</sup> through s | surfacir | and fill in a | accordance with | Furocodes and        |  |
| 1:1 thro conc slab                 |               | anough                 | Janaon   |               |                 |                      |  |
|                                    |               |                        |          |               | 600 SI          | S                    |  |
|                                    |               |                        |          | (             | 900 \ 11        | <u>-</u>             |  |
|                                    |               |                        |          |               |                 |                      |  |
| I M1 load dieper                   | rsal _ / ·    | wheele                 |          | /             |                 |                      |  |
|                                    | Jai - 4       | **116619               |          |               |                 |                      |  |
|                                    | ר ר<br>ר      | 13 1203                | m2       | /             |                 |                      |  |
|                                    | <i>,</i>      | 10.1200                | 111      |               |                 |                      |  |
|                                    | 15 70         | kNI/m²                 |          | / 1           | 73 1 73         |                      |  |
|                                    | +3.70         | KIN/III                |          | 1.1           | 3 1.73          |                      |  |
|                                    | n /           | 12 1202                | m2       |               |                 |                      |  |
|                                    | J /           | 13.1293                | m-       | /             |                 |                      |  |
|                                    |               |                        | /        | /             |                 |                      |  |
|                                    |               |                        | L        |               |                 |                      |  |
|                                    |               |                        |          | 1             |                 | 1                    |  |
|                                    |               |                        |          | 000           | 400 0           | 00                   |  |
|                                    |               |                        |          | 823           | 400 A           | 23                   |  |
|                                    |               |                        |          |               | 2045            |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
| <b>953</b> 3                       |               |                        |          | 2000          |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    | 50            |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
| 3233                               |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    | •             |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               | 2023                   |          | ••••          | 2023            |                      |  |
|                                    |               |                        |          |               |                 |                      |  |
|                                    |               |                        |          |               |                 |                      |  |

| _1 ^                    | Project         |                   |             |           | Job Ref             |   |
|-------------------------|-----------------|-------------------|-------------|-----------|---------------------|---|
|                         | Dear            | ne & Dove Works   | - Mineshaft | Сар       | 100.058             |   |
|                         | Section         |                   |             |           | Sheet No./rev.      |   |
|                         |                 | Mineshaft         | Сар         |           | 5                   |   |
| ASSOCIATES              | Calc By         | Date Chc'         | d By        | Date      | Appr'd by Date      |   |
| CONSULTING ENGINEERS    | MA              | Jun-20            | WW          | Jun-20    |                     |   |
| For a conservative desi | an assume a b   | lanket live load  |             |           |                     |   |
| Dead Loads              |                 | SLS               |             | ULS       |                     |   |
|                         |                 |                   |             |           |                     |   |
| Surfacing               |                 | 0.00              | >           | 0.00      |                     |   |
|                         |                 |                   |             |           |                     |   |
| Fill                    |                 | 38.00             | >           | 51.30     |                     |   |
|                         |                 |                   |             |           |                     |   |
| Slab (Cover)            |                 | 7.92              | >           | 10.69     |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 | 45.92             | >           | 61.99     |                     |   |
|                         |                 |                   |             |           |                     |   |
| Live Load               |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
| Load Model 1            |                 | 45.70             | >           | 68.55     |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             | Use EC1   | LM1 as greater that | n |
| Design slab as          | s a 2 way spann | ning simply suppo | orted slab  | British ( | Coal load of 33kN/m | 2 |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |
|                         |                 |                   |             |           |                     |   |

|                                    | Project<br>Dearne | e & Dove Wo               | Job Ref.<br>100.058 |                           |          |      |
|------------------------------------|-------------------|---------------------------|---------------------|---------------------------|----------|------|
| WALKER INGRAM                      | Section           | Mines                     | Sheet no./rev.<br>6 |                           |          |      |
| ASSOCIATES<br>CONSULTING ENGINEERS | Calc. by<br>MA    | <sub>Date</sub><br>Jun 20 | Chk'd by<br>WW      | <sub>Date</sub><br>Jun 20 | App'd by | Date |

# MINESHAFT CAP

RC slab design in accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.19

## Design summary

| Description            | Unit  | Provided | Required | Utilisation | Result |
|------------------------|-------|----------|----------|-------------|--------|
| Short span             |       |          |          |             |        |
| Reinf. at midspan      | mm²/m | 1571     | 778      | 0.495       | PASS   |
| Bar spacing at midspan | mm    | 200      | 300      | 0.667       | PASS   |
| Shear at discont. supp | kN/m  | 210.2    | 179.5    | 0.854       | PASS   |
| Deflection ratio       |       | 5.56     | 40.00    | 0.139       | PASS   |
| Long span              |       |          |          |             |        |
| Reinf. at midspan      | mm²/m | 1571     | 810      | 0.516       | PASS   |
| Bar spacing at midspan | mm    | 200      | 300      | 0.667       | PASS   |
| Shear at discont. supp | kN/m  | 214.2    | 179.5    | 0.838       | PASS   |
| Cover                  |       |          |          |             |        |
| Min cover bottom       | mm    | 75       | 30       | 0.400       | PASS   |



## Slab definition

| Slab reference name;                      | Mineshaft Cap                                                                                            |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Type of slab;                             | Two way spanning with unrestrained edges                                                                 |
| Overall slab depth;                       | h = <b>600</b> mm                                                                                        |
| Shorter effective span of panel;          | l <sub>x</sub> = <b>2750</b> mm                                                                          |
| Longer effective span of panel;           | l <sub>y</sub> = <b>2750</b> mm                                                                          |
| Support conditions;                       | Four edges simply supported                                                                              |
| ;                                         |                                                                                                          |
| Bottom outer layer of reinforcement;      | Long span direction                                                                                      |
| Loading                                   |                                                                                                          |
| Characteristic permanent action;          | G <sub>k</sub> = <b>45.9</b> kN/m <sup>2</sup>                                                           |
| Characteristic variable action;           | Q <sub>k</sub> = <b>45.7</b> kN/m <sup>2</sup>                                                           |
| Partial factor for permanent action;      | γ <sub>G</sub> = 1.35                                                                                    |
| Partial factor for variable action;       | γ <b>Q</b> = <b>1.50</b>                                                                                 |
| Quasi-permanent value of variable action; | $\psi_2 = 0.30$                                                                                          |
| Design ultimate load;                     | $q = \gamma_G \times G_k + \gamma_Q \times Q_k = 130.5 \text{ kN/m}^2$                                   |
| Quasi-permanent load;                     | $q_{SLS} \texttt{=} 1.0 \times G_k \texttt{+} \psi_2 \times Q_k \texttt{=} \texttt{59.6} \text{ kN/m}^2$ |
|                                           |                                                                                                          |

|                                    | Project<br>Dear           | ne & Dove V                    | Vorks – Mines                                                   | shaft Cap                                           | Job Ref.                  | 0.058                |  |  |
|------------------------------------|---------------------------|--------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------------------|----------------------|--|--|
|                                    | Section                   |                                |                                                                 |                                                     | Sheet no./re              | 2V.                  |  |  |
| WALKER INGRAM                      |                           | Mine                           | eshaft CAP                                                      |                                                     |                           | 7                    |  |  |
| ASSOCIATES<br>CONSULTING ENGINEERS | Calc. by<br>MA            | Date<br>Jun 20                 | Chk'd by<br>WW                                                  | Date<br>Jun 20                                      | App'd by                  | Date                 |  |  |
| Concrete properties                |                           |                                |                                                                 |                                                     |                           |                      |  |  |
| Concrete strength class;           |                           | C32/40                         |                                                                 |                                                     |                           |                      |  |  |
| Characteristic cylinder strength   | ;                         | f <sub>ck</sub> = <b>32</b>    | N/mm <sup>2</sup>                                               |                                                     |                           |                      |  |  |
| Partial factor (Table 2.1N);       |                           | γ <sub>C</sub> = 1.5           | ס                                                               |                                                     |                           |                      |  |  |
| Compressive strength factor (c     | l. 3.1.6);                | α <sub>cc</sub> = 0.8          | 35                                                              |                                                     |                           |                      |  |  |
| Design compressive strength (      | cl. 3.1.6);               | f <sub>cd</sub> = <b>18.</b>   | <b>1</b> N/mm <sup>2</sup>                                      |                                                     |                           |                      |  |  |
| Mean axial tensile strength (Ta    | ble 3.1);                 | f <sub>ctm</sub> = 0.3         | $30 \text{ N/mm}^2 \times (f_{ck} / $                           | 1 N/mm <sup>2</sup> ) <sup>2/3</sup> = 3.0          | N/mm <sup>2</sup>         |                      |  |  |
| Maximum aggregate size;            |                           | d <sub>g</sub> = <b>20</b>     | mm                                                              |                                                     |                           |                      |  |  |
| Reinforcement properties           |                           |                                |                                                                 |                                                     |                           |                      |  |  |
| Characteristic yield strength;     |                           | f <sub>yk</sub> = <b>500</b>   | N/mm <sup>2</sup>                                               |                                                     |                           |                      |  |  |
| Partial factor (Table 2.1N);       |                           | γs <b>= 1.1</b>                | 5                                                               |                                                     |                           |                      |  |  |
| Design yield strength (fig. 3.8);  |                           | $f_{yd} = f_{yk}$ /            | γs = <b>434.8</b> N/mn                                          | n <sup>2</sup>                                      |                           |                      |  |  |
| Concrete cover to reinforcem       | nent                      |                                |                                                                 |                                                     |                           |                      |  |  |
| Nominal cover to outer bottom      | reinforcement;            | C <sub>nom_b</sub> =           | <b>75</b> mm                                                    |                                                     |                           |                      |  |  |
| Fire resistance period to botton   | n of slab;                | R <sub>btm</sub> = 3           | <b>0</b> min                                                    |                                                     |                           |                      |  |  |
| Axia distance to bottom reinft (   | Table 5.8);               | a <sub>fi_b</sub> = <b>1</b> ( | <b>)</b> mm                                                     |                                                     |                           |                      |  |  |
| Min. btm cover requirement wit     | h regard to boi           | nd; C <sub>min,b_b</sub> =     | <b>20</b> mm                                                    |                                                     |                           |                      |  |  |
| Reinforcement fabrication;         | einforcement fabrication; |                                |                                                                 | Not subject to QA system                            |                           |                      |  |  |
| Cover allowance for deviation;     |                           | $\Delta c_{dev} = r$           | <b>I0</b> mm                                                    |                                                     |                           |                      |  |  |
| Min. required nominal cover to     | bottom reinft;            | C <sub>nom_b_mi</sub>          | <sub>n</sub> = <b>30.0</b> mm                                   |                                                     |                           |                      |  |  |
|                                    |                           | P                              | ASS - There is s                                                | ufficient cover t                                   | o the bottom              | reinforcemer         |  |  |
| Reinforcement design at mid        | span in short             | span direction                 | n (cl. 6.1)                                                     |                                                     |                           |                      |  |  |
| Bending moment coefficient;        |                           | $\alpha_{sx_p} = 0$            | .0620                                                           |                                                     |                           |                      |  |  |
| Design bending moment;             |                           | M <sub>x_p</sub> = α           | $sx_p \times q \times I_x^2 = 61$                               | <b>.2</b> kNm/m                                     |                           |                      |  |  |
| Reinforcement provided;            |                           | 20 mm o                        | lia. bars at 200 n                                              | nm centres                                          |                           |                      |  |  |
| Area provided;                     |                           | $A_{sx_p} = 1$                 | 571 mm²/m                                                       |                                                     |                           |                      |  |  |
| Effective depth to tension reinfo  | prcement;                 | $d_{x_p} = h$                  | - <b>C</b> <sub>nom_b</sub> - φ <sub>y_p</sub> - φ <sub>x</sub> | <sub>p</sub> / 2 = <b>495.0</b> mm                  | I                         |                      |  |  |
| K factor;                          |                           | K = M <sub>x_r</sub>           | $h / (b \times d_{x_p^2} \times f_{ck})$                        | = 0.008                                             |                           |                      |  |  |
| Redistribution ratio;              |                           | δ = 1.0                        |                                                                 |                                                     |                           |                      |  |  |
| K' factor;                         |                           | K' = 0.59                      | $98 \times \delta$ - 0.18 $\times \delta^2$                     | - 0.21 = <b>0.208</b>                               |                           |                      |  |  |
|                                    |                           |                                | K < K' -                                                        | Compression re                                      | inforcement               | is not require       |  |  |
| Lever arm;                         |                           | z = min(                       | $0.95 \times d_{x_p}, d_{x_p/2}$                                | 2 × (1 + √(1 - 3.53                                 | 8 × K))) =                |                      |  |  |
|                                    | <b>,</b> , ,,             | 470.3 m                        | m                                                               | 24                                                  |                           |                      |  |  |
| Area of reinforcement required     | for bending;              | A <sub>sx_p_m</sub> =          | = M <sub>x_p</sub> / (t <sub>yd</sub> × z) =                    | 299 mm²/m                                           |                           | 2/                   |  |  |
| Minimum area of reinforcement      | t required;               | A <sub>sx_p_min</sub>          | $= \max(0.26 \times (f_{cl}))$                                  | $_{\rm tm}/f_{\rm yk}$ ) × b × d <sub>x_p</sub> , 0 | ).0013×b×d <sub>x_p</sub> | ) = <b>778</b> mm²/m |  |  |
| Area of reinforcement required;    | ,                         | Asx_p_req                      | = max(A <sub>sx_p_m</sub> , A                                   | .sx_p_min) = 778 mn                                 | n²/m<br>vided exceed      | a araa raquira       |  |  |
|                                    |                           | FA                             | 55 - Area Or Tell                                               | norcement prov                                      |                           | s alea lequile       |  |  |
| Cneck reinforcement spacing        | 3                         | ,                              | F. ()                                                           |                                                     | a                         | • N1/mana?           |  |  |
| Reinforcement service stress;      |                           | $\sigma_{sx_p} = ($            | $f_{yk} / \gamma_S $ × min((As)                                 | x_p_m/Asx_p), 1.0) ×                                | qsls / q = 37             | .9 N/mm²             |  |  |
| Maximum allowable spacing (1       | able 7.3N);               | Smax_x_p                       | = 300 mm                                                        |                                                     |                           |                      |  |  |
| Actual bal spacing,                |                           | S <sub>x_p</sub> – 20          | PASS                                                            | S - The reinforce                                   | ment snacin               | a is accentabl       |  |  |
| Doinforcoment design start         | onon in lass              | non dire etter                 | (a) 6 4)                                                        |                                                     | incin spacing             | η το αυτοριαμί       |  |  |
| Reinforcement design at Mid        | span in iong s            |                                | (01. 0.1)                                                       |                                                     |                           |                      |  |  |
| Denuing moment coefficient;        |                           | $\alpha_{sy_p} = 0$            | 1.0020                                                          | 2 kNm/m                                             |                           |                      |  |  |
| Design handing managet             |                           |                                |                                                                 |                                                     |                           |                      |  |  |
| Design bending moment;             |                           | $W_{y_p} = \alpha$             | $sy_p \times q \times lx^2 = 61$                                |                                                     |                           |                      |  |  |

| Project Job Ref.                   |                                         |                                             |                                                                                                                                                       |                                                                        |                                                             |                                         |  |  |
|------------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------|--|--|
| <b>⊴</b> ¶ <b>∖}</b>               | Dearn                                   | ie & Dove Wo                                | orks – Minesł                                                                                                                                         | naft Cap                                                               | 100                                                         | 0.058                                   |  |  |
|                                    | Section                                 |                                             |                                                                                                                                                       |                                                                        | Sheet no./rev                                               | <i>'</i> .                              |  |  |
| WALKER INGRAM                      |                                         | Mines                                       |                                                                                                                                                       | 8                                                                      |                                                             |                                         |  |  |
| ASSOCIATES                         | Calc. by                                | Date                                        | Chk'd by                                                                                                                                              | Date                                                                   | App'd by                                                    | Date                                    |  |  |
| CONSULTING ENGINEERS               | MA                                      | Jun 20                                      | WW                                                                                                                                                    | Jun 20                                                                 |                                                             |                                         |  |  |
| Area provided:                     |                                         | $A_{sy,p} = 157$                            | 71 mm <sup>2</sup> /m                                                                                                                                 |                                                                        |                                                             |                                         |  |  |
| Effective depth to tension reinfor | cement:                                 | $d_{v,n} = h - c$                           | $r_{\rm hom} = \phi_{\rm v} = /2 =$                                                                                                                   | 515 0 mm                                                               |                                                             |                                         |  |  |
| K factor:                          | oomont,                                 | K = My n /                                  | $(b \times d_{y})^{2} \times f_{ak} =$                                                                                                                | 0 007                                                                  |                                                             |                                         |  |  |
| Redistribution ratio:              |                                         | 8 – 1 0                                     |                                                                                                                                                       | 0.007                                                                  |                                                             |                                         |  |  |
| K' factor                          |                                         | 6 = 1.0<br>K' = 0.508                       | v § 0 18 v §2                                                                                                                                         | 0.21 - 0.202                                                           |                                                             |                                         |  |  |
| R laciol,                          |                                         | K - 0.590                                   | × 0 - 0.10 × 0 -                                                                                                                                      | 0.21 - 0.200                                                           | nforcomont i                                                | s not required                          |  |  |
| Lover erm:                         |                                         | $z = \min(0)$                               |                                                                                                                                                       | $(1 \pm \sqrt{1 + 2})$                                                 |                                                             | s not required                          |  |  |
| Lever ann,                         |                                         | 2 = 11111(0.:                               | 95 × Uy_p, Uy_p/2                                                                                                                                     | × (1 + )(1 - 3.55                                                      | × N))) -                                                    |                                         |  |  |
| Area of reinforcement required f   | or bending:                             | 409.2 mm                                    | (furt ∨ 7) = <b>2</b>                                                                                                                                 | <b>88</b> mm <sup>2</sup> /m                                           |                                                             |                                         |  |  |
| Minimum area of reinforcement      | required:                               | Asy_p_m = n                                 | $\max(0.26 \times (f_{\text{true}})) = \mathbf{z}$                                                                                                    | /fu) x b x du a 0 (                                                    | 0013vbvd)                                                   | - <b>810</b> mm <sup>2</sup> /m         |  |  |
| Area of reinforcement required:    | equileu,                                | Asy_p_min -                                 | $max(0.20 \times (1ctm))$                                                                                                                             | $(1) = 810 \text{ mm}^2$                                               | $2/m^{2}$                                                   | - 810 11111 /111                        |  |  |
| Area of ternorcement required,     |                                         | Asy_p_req =                                 | S - Area of reinf                                                                                                                                     | _p_min) = 010 mini                                                     | ////<br>ded exceeds                                         | area required                           |  |  |
|                                    |                                         | 7 400                                       |                                                                                                                                                       | or cement provid                                                       |                                                             | urcu requircu                           |  |  |
|                                    |                                         | /5                                          | ( )                                                                                                                                                   |                                                                        |                                                             | N1/                                     |  |  |
| Reinforcement service stress,      |                                         | σsy_p – (lyk                                | /γs) × min((Asy_p                                                                                                                                     | $p_m/Asy_p$ , $1.0$ × 0                                                | JSLS / Y - JO.4                                             | FIN/IIIII-                              |  |  |
| Maximum allowable spacing (Ta      | Maximum allowable spacing (Table 7.3N); |                                             |                                                                                                                                                       |                                                                        |                                                             |                                         |  |  |
| Actual bar spacing,                |                                         | Sy_p – <b>200</b>                           | DASS.                                                                                                                                                 | The reinforcer                                                         | ont enacina                                                 | is accontablo                           |  |  |
| <b>.</b>                           |                                         |                                             | FA33                                                                                                                                                  | · me remorcen                                                          | iem spacing                                                 | is acceptable                           |  |  |
| Shear capacity check at short      | span disconti                           | inuous support                              |                                                                                                                                                       |                                                                        |                                                             |                                         |  |  |
| Snear force;                       |                                         | $V_{x_d} = q \times$                        | I <sub>x</sub> / 2 = ;1/9.5; Ki                                                                                                                       | N/m;                                                                   |                                                             |                                         |  |  |
| Reinforcement provided;            |                                         | 20 mm dia                                   | a. bars at 200 m $\frac{1}{2}$                                                                                                                        | m centres                                                              |                                                             |                                         |  |  |
| Area provided;                     |                                         | $A_{sx_d} = 15$                             | 1 mm²/m                                                                                                                                               |                                                                        |                                                             |                                         |  |  |
| Effective depth factor             |                                         | $d_{x_d} = d_{x_p}$                         | = ; <b>495.0</b> ; mm                                                                                                                                 | $(d_{1})(0.5) = 4.626$                                                 |                                                             |                                         |  |  |
| Ellective deptil lactor,           |                                         | $\kappa = \min(2)$                          | 0, 1 + (200 mm /                                                                                                                                      | $(u_{x_d})^{(n)} = 1.030$                                              |                                                             |                                         |  |  |
| Minimum choor resistance:          |                                         | $p_i = \min(0, \dots, -$                    | $02, Asx_d / (b \times d)$                                                                                                                            | x_d)) - 0.0032                                                         | ∞2\0.5 bd                                                   |                                         |  |  |
| Minimum snear resistance,          |                                         | VRd,c_min -                                 | $V_{Rd,c_{min}} = 0.035 \text{ N/mm}^2 \times \text{K}^{1.3} \times (\text{T}_{ck} / 1 \text{ N/mm}^2)^{0.3} \times \text{D} \times \text{d}_{x_{d}}$ |                                                                        |                                                             |                                         |  |  |
| Shaar resistance constant (cl. 6   | 2 2).                                   |                                             | 203.0  KN/III                                                                                                                                         | $12 \text{ N/mm}^2$                                                    |                                                             |                                         |  |  |
| Shear resistance                   | Z.Z),                                   | CRa,c - 0.1                                 | ο N/IIII / γc – C                                                                                                                                     | <b>J. 12</b> IN/IIIII                                                  |                                                             |                                         |  |  |
|                                    | Ved a v d = m                           |                                             |                                                                                                                                                       | $(f_{ck}/1 \text{ N/mm}^2))^{(1)}$                                     | $0.333 \times h \times d_{2} d^{3}$                         | ) = <b>210 2</b> kN/m                   |  |  |
|                                    | vita,c_x_d                              |                                             |                                                                                                                                                       | PASS - Shear ca                                                        | apacity is add                                              | equate (0.854)                          |  |  |
| Shear canacity check at long       | snan discontir                          | nuous support                               |                                                                                                                                                       |                                                                        |                                                             |                                         |  |  |
| Shear force:                       |                                         |                                             | l√ / 2 = · <b>179 5</b> · ki                                                                                                                          | N/m·                                                                   |                                                             |                                         |  |  |
| Reinforcement provided:            |                                         | 20 mm di:                                   | a bars at 200 m                                                                                                                                       | m centres                                                              |                                                             |                                         |  |  |
| Area provided:                     |                                         | $A_{sy d} = 157$                            | <b>71</b> mm <sup>2</sup> /m                                                                                                                          |                                                                        |                                                             |                                         |  |  |
| Effective depth:                   |                                         | $d_{y,d} = d_{y,n}$                         | = · <b>515.0</b> mm                                                                                                                                   |                                                                        |                                                             |                                         |  |  |
| Effective depth factor:            |                                         | k = min(2.0)                                | ). 1 + (200 mm /                                                                                                                                      | $(d_{v,d})^{0.5}$ = <b>1.623</b>                                       |                                                             |                                         |  |  |
| Reinforcement ratio:               |                                         | $\alpha = \min(0)$                          | 02. A <sub>sv. d</sub> / (b × d                                                                                                                       | (d) = 0.0031                                                           |                                                             |                                         |  |  |
| Minimum shear resistance:          |                                         | VRd c min =                                 | $0.035 \text{ N/mm}^2 \times 1$                                                                                                                       | $k^{1.5} \times (f_{ck} / 1 \text{ N/mr})$                             | $m^{2})^{0.5} \times h \times d_{v}$                        | d                                       |  |  |
|                                    | winimum snear resistance;               |                                             |                                                                                                                                                       |                                                                        | 11) × 6 × 4 <u>9</u>                                        | _u                                      |  |  |
| Shear resistance constant (cl. 6   | 2.2):                                   | $C_{\text{Rd},c} = 0.1$                     | $8 \text{ N/mm}^2 / \gamma_c = 0$                                                                                                                     | <b>).12</b> N/mm <sup>2</sup>                                          |                                                             |                                         |  |  |
| Shear resistance;                  | ,                                       | - 1 4,0 - 1 -                               |                                                                                                                                                       |                                                                        |                                                             |                                         |  |  |
|                                    | $V_{Rd,c_y_d} = rr$                     | nax(V <sub>Rd,c_min</sub> , C <sub>Rd</sub> | $_{\rm d,c} \times \mathbf{k} \times (100 \times \rho)$                                                                                               | ı × (f <sub>ck</sub> /1 N/mm²)) <sup>(</sup><br><b>PASS - Shear ca</b> | <sup>).333</sup> × b × d <sub>y_d</sub> )<br>apacity is add | ) = <b>214.2</b> kN/m<br>equate (0.838) |  |  |
| Basic span-to-depth deflection     | n ratio check (                         | cl. 7.4.2)                                  |                                                                                                                                                       |                                                                        |                                                             |                                         |  |  |
| Reference reinforcement ratio:     | · · · ·                                 | ρ <sub>0</sub> = (f <sub>ck</sub> / 1       | N/mm <sup>2</sup> ) <sup>0.5</sup> / 100                                                                                                              | 0 = <b>0.0057</b>                                                      |                                                             |                                         |  |  |
| Required tension reinforcement     | ratio;                                  | ρ = max(0                                   | .0035, A <sub>sx_p_req</sub> /                                                                                                                        | (b × d <sub>x_p</sub> )) = <b>0.00</b>                                 | 35                                                          |                                         |  |  |
|                                    |                                         |                                             |                                                                                                                                                       |                                                                        |                                                             |                                         |  |  |

| _ ∏                               | Project                         |                                    |                                                          |                                                | Job Ref.                                   |                                     |  |  |  |
|-----------------------------------|---------------------------------|------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------------|-------------------------------------|--|--|--|
|                                   | Dear                            | ne & Dove V                        | Vorks – Mines                                            | shaft Cap                                      | 100.058                                    |                                     |  |  |  |
|                                   | Section                         |                                    | Sheet no./rev.                                           |                                                |                                            |                                     |  |  |  |
| WALKER INGRAM                     |                                 | Mine                               | eshaft CAP                                               |                                                |                                            | 9                                   |  |  |  |
| ASSOCIATES                        | Calc. by                        | Date                               | Chk'd by                                                 | Date                                           | App'd by                                   | Date                                |  |  |  |
| CONSULTING ENGINEERS              | MA                              | Jun 20                             | WW                                                       | Jun 20                                         |                                            |                                     |  |  |  |
| Poquired compression reinford     | omont ratio:                    | o' = A                             | / (b x d ) =                                             | - 0 0000                                       |                                            |                                     |  |  |  |
|                                   |                                 | $p - A_{scx}$                      | _p_req / (D × Ux_p) -                                    | - 0.0000                                       |                                            |                                     |  |  |  |
| Stuctural system factor (Table    | 7.4N);                          | K <sub>δ</sub> = 1.0               |                                                          |                                                |                                            |                                     |  |  |  |
| Basic limit span-to-depth ratio ( | (Exp. 7.16);                    |                                    |                                                          |                                                |                                            |                                     |  |  |  |
|                                   | ratio <sub>lim_x_bas</sub> =    | = K <sub>δ</sub> × [11 +1.5×       | (f <sub>ck</sub> /1 N/mm <sup>2</sup> ) <sup>0.5</sup> × | ρ₀/ρ + 3.2×(fck/1 N                            | /mm²) <sup>0.5</sup> ×(ρ₀/ρ                | -1) <sup>1.5</sup> ] = <b>33.47</b> |  |  |  |
| Mod span-to-depth ratio limit;    |                                 |                                    |                                                          |                                                |                                            |                                     |  |  |  |
|                                   | ratio <sub>lim_x</sub> = ı      | min(40 $	imes$ K $_{\delta}$ , mir | n(1.5, (500 N/mm                                         | $1^2$ / $f_{yk}$ ) × ( $A_{sx_p}$ / $A_{sx_p}$ | <sub>x_p_m</sub> )) × ratio <sub>lim</sub> | _x_bas) = <b>40.00</b>              |  |  |  |
| Actual span-to-eff. depth ratio;  |                                 | ratio <sub>act_x</sub>             | = I <sub>x</sub> / d <sub>x_p</sub> = <b>5.56</b>        |                                                |                                            |                                     |  |  |  |
|                                   |                                 |                                    | PASS - Actua                                             | l span-to-effectiv                             | e depth ratio                              | is acceptable                       |  |  |  |
| <b>Reinforcement summary</b>      |                                 |                                    |                                                          |                                                |                                            |                                     |  |  |  |
| Midspan in short span directior   | 1;                              | 20 mm o                            | dia. bars at 200                                         | mm centres B2                                  |                                            |                                     |  |  |  |
| Midspan in long span direction;   | Midspan in long span direction; |                                    |                                                          | 20 mm dia. bars at 200 mm centres B1           |                                            |                                     |  |  |  |
| Discontinuous support in short    | span direction                  | ; 20 mm o                          | 20 mm dia. bars at 200 mm centres B2                     |                                                |                                            |                                     |  |  |  |
| Discontinuous support in long s   | span direction;                 | 20 mm o                            | dia. bars at 200                                         | mm centres B1                                  |                                            |                                     |  |  |  |

### Reinforcement sketch

;

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.



|                                    | Project<br>Dearn | e & Dove Wo               | Job Ref.<br>100.058 |                           |                |      |
|------------------------------------|------------------|---------------------------|---------------------|---------------------------|----------------|------|
| WALKER INGRAM                      | Section          | Mines                     | naft CAP            |                           | Sheet no./rev. | 10   |
| ASSOCIATES<br>CONSULTING ENGINEERS | Calc. by<br>MA   | <sub>Date</sub><br>Jun 20 | Chk'd by<br>WW      | <sub>Date</sub><br>Jun 20 | App'd by       | Date |